首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Three linker polypeptides of the phycobilisome from the cyanobacterium Mastigocladus laminosus were isolated: A 8.9-kDa polypeptide, L8.9R(C), which is probably associated with C-phycocyanin, a 34.5-kDa polypeptide, L34.5,PCR, which forms a complex with C-phycocyanin, and a 34.5-kDa polypeptide, L34.5,PECR, which is linked to phycoerythrocyanin. The complete amino-acid sequence (80 residues) of the L8.9R(C) polypeptide was determined as well as the N-terminal 44 residues of both L34.5R polypeptides and the 114 C-terminal residues of L34.5,PECR. L8.9R(C) is homologous to L8.9C (Füglistaller et al. (1984) Hoppe-Seyler's Z. Physiol. Chem. 365, 1085-1096) and to the C-terminal sequence of L34.5,PECR. The N-terminal sequences of L34.5,PECR and L34.5,PCR exhibit 34% homology. The 44 N-terminal residues of L34.5,PECR are related to the beta-subunit of phycoerythrocyanin (23% homology), while the C-terminal sequence of L34.5,PECR is more related to alpha PEC (21% homology within 60 residues). This suggests that the 30-kDa-linker polypeptide family originates from a fusion of the alpha- and beta-subunit genes and the corresponding intercistronic DNA sequence, as might have arisen through mutation in the stop-codon of the beta-subunit gene. Hence, all polypeptides of the phycobilisome (including perhaps the anchor polypeptide) may be derived from an early ancestor phycobiliprotein subunit, which itself is also related to myoglobin (Schirmer et al. (1985) J. Mol. Biol. 184, 251-277).  相似文献   

3.
4.
5.
Phycocyanin complexes with "linker" polypeptides (Lundell, D. J., Williams, R. C., and Glazer, A. N. (1981) J. Biol. Chem. 256, 3580-3592) of 27 and 32.5 kilodaltons have been isolated from dissociated Anabaena variabilis phycobilisomes. In 0.05 M phosphate at pH 7.0, these "trimeric" complexes have the molar composition (alpha beta)3 . 27,000 and (alpha beta)3 . 32,500, where alpha and beta are the subunits of phycocyanin and 27,000 and 32,500 denote single copies of the linker polypeptides. The (alpha beta)3 . 27,000 and (alpha beta)3 . 32,500 complexes have lambda max at 638 and 629 nm and fluorescence emission maxima at 651 and 646 nm, respectively. In 0.6 M phosphate at pH 8.0, the (alpha beta)3 . 27,000 complex forms an (alpha beta)6 . 27,000 disc-shaped aggregate as seen in the electron microscope, whereas the (alpha beta)3 . 32,500 complex forms discs, (alpha beta)6 . 32,500, and stacked disc rods of varying lengths. The former material, containing the 27,000 polypeptide, when mixed with the (alpha beta)6 . 32,500 discs, limits their assembly into rods. The spectroscopic properties of the discs and rods assembled in vitro indicate that energy transfer in phycobilisome rod substructures proceeds from (alpha beta)6 . 32,500 discs to the (alpha beta)6 . 27,000 disc proximal to the core and thence to the core.  相似文献   

6.
Oxygen-evolving photosystem II (PS II) particles isolated fromthe thermophilic cyanobacterium Synechococcus elongatus consistedof about twenty polypeptides. Six polypeptides were identifiedby reaction with specific antisera as constituent subunit polypeptidesof oxygen-evolving PS II reaction center complexes. The mostabundant polypeptides were the and ß subunits ofallophycocyanin. Comparison with the polypeptide profile ofisolated phycobilisomes, as well as immunoblotting with an antiserumagainst the large linker polypeptide, showed that the largelinker polypeptide or some proteolytic fragments of it werepresent in the preparation. Thus, each PS II particle is, inessence, an oxygen-evolving PS II complex that is associatedwith the core substructure of the phycobilisome. Cross-linkingexperiments indicated that fragments of the large linker polypeptidesare closely associated with one another and that the Chl-carrying47- kDa polypeptide is located in close proximity to the D2protein and the extrinsic 33-kDa protein. (Received November 12, 1991; Accepted January 23, 1992)  相似文献   

