首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously (Holland et al., J. Virol. 52:566-574, 1984; Kikuchi et al., J. Virol. 52:806-815, 1984) we described the isolation and partial characterization of over 100 herpes simplex virus type 1 mutants which were resistant to neutralization by a pool of glycoprotein C- (gC) specific monoclonal antibodies. The genetic basis for the inability of several of these gC- mutants to express an immunoreactive envelope form of gC is reported here. Comparative nucleotide sequence analysis of the gC gene of the six mutants gC-3, gC-8, gC-49, gC-53, gC-85, and synLD70, which secrete truncated gC polypeptides, with that of the wild-type KOS 321 gC gene revealed that these mutant phenotypes were caused by frameshift or nonsense mutations, resulting in premature termination of gC translation. Secretion of the gC polypeptide from cells infected with these mutants was due to the lack of a functional transmembrane anchor sequence. The six secretor mutants were tested for suppression of amber mutations in mixed infection with a simian virus 40 amber suppressor vector. Mutant gC-85 was suppressed and produced a wild-type-sized membrane-bound gC. Nucleotide sequence analysis of the six gC deletion mutants gC-5, gC-13, gC-21, gC-39, gC-46, and gC-98 revealed that they carried identical deletions which removed 1,702 base pairs of the gC gene. The deletion, which was internal to the gC gene, removed the entire gC coding sequence and accounted for the novel 1.1-kilobase mRNA previously seen in infections with these mutants. The mutant gC-44 was previously shown to produce a membrane-bound gC protein indistinguishable in molecular weight from wild-type gC. This mutant differed from wild-type virus in that it had reduced reactivity with virus-neutralizing monoclonal antibodies. Nucleotide sequence analysis of the gC gene of mutant gC-44 demonstrated a point mutation which changed amino acid 329 of gC from a serine to a phenylalanine.  相似文献   

2.
A biochemical characterization of peptides from herpes simplex virus type 1 glycoprotein gC was carried out. We utilized simple micromethods, based on immunological isolation of biosynthetically radiolabeled gC, to obtain gC in pure form for biochemical study. CNBr fragments of gC were prepared, isolated, and characterized. These CNBr fragments were resolved into six peaks by chromatography on Sephacryl S-200 in 6 M guanidine hydrochloride. Only three of the CNBr fragments contained carbohydrate side chains, as judged from the incorporation of [14C]glucosamine. Radiochemical microsequence analyses were carried out on the gC molecule and on each of the CNBr fragments of gC. A comparison of this amino acid sequence data with the amino acid sequence predicted from the DNA sequence of the gC gene showed that the first 25 residues of the predicted sequence are not present in the gC molecule isolated from infected cells and allowed alignment of the CNBr fragments in the gC molecule. Glycoprotein gC was also examined from three gC mutants, synLD70, gC-8, and gC-49. These mutants lack an immunoreactive envelope form of gC but produce a secreted, truncated gC gene product. Glycoprotein gC from cells infected with any of these gC- mutants was shown to have lost more than one CNBr fragment present in the wild-type gC molecule. The missing fragments included the one containing the putative transmembrane anchor sequence. Glycoprotein gC from the gC-8 mutant was also shown, by tryptic peptide map analysis, to have lost more than five major arginine-labeled tryptic peptides arginine-labeled tryptic peptides present in the wild-type gC molecule and to have gained a lysine-labeled tryptic peptide not present in wild-type gC.  相似文献   