7.
The phycocyanin-containing segments of the rod substructures of Anabaena variabilis phycobilisomes consist of complexes of phycocyanin with "linker" polypeptides of 27,000 and 32,500 daltons (Yu, M.-H., Glazer, A. N., and Williams, R. C. (1981) J. Biol. Chem. 256, 13130-13136). Complexes (alpha beta)3.27,000, (alpha beta)3.32,500, (alpha beta)6.27,000, [(alpha beta)6.32,500]n, (alpha beta)6.27,000 - (alpha beta)6.32,500 were prepared, where alpha beta represents a monomer of phycocyanin, and 27,000 and 32,500 represent the 27,000- and 32,500-dalton polypeptides, respectively. Tryptic digestion of (alpha beta)3.32,500 leads to a stable (alpha beta)3.28,000 complex which does not form higher aggregates. The 32,500 polypeptide is stable to trypsin in the [(alpha beta)6.32,500]n and (alpha beta)6.27,000 - [(alpha beta)6.32,500]n=1.2 aggregates. Upon trypsin treatment of all 27,000 still assembled into higher aggregates, (alpha beta)6.21,0900 and (alpha beta)6.21,000 - (alpha beta)6.32,500. The spectroscopic properties of phycocyanin-linker polypeptide complexes were not modified by the tryptic cleavages. These results show that the 32,500 polypeptide has two distinct functional domains, a 28,000 portion necessary to the stabilization of a trimeric phycocyanin complex and a 4,500 domain which links consecutive phycocyanin hexamers in the rod substructure. The 27,000 polypeptide likewise has two distinct functional domains: a 21,000 domain stabilizes a trimeric phycocyanin complex, a 6,000 domain is exposed in all of the assembly forms examined. From these and earlier studies, it is concluded that the 6,000 domain functions in the attachment of the rod substructures to the core of the phycobilisome.  相似文献   

8.
Microanalyses by SDS-PAGE and microsequencing demonstrate that, under green-light conditions, 3 C-phycoerythrin associated rod-linker polypeptides with different N-terminal amino acid sequences are present in phycobilisomes (PBS) from Calothrix sp. 7601 cells. Two of these polypeptides, corresponding to SDS-PAGE bands at 36 and 37 kDa, could be assigned, respectively, to the cpeC and cpcD genes found on a separate cpeCD-operon in Calothrix sp. 7601 (Federspiel, N.A. and Grossman, A.R. (1990) J. Bacteriol, 172, 4072-4081). The third C-PE rod-linker polypeptide, LR,2PE,33, requires, therefore, a third gene with the suggested locus designation 'cpeE'. A C-PE (alpha beta)6-LR,2PE,33 complex containing this third rod-linker polypeptide could be isolated from phycobilisomes and characterized. PBS from both green- and red-light cells of Calothrix contain a single, unique LRC28 rod-core linker polypeptide which is not altered during chromatic adaptation.  相似文献   

9.
M Eberlein  W Kufer 《Gene》1990,94(1):133-136
Phycocyanin (PC) and phycoerythrocyanin (PEC) are light-harvesting components of the phycobilisome (PbS) from the cyanobacterium Mastigocladus laminosus. These two biliproteins are closely related, and show a particularly high degree of sequence homology in the C-terminal part of their beta-subunits. A 198-bp gene fragment encoding this region of PC from M. laminosus was therefore used as a heterologous hybridization probe to identify the genes coding for PEC from the same organism. A 1.7-kb HindIII fragment was cloned and its sequence determined. Three open reading frames (ORFs) were found on this fragment. The gene coding for the beta-subunit of PEC (pecB) was followed downstream by the alpha-subunit encoding gene (pecA). This gene arrangement had also been found in the PC-encoding (cpc) gene pair from M. laminosus, and is conserved in cpc genes from other organisms. This finding is compatible with a model of evolution of the cpc and pec gene pairs as the product of gene duplication of an ancestral beta- and alpha-subunit-encoding pair. A third ORF starts downstream from pecA. It codes for the 34.5-kDa linker protein, which forms complexes with PEC with a 1:6 stoichiometry in the PbS. Biliprotein- and linker protein-encoding genes are frequently clustered, and this provides mechanisms for the production of the different stoichiometric amounts of these gene products required in the PbS and for coregulation by environmental factors.  相似文献   

10.
The phycobiliproteins of the unicellular cyanobacterium Synechocystis sp. strain BO 8402 and its derivative strain BO 9201 are compared. The biliproteins of strain BO 8402 are organized in paracrystalline inclusion bodies showing an intense autofluorescence in vivo. These protein-pigment aggregates have been isolated. The highly purified complexes contain phycocyanin with traces of phycoerythrin, corresponding linker polypeptides LR35PC and LR33PE (the latter in a small amount), and a unique colored polypeptide with an M(r) of 55,000, designated L55. Allophycocyanin and the core linker polypeptides are absent. The substructure of the aggregates has been studied by electron microscopy. Repetitive subcomplexes of hexameric stacks of biliproteins form extraordinary long rods associated side by side in a highly condensed arrangement. Evidence that the linker polypeptides LR35PC and LR33PE stabilize the biliprotein hexamers is presented, while the location and function of the colored linker L55 remain uncertain. The derivative strain BO 9201 contains established hemidiscoidal phycobilisomes comprising phycoerythrin, phycocyanin, and allophycocyanin as well as the corresponding linker polypeptides. The core-membrane linker protein (LCM), and two polypeptides with M(r)s of 40,000 and 45,000 which are present in small amounts, exhibit strong cross-reactivity in Western blot (immunoblot) analysis using an antibody directed against the colored LCM of a Nostoc sp. In contrast, strain BO 8402 exhibits no polypeptide with a significant immunological cross-reactivity in Western blot analysis. Physiological and genetic implications of the unusual pigment compositions of both strains are discussed.  相似文献   

11.
The 18 S subassembly particles obtained by partial dissociation of phycobilisomes from Synechococcus 6301 (Anacystis nidulans) strain AN 112 contain approximately one-half of the mass of the phycobilisome and include core-rod junctions (Yamanaka, G., Lundell, D. J., and Glazer, A. N. (1982) J. Biol. Chem. 257, 4077-4086). The polypeptide composition of 18 S complexes, determined by analysis of uniformly 14C-labeled phycobilisomes, gave the following stoichiometry: 75K:27K:18.3K:alpha beta allophycocyanin monomer: alpha beta phycocyanin monomer of 1:2:1:5:6; where 75K, 27K, etc. represent polypeptides of 75, 27 kilodaltons, etc. The 18.3K polypeptide is a hitherto underscribed biliprotein bearing a single phycocyanobilin. The NH2-terminal sequence of this subunit was determined to be homologous to that of the beta subunit of allophycocyanin. Chromatography of products resulting from limited trypsin treatment of the 18 S complex led to the isolation of three subcomplexes: a mixture of (alpha beta)3 . 22K and (alpha beta)3 . 24K phycocyanin complexes, an (alpha beta)3 allophycocyanin trimer, and an (alpha beta)2 . 18.3K.40K.11K allophycocyanin-containing complex. The 22K and 24K components were products of the degradation of the 27K polypeptides, whereas the 40K and 11K components were derived from the 75K polypeptide. The subcomplexes accounted for the composition of the 18 S complex. Determination of the composition, stoichiometry, and spectroscopic properties of the subcomplexes has led to a model of the polypeptide arrangement within the 18 S complex and of the pathway of energy transfer among these polypeptides.  相似文献   

12.
HtpG, a homologue of HSP90, is essential for thermotolerance in cyanobacteria. It is not known how it plays this important role. We obtained evidence that HtpG interacts with linker polypeptides of phycobilisome in the cyanobacterium Synechococcus elongatus PCC 7942. In an htpG mutant, the 30 kDa rod linker polypeptide was reduced. In vitro studies with purified HtpG and phycobilisome showed that HtpG interacts with the linker polypeptide as well as other linker polypeptides to suppress their thermal aggregation with a stoichiometry of one linker polypeptide/HtpG dimer. We constructed various domain‐truncated derivatives of HtpG to identify putative chaperone sites at which HtpG binds linker polypeptides. The middle domain and the N‐terminal domain, although less efficiently, prevented the aggregation of denatured polypeptides, while the C‐terminal domain did not. Truncation of the C‐terminal domain that is involved in the dimerization of HtpG led to decrease in the anti‐aggregation activity, while fusion of the N‐terminal domain to the middle domain lowered the activity. In vitro studies with HtpG and the isolated 30 kDa rod linker polypeptide provided basically similar results to those with HtpG and phycobilisome. ADP inhibited the anti‐aggregation activity, indicating that a compact ADP conformational state provides weaker aggregation protection compared with the others.  相似文献   