3.
We previously demonstrated that anterior chamber (AC) injection of HSV-1 before or simultaneous with topical corneal HSV-1 infection resulted in cellular immune tolerance of HSV-1 Ag and a reduced frequency of corneal stromal lesions. In the present study, we have investigated the role of the HSV-1 cell-surface glycoproteins gC and gB in the induction of tolerance, and the resulting reduced susceptibility to HSV-1 corneal stromal disease. These studies utilized mutant strains of HSV-1 with deletion or point mutations in the gene coding for gC or gB. Groups of mice received topical corneal infections with wild-type HSV-1, followed by AC injection of the same eye with wild-type HSV-1 or a mutant strain. Varying the antigenic composition of the virus injected into the AC resulted in three distinct patterns of immune responsiveness. In agreement with our previous findings, AC injection of wild-type HSV-1 induced a state of HSV-1 specific tolerance that extended to both the delayed type hypersensitivity (DTH) and CTL responses. A mutant strain lacking gC (gC-) induced partial tolerance characterized by undetectable CTL activity but a normal DTH response. A mutant strain lacking gB (gB-) caused partial suppression of the CTL response and no reduction of the DTH response. Thus, whereas gB may be involved in CTL tolerance induction in this model, gC clearly is not involved. In contrast, both gC and gB must be present in the AC to induce detectable DTH tolerance. The latter interpretation was strengthened by the observation that AC injection of a mixture of gC- (expressing normal gB) and gB- (expressing normal gC) effectively suppressed the DTH response to wild-type HSV-1. A panel of mar mutants with individual point mutations affecting gC and gB was used to identify the epitopes responsible for induction of DTH tolerance. Two of the gC mutants failed to induce DTH tolerance to wild-type HSV-1 when injected into the AC, suggesting that the sites on the gC molecule that are altered by these mutations are important for the induction of DTH tolerance. Similarly, one of the mar mutants for gB uniformly failed to suppress the DTH response, while another had a variable effect. The unique pattern of cellular immune reactivity exhibited by the mice receiving simultaneous topical corneal infection with wild-type HSV-1 and AC injection of gC- (no CTL but normal DTH) was associated with significantly reduced susceptibility to HSV-1 corneal stromal lesions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The relative antigenicity of the individual herpes simplex virus type 1 (KOS) glycoproteins gC and gB was analyzed in BALB/c mice by using KOS mutants altered in their ability to present these antigens on cell surface membranes during infection. The mutants employed were as follows: syn LD70 , a non-temperature-sensitive mutant defective in the synthesis of cell surface membrane gC; tsF13 , a temperature-sensitive mutant defective in the processing of the precursor form of gB to the mature cell surface form at 39 degrees C; and ts606 , an immediate early temperature-sensitive mutant defective in the production of all early and late proteins including the glycoproteins. By comparing the relative susceptibility to immunolysis of mouse 3T3 cells infected at 39 degrees C with wild-type virus, presenting the full complement of the glycoprotein antigens, gC, gB, and gD, with target cells infected with mutants presenting only subsets of these antigens, we determined that a major portion of cytolytic antibody contained in hyperimmune anti-herpes simplex virus type 1 (KOS) mouse antiserum was directed against glycoproteins gC and gB. The relative immunogenicity of wild-type and mutant virus-infected cells also was compared in BALB/c mice. Immunogen lacking the mature form of gB induced a cytolytic antibody titer comparable to that of the wild-type virus, whereas that lacking the mature form of gC showed a 70% reduction in titer. The absence of the mature cell surface forms of gB and gC in immunogen preparations resulted in a 4- to 15-fold reduction in in virus neutralizing titer. Animals immunized with ts606 -infected cells (39 degrees C) induced relatively little virus-specific cytolytic and neutralizing antibody. Analysis of the glycoprotein specificities of these antisera by radioimmunoprecipitation showed that the antigens immunoprecipitated reflected the viral plasma membrane glycoprotein profiles of the immunogens. The absence of the mature forms of gC or gB in the immunizing preparation did not appreciably affect the immunoprecipitating antibody response to other antigens. Mice immunized with wild-type and mutant virus-infected cells were tested for their resistance to intracranial and intraperitoneal challenge with the highly virulent WAL strain of herpes simplex virus type 1. Despite the observed alterations in serum virus-specific antibody induced with the individual immunogens, all animals survived an intraperitoneal challenge of 10 50% lethal doses. However, differences in the survival of animals were obtained upon intracranial challenge.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Ltk- cells were transfected with a plasmid containing the entire domain of glycoprotein C (gC), a true gamma or gamma 2 gene of herpes simplex virus 1 (HSV-1) and the methotrexate-resistant mouse dihydrofolate reductase mutant gene. The resulting methotrexate-resistant cell line was cloned; of the 39 clonal lines tested only 1, L3153(28), expressed gC after infection with HSV-1(MP), a gC- mutant, and none expressed gC constitutively. The induction of gC was optimal at multiplicities ranging between 0.5 and 2 PFU per cell, and the quantities produced were equivalent to or higher than those made by methotrexate-resistant gC- L cells infected with wild-type (gC+) virus. The gC gene resident in the L3153(28) cells was regulated as a beta gene inasmuch as the amounts of gC made in infected L3153(28) cells exposed to concentrations of phosphonoacetate that inhibited viral DNA synthesis were higher than those made in the absence of the drug, gC was induced at both permissive and nonpermissive temperatures by the DNA- mutant tsHA1 carrying a lesion in the gene specifying the major DNA-binding protein and which does not express gamma 2 genes at the nonpermissive temperature, and gC was induced only at the permissive temperature in cells infected with ts502 containing a mutation in the alpha 4 gene. The gC induced in L3153(28) cells was made earlier and processed faster to the mature form than that induced in a gC- clone of methotrexate-resistant cells infected with wild-type virus. Unlike virus stocks made in gC- cells, HSV-1(MP) made in L3153(28) cells was susceptible to neutralization by anti-gC monoclonal antibody.  相似文献   