13.
The integrin alpha 3 beta 1 is a multiligand extracellular matrix receptor found on many cell types. Immunoprecipitations of 125I-surface-labeled prostate carcinoma cell lines, DU145 and PC-3, with the anti-alpha 3 integrin monoclonal antibodies J143 or PIB5, resulted in the coimmunoprecipitation, along with the expected alpha 3 beta 1 heterodimer, of a polypeptide with a molecular mass of 225 kDa. This protein could also be copurified with the 155-kDa alpha 3 and 115-kDa beta 1 subunits upon affinity chromatography of 125I-surface-labeled cell extracts on anti-alpha 3 antibody-Sepharose columns. Upon reduction, this 225-kDa protein generated 130- and 95-kDa polypeptides, while the 155-kDa alpha 3 subunit generated 130- and 25-kDa polypeptides. The 225-kDa protein did not generate a 25-kDa polypeptide. Deglycosylation and reduction of the 225-kDa protein resulted in the generation of 110- and 95-kDa polypeptides, while deglycosylation and reduction of the 155-kDa alpha 3 resulted in a 110-kDa polypeptide identical in size to the 110-kDa polypeptide generated from the 225-kDa protein. Peptide maps generated from the 110-kDa components of the 225-kDa polypeptide and the 155-kDa alpha 3 integrin subunit were identical, as were their N-terminal amino acid sequences. An antibody directed against the cytoplasmic domain of the alpha 3 subunit immunoprecipitated the 225-kDa polypeptide in addition to the 155-kDa alpha 3 subunit. Furthermore, Northern blot analysis of RNA from DU145 and PC-3 cells with a human alpha 3 cDNA probe identified an mRNA species of 6.2 kb in addition to a major mRNA species of 4.3 kb. The larger mRNA species, which is of an appropriate size for encoding a polypeptide of approximately 220-kDa, was not detectable in cells which did not express the 225-kDa protein. These data demonstrate that the 225-kDa polypeptide represents a novel integrin alpha 3 subunit consisting of the alpha 3 integrin heavy chain disulfide-bonded to a 95-kDa polypeptide which may represent an alternative "light" chain to the 25-kDa light chain of the alpha 3 subunit.  相似文献   

14.
15.
Phycobilisomes isolated from actively growing Synechocystis sp. strain 6308 (ATCC 27150) consist of 12 polypeptides ranging in molecular mass from 11.5 to 95 kilodaltons. The phycobilisome anchor and linker polypeptides are glycosylated. Nitrogen starvation causes the progressive loss of phycocyanin and allophycocyanin subunits with molecular masses between 16 and 20 kilodaltons and of two linker polypeptides with molecular masses of 27 and 33 kilodaltons. Nitrogen starvation also leads to enrichment of four additional polypeptides with molecular masses of 46, 53, 57, and 61 kilodaltons and a transient enrichment of 35- and 41-kilodalton polypeptides in isolated phycobilisomes. The 57-kilodalton additional polypeptide was identified by immunoblotting as the large subunit of ribulosebisphosphate carboxylase/oxygenase. Proteins with the same molecular weights as the additional polypeptides were also coisolated with the 12 phycobilisome polypeptides in the supernatant of nitrogen-replete Synechocystis thylakoid membranes extracted in high-ionic-strength buffer and washed with deionized water. These observations suggest that the additional polypeptides in phycobilisomes from nitrogen-starved cells may be soluble or loosely bound membrane proteins which associate with phycobilisomes. The composition and degree of association of phycobilisomes with soluble and adjacent membrane polypeptides appear to be highly dynamic and specifically regulated by nitrogen availability. Possible mechanisms for variation in the strength of association between phycobilisomes and other polypeptides are suggested.  相似文献   

16.
Procedures are presented for the preparative isolation of murine Ia antigens directly from splenocyte detergent extracts with monoclonal immunoadsorbents. Utilizing these procedures, three Ia (I-A subregion) polypeptides (alpha, 31K, beta) were isolated and their m.w. and pI values characterized. Evidence is presented that indicates that: 1) the 31K polypeptide probably does not associate with the Ia alpha and beta chain complex during the Ia isolation procedure; 2) the 31K polypeptide is not tightly bound to the alpha/beta Ia complex and can be selectively removed by freezing and thawing and by washing the Ia-immunoadsorbent with buffers containing pyrrolidinone (a polar solvent); and (3) unlike the alpha and beta chains, the 31K polypeptide is not intrinsically radiolabeled with 3H fucose and 3H glucosamine, indicating that the 31K polypeptide either contains a carbohydrate structure that is different from that of the alpha and beta chains or it is not a glycopeptide. These data suggest that although Ia antigens are probably comprised of three polypeptides in the intact cell, only two (alpha and beta) are required to maintain alloantigenic determinants.  相似文献   

17.
R Kornfeld 《Biochemistry》1978,17(8):1415-1423
The carbohydrate composition and oligosaccharide structure of three glycopeptides isolated from delipidated calf thymocyte plasma membranes following Pronase digestion have been determined. Five major glycopeptide fractions were separated using Bio-Gel P-6 gel filtration and diethylaminoethylcellulose chromatography. The structure of the oligosaccharide chains of three of these glycopeptides was determined by a combination of sequential degradation with glycosidases and methylation analysis. These oligosaccharide structures consist of complex, highly branched N-linked chains containing at their nonreducing termini the unusual sequence Gal(beta1 leads to 3)Gal(beta1 leads to 4)GlcNAc leads to as well as the more usual sequence SA(alpha2 leads to 3)Gal(beta1 leads to 4)GlcNAc leads to. In addition, one glycopeptide also contains short O-linked chains with the structure Gal(beta leads to 3)GalNAc leads to Ser(Thr) which have receptor activity for the lectin from the mushroom Agaricus bisporus.  相似文献   