6.
Purification of herpes simplex virus glycoprotein C (gC) in microgram amounts yielded sufficient material for an analysis of its secondary structure. Purification was facilitated by using the mutant virus gC-3, which bears a point mutation that interrupts the putative hydrophobic membrane anchor sequence, causing the secretion of gC-3 protein into the cell culture medium. gC-3 protein was purified by size fractionation of concentrated culture medium from infected cells on a gel filtration column of Sephacryl S-200, followed by immunoaffinity chromatography on a column constructed of gC-specific monoclonal antibodies cross-linked to a protein A-Sepharose CL-4B matrix. Purified gC-3 had a molecular weight of 130,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the size expected for gC, was reactive with gC-specific monoclonal antibodies in protein immunoblots, and contained amino acid sequences characteristic of gC as determined by radiochemical amino acid microsequence analyses. Polyclonal antisera obtained from a rabbit immunized with gC-3 reacted with wild-type gC in immunoprecipitation, enzyme immunoassay, and immunoelectroblot (western blot) assays. Deglycosylation by treatment with trifluoromethanesulfonic acid reduced the molecular weight of gC-3 by approximately 35%. Analyses of both native and deglycosylated gC-3 by Raman spectroscopy showed that the native molecule consists of about 17% alpha-helix, 24% beta-sheet, and 60% disordered secondary structures, whereas deglycosylated gC-3 consists of about 8% alpha-helix, 10% beta-sheet, and 81% disordered structures. These data were in good agreement with the 11% alpha-helix, 18% beta-sheet, 61% beta-turn, and 9% disordered structures calculated from Chou-Fasman analysis of the primary sequence of gC-3.  相似文献   

7.
8.
The frequency and fine specificity of herpes simplex virus (HSV)-reactive cytotoxic T lymphocytes (CTL) of C57BL/6 mice was investigated in limiting dilution culture. The reactivity patterns of virus-specific CTL were assayed on target cells infected with HSV type 1, strain KOS, HSV type 2, strain Mueller, and mutants of HSV-1 (KOS) antigenically deficient or altered in glycoproteins gC or gB, two of the four major HSV-1-encoded cell surface glycoprotein antigens. Most CTL clones recognized type-specific determinants on target cells infected with the immunizing HSV serotype. In addition, the majority of HSV-1-specific CTL did not cross-react with cells infected with syn LD70, a mutant of HSV-1 (KOS) deficient for the presentation of cell surface glycoprotein gC. These data are the first demonstration of the clonal specificity of HSV-1-reactive CTL, and they identify gC as the immunodominant antigen. The fine specificity of gC-specific CTL clones was analyzed on target cells infected with mutant viruses altered in the antigenic structure of gC. These mutants were selected by resistance to neutralization with monoclonal antibodies, referred to as monoclonal antibody-resistant (mar) mutants. Most mar mutations in gC did not affect recognition by the majority of CTL clones. This indicated that most epitopes recognized by CTL are distinct from those defined by antibodies. The finding, however, that one mar mutation in gC affected both CTL and antibody recognition of this antigen may help to define antigenic sites important to both humoral and cell-mediated immunity to herpesvirus infection.  相似文献   

9.
A monoclonal antibody to herpes simplex virus type 2 glycoprotein C (gC-2) did not recognize wild-type herpes simplex virus type 1 gC (gC-1) but did recognize a mutant gC-1 molecule. This conversion from a type 1 to a type 2 epitope was shown to be due to a single amino acid substitution in gC-1.  相似文献   

10.
Glycoprotein C from herpes simplex virus type 1 (gC-1 from HSV-1) acts as a receptor for the C3b fragment of the third component of complement on HSV-1-infected cell surfaces. Direct binding assays with purified gC-1 and C3b demonstrate that other viral and cellular proteins are not required for this interaction. Although C3b receptor activity is not expressed on HSV-2-infected cell surfaces, purified gC-2 specifically binds C3b in direct binding assays, suggesting that gC-1 and gC-2 are functionally similar. Here, we used a transient transfection system to further characterize the role of gC-1 and gC-2 as C3b receptors and to localize the site(s) on gC involved in C3b binding. The genes for gC-1 and gC-2 were each cloned into a eucaryotic expression vector containing the Rous sarcoma virus long terminal repeat as the promoter and transfected into NIH 3T3 cells. The expressed proteins were similar in molecular size, extent of carbohydrate processing, and antigenic properties to gC-1 and gC-2 purified from infected cells. Using a double-label immunofluorescence assay, we found that both gC-1 and gC-2 were expressed on the surfaces of transfected cells and bound C3b. These results suggest that other proteins expressed during HSV-2 infection prevent receptor activity. We constructed three in-frame deletion mutants of gC-2 to identify domains on the protein important for C3b receptor activity. These mutants lacked amino acids 26 to 73, 219 to 244, or 318 to 346. The mutant protein lacking residues 26 to 73 was reactive with two monoclonal antibodies recognizing distinct epitopes, showed a wild-type pattern of carbohydrate processing, and bound C3b on the transfected cell surface. These results suggest that residues 26 to 73 are not involved in C3b binding. The other two mutant proteins were present on the cell surface, but did not bind C3b. In addition, these mutant proteins showed altered patterns of carbohydrate processing, formed aggregates, and were no longer recognized by the monoclonal antibodies. These properties indicate that removal of residues 219 to 244 or 318 to 346 disrupted the native conformation of gC-2, possibly owing to an alteration in the spacing between critical cysteine residues.  相似文献   

11.
Cell surface heparan sulfate (HS) serves as an initial receptor for many different viruses, including herpes simplex virus types 1 and 2 (HSV-1 and 2, respectively). Glycoproteins C and B (gC and gB) are the major components of the viral envelope that mediate binding to HS. In this study, purified gB and gC homologous proteins as well as purified HSV-1 and HSV-2 virions were compared for the ability to bind isolated HS receptor molecules. HSV-1 gC and HSV-2 gC bound comparable amounts of HS. Similarly, HSV-1 gB and its HSV-2 counterpart showed no difference in the HS-binding capabilities. Despite the similar HS-binding potentials of gB and gC homologs, HSV-1 virions bound more HS than HSV-2 particles. Purified gC and gB proteins differed with respect to sensitivity of their interaction with HS to increased concentrations of sodium chloride in the order gB-2 > gB-1 > gC-1 > gC-2. The corresponding pattern for binding of whole HSV virions to cells in the presence of increased ionic strength of the medium was HSV-2 gC-neg1 > HSV-1 gC(-)39 > HSV-1 KOS 321 > HSV-2 333. These results relate the HS-binding activities of individual glycoproteins with the cell-binding abilities of whole virus particles. In addition, these data suggest a greater contribution of electrostatic forces for binding of gB proteins and gC-negative mutants compared with binding of gC homologs and wild-type HSV strains. Binding of wild-type HSV-2 virions was the least sensitive to increased ionic strength of the medium, suggesting that the less extensive binding of HS molecules by HSV-2 than by HSV-1 can be compensated for by a relatively weak contribution of electrostatic forces to the binding. Furthermore, gB and gC homologs exhibited different patterns of sensitivity of binding to cells to inhibition with selectively N-, 2-O-, and 6-O-desulfated heparin compounds. The O-sulfate groups of heparin were found to be more important for interaction with gB-1 than gB-2. These results indicate that HSV-1 and HSV-2 differ in their interaction with HS.  相似文献   

12.
Herpes simplex virus type 1 (HSV-1) mutants defective for envelope glycoprotein C (gC) and gB are highly impaired in the ability to attach to cell surface heparan sulfate (HS) moieties of proteoglycans, the initial virus receptor. Here we report studies aimed at defining the HS binding element of HSV-1 (strain KOS) gB and determining whether this structure is functionally independent of gB’s role in extracellular virus penetration or intercellular virus spread. A mutant form of gB deleted for a putative HS binding lysine-rich (pK) sequence (residues 68 to 76) was transiently expressed in Vero cells and shown to be processed normally, leading to exposure on the cell surface. Solubilized gBpK also had substantially lower affinity for heparin-acrylic beads than did wild-type gB, confirming that the HS binding domain had been inactivated. The gBpK gene was used to rescue a KOS gB null mutant virus to produce the replication-competent mutant KgBpK. Compared with wild-type virus, KgBpK showed reduced binding to mouse L cells (ca. 20%), while a gC null mutant virus in which the gC coding sequence was replaced by the lacZ gene (KCZ) was substantially more impaired (ca. 65%-reduced binding), indicating that the contribution of gC to HS binding was greater than that of gB. The effect of combining both mutations into a single virus (KgBpKgC) was additive (ca. 80%-reduced binding to HS) and displayed a binding activity similar to that observed for KOS virus attachment to sog9 cells, a glycosaminoglycan-deficient L-cell line. Cell-adsorbed individual and double HS mutant viruses exhibited a lower rate of virus entry following attachment, suggesting that HS binding plays a role in the process of virus penetration. Moreover, the KgBpK mutant virus produced small plaques on Vero cells in the presence of neutralizing antibody where plaque formation depended on cell-to-cell virus spread. These studies permitted the following conclusions: (i) the pK sequence is not essential for gB processing or function in virus infection, (ii) the lysine-rich sequence of gB is responsible for HS binding, and (iii) binding to HS is cooperatively linked to the process of efficient virus entry and lateral spread but is not absolutely required for virus infectivity.  相似文献   

13.
Glycoproteins C (gC) from herpes simplex virus type 1 (HSV-1) and HSV-2, gC-1 and gC-2, bind the human complement fragment C3b, although the two glycoproteins differ in their abilities to act as C3b receptors on infected cells and in their effects on the alternative complement pathway. Previously, we identified three regions of gC-2 (I, II, and III) which are important for C3b binding. In this study, our goal was to identify C3b-binding sites on gC-1 and to continue our analysis of gC-2. We constructed a large panel of mutants by using the cloned gC-1 and gC-2 genes. Most of the mutant proteins were transported to the surface of transiently transfected L cells and reacted with one or more monoclonal antibodies to discontinuous epitopes. By using 31 linker insertion mutants spread across the coding region of gC-1, we identified four regions in the ectodomain of gC-1 which are important for C3b binding, three of which are similar in position to C3b-binding regions I, II, and III of gC-2. Region III shares some similarities with the short consensus repeat found in CR1, the human complement receptor. These were, in part, the targets for construction of 20 single amino acid changes in region III of gC-1 and gC-2. These mutants identified similarities and differences in the C3b-binding properties of gC-1 and gC-2 and suggest that the amino half of region III is more important for C3b binding. However, our results do not support the concept of a structural relationship between the short consensus repeat of CR1 and gC, since mutations of some of the conserved residues, including three of four cysteines in region III, had no effect on C3b binding. Finally, we constructed four deletion mutants of gC-1, including one which lacked residues 33 to 123, as well as residues 367 to 449. This severely truncated molecule, lacking four cysteines and five potential N-linked glycosylation sites, was transported to the cell surface and retained its ability to bind monoclonal antibodies as well as C3b. Thus, the four distinct C3b-binding regions of gC-1 and several epitopes within two different antigenic sites are localized within residues 124 to 366.  相似文献   

14.
Entry of herpes simplex virus (HSV) into cells is believed to be mediated by specific binding of envelope proteins to a cellular receptor. Neomycin specifically blocks this initial step in infection by HSV-1 but not HSV-2. Resistance of HSV-2 to this compound maps to a region of the genome encoding glycoprotein C (gC-2). We have studied the function of gC-2 in the initial interaction of the virus with the host cell, using HSV-2 mutants deleted for gC-2 and gC-2-rescued recombinants. Resistance to neomycin was directly linked to the presence of gC-2 within the viral genome. In addition, deletion of the gC-2 gene caused a marked delay in adsorption to cells relative to the wild-type virus. HSV-1 recombinants containing chimeric gC genes composed of HSV-1 and HSV-2 sequences were used to localize neomycin resistance within the N-terminal 223 amino acids of gC-2. This region of the glycoprotein comprises an important domain responsible for binding of HSV-2 to cell receptors in the presence of neomycin. A gC-2-negative mutant is still infectious, indicating that HSV-2 also has an alternative pathway of adsorption.  相似文献   

15.
The herpes simplex virus type 1 (HSV-1) glycoprotein C (gC) gene was altered so that it encoded a truncated glycoprotein lacking a cytoplasmic domain but retaining 20 of 23 amino acids of the transmembrane domain. No additional amino acid residues were introduced into the glycoprotein encoded by the altered gene. The gene was recombined into the HSV-1 genome by marker transfer. Two recombinant viruses, dl1 and dl2, that expressed the mutant gene were isolated. Characterization of these viruses showed that a substantial fraction of the mutant glycoprotein was secreted from infected cells. Pulse-chase experiments showed that the kinetics of posttranslational modification of the mutant glycoprotein were similar to those of the wild type. However, comparison of the kinetics of secretion of gC by dl2 and gC-3, a gC mutant lacking both the transmembrane and cytoplasmic domains, showed that dl2 gC was secreted much more slowly than gC-3 gC. Iodination of plasma membrane glycoproteins showed that dl2 gC was initially expressed on the cell surface as a membrane protein and subsequently was slowly released from the membrane into the medium. These data indicate that a major function of the cytoplasmic domain of gC is to ensure the stable anchoring of the glycoprotein in plasma membranes. In contrast to these major changes in the membrane-anchoring properties of gC, characterization of the virions produced by dl1 and dl2 showed that they contain significant amounts of gC. Thus the cytoplasmic domain does not appear to be essential for incorporation of this glycoprotein into virions.  相似文献   

16.
Herpes simplex virus type 1 (HSV-1) glycoprotein C (gC-1) elicits a largely serotype-specific immune response directed against previously described determinants designated antigenic sites I and II. To more precisely define these two immunodominant antigenic regions of gC-1 and to determine whether the homologous HSV-2 glycoprotein (gC-2) has similarly situated antigenic determinants, viral recombinants containing gC chimeric genes which join site I and site II of the two serotypes were constructed. The antigenic structure of the hybrid proteins encoded by these chimeric genes was studied by using gC-1- and gC-2-specific monoclonal antibodies (MAbs) in radioimmunoprecipitation, neutralization, and flow cytometry assays. The results of these analyses showed that the reactivity patterns of the MAbs were consistent among the three assays, and on this basis, they could be categorized as recognizing type-specific epitopes within the C-terminal or N-terminal half of gC-1 or gC-2. All MAbs were able to bind to only one or the other of the two hybrid proteins, demonstrating that gC-2, like gC-1, contains at least two antigenic sites located in the two halves of the molecule and that the structures of the antigenic sites in both molecules are independent and rely on limited type-specific regions of the molecule to maintain epitope structure. To fine map amino acid residues which are recognized by site I type-specific MAbs, point mutations were introduced into site I of the gC-1 or gC-2 gene, which resulted in recombinant mutant glycoproteins containing one or several residues from the heterotypic serotype in an otherwise homotypic site I background. The recognition patterns of the MAbs for these mutant molecules demonstrated that (i) single amino acids are responsible for the type-specific nature of individual epitopes and (ii) epitopes are localized to regions of the molecule which contain both shared and unshared amino acids. Taken together, the data described herein established the existence of at least two distinct and structurally independent antigenic sites in gC-1 and gC-2 and identified subtle amino acid sequence differences which contribute to type specificity in antigenic site I of gC.  相似文献   

17.
The gene encoding glycoprotein F (gF) of herpes simplex virus type 2 (HSV-2) was mapped to the region of the viral genome from 0.62 to 0.64 map units. This region is colinear with, and partially homologous to, the region of the HSV-1 genome previously shown to encode gC. Mapping of the gF gene was done by insertion of HSV-2 DNA fragments into the thymidine kinase gene of an HSV-1 virus and screening of the resultant recombinant viruses for the expression of gF. In this way, DNA sequences necessary for the expression of gF in infected cells were also delimited. Because several plaque morphology mutants (syncytial mutants) of HSV-1 have previously been shown to be gC-, a syncytial mutant of HSV-2 (GP) was tested for the expression of gF. It was found to be gF-, indicating that gF is not essential for replication of HSV-2 in cell culture, just as gC is not essential for replication of HSV-1. This result also suggests that the gF- and gC- phenotypes are related in the same, as yet undefined, way to the expression of a syncytial marker. A proposal to change the name of HSV-2 gF to gC (gC-2) is discussed.  相似文献   

18.
Herpes simplex virus type 1 (HSV-1) glycoprotein C (gC) blocks complement activation, and glycoprotein E (gE) interferes with IgG Fc-mediated activities. While evaluating gC- and gE-mediated immune evasion in human immunodeficiency virus (HIV)-HSV-1-coinfected subjects, we noted that antibody alone was more effective at neutralizing a strain with mutations in gC and gE (gC/gE) than a wild-type (WT) virus. This result was unexpected since gC and gE are postulated to interfere with complement-mediated neutralization. We used pooled human immunoglobulin G (IgG) from HIV-negative donors to confirm the results and evaluated mechanisms of the enhanced antibody neutralization. We demonstrated that differences in antibody neutralization cannot be attributed to the concentrations of HSV-1 glycoproteins on the two viruses or to the absence of an IgG Fc receptor on the gC/gE mutant virus or to enhanced neutralization of the mutant virus by antibodies that target only gB, gD, or gH/gL, which are the glycoproteins involved in virus entry. Since sera from HIV-infected subjects and pooled human IgG contain antibodies against multiple glycoproteins, we determined whether differences in neutralization become apparent when antibodies to gB, gD, or gH/gL are used in combination. Neutralization of the gC/gE mutant was greatly increased compared that of WT virus when any two of the antibodies against gB, gD, or gH/gL were used in combination. These results suggest that gC and gE on WT virus provide a shield against neutralizing antibodies that interfere with gB-gD, gB-gH/gL, or gD-gH/gL interactions and that one function of virus neutralization is to prevent interactions between these glycoproteins.  相似文献   

19.
The basis for the inability of the macroplaque (MP) strain of herpes simplex virus type 1 to express mature glycoprotein C (gC) was examined. RNA transfer (Northern) blot analysis with hybridization probes from the region of the herpes simplex virus type 1 DNA known to encode the gC gene indicated that gC mRNA was produced in MP-infected HeLa cells