18.
The gene encoding a phycocyanin-associated linker polypeptide of Mr 33000 from the cyanobacterium Synechococcus sp. PCC 7002 was found to be located adjacent and 3 to the genes encoding the and subunits of phycocyanin. The identity of this gene, designated cpcC, was proven by matching the amino-terminal sequence of the authentic polypeptide with that predicted by the nucleotide sequence. A cpcC mutant strain of this cyanobacterium was constructed. The effect of the mutation was to prevent assembly of half the total phycocyanin into phycobilisomes. By electron microscopy, phycobilisomes from this mutant were shown to contain rod substructures composed of a single disc of hexameric phycocyanin, as opposed to two discs in the wild type. It was concluded that the Mr 33000 linker polypeptide is required for attachment of the core-distal phycocyanin hexamer to the core-proximal one. Using absorption spectra of the wild type, CpcC, and phycocyanin-less phycobilisomes, the in situ absorbances expected for specific phycocyanin-linker complexes were calculated. These data confirm earlier findings on isolated complexes regarding the influence of linkers on the spectroscopic properties of phycocyanin.Abbreviations PC phycocyanin - PEC phycoerythrocyanin - AP allophycocyanin - SDS-PAGE polyacrylamide gel electrophoresis in the presence of sodium dodecylsulfate. Linker polypeptides are abbreviated according to Glazer (1985). L infX supY refers to a linker having a mass Y, located at a position X in the phycobilisome, where X can be R (rod), RC (rod or core), C (core) or CM (core to membrane). When necessary, the abbreviation for a linker is appended with that of its associated phycobiliprotein. Thus, L infR sup34.5PEC is a rod linker of Mr 34 500 that is associated with phycoerythrocyanin  相似文献   

19.
A rapid procedure is described for the isolation of "linker" polypeptides (Lundell, D. J., R. C. Williams, and A. N. Glazer. 1981. J. Biol. Chem. 256:3580-3592) of cyanobacterial phycobilisomes. The 75,000-dalton component of the core of Synechococcus 6301 phycobilisomes isolated by this procedure has been shown to carry a bilin similar in spectroscopic properties to phycocyanobilin. "Renatured" 75,000-dalton polypeptide has absorption maxima at 610 and 665 nm and a fluorescence emission maximum at 676 nm, similar to that of intact phycobilisomes. A complex of allophycocyanin and a 40,000- dalton bilin-carrying fragment of the 75,000-dalton polypeptide, obtained by limited tryptic digestion, is described. This complex, which lacks allophycocyanin B, shows a fluorescence emission maximum at 676 nm. The above data indicate that the 75,000-dalton polypeptide functions as a terminal energy acceptor in the phycobilisome.  相似文献   

20.
Glycoprotein MII2, the major cell surface glycoprotein (molecular mass 110 kDa) of Zajdela hepatoma ascites cells, contains about 25 O-glycosidic oligosaccharide chains per molecule. They were released as oligosaccharide-alditols by alkaline borohydride treatment of MII2, and purified by gel filtration on Bio-Gel P-6 followed by high-voltage paper electrophoresis. Four oligosaccharide-alditol fractions (A-D) were obtained in relative yields of 8:6:3:3. The structure of the components of fractions A-C was determined by 500-MHz 1H-NMR spectroscopy in combination with sugar composition analysis, to be as follows. (A) NeuAc alpha(2----3)Gal beta(1----3)[NeuAc alpha(2----3)Gal beta(1----4)GlcNAc beta(1----6)]GalNAc-ol; (B1) NeuAc alpha(2----3)Gal beta(1----3)[Gal beta(1----4)GlcNAc beta(1----6)]GalNAc-ol; (B2) Gal beta(1----3)[NeuAc alpha(2----3)Gal beta(1----4)GlcNAc beta(1----6)]GalNAc-ol; (C) NeuAc alpha(2----3)Gal beta(1----3)GalNAc-ol. On the basis of sugar composition and characteristics on Bio-Gel P-6 filtration, paper electrophoresis and thin-layer chromatography, the structure of the carbohydrate component of fraction D is proposed to be as follows. (D) NeuAc alpha(2----3)Gal beta(1----3)[NeuAc alpha(2----6)]GalNAc-ol  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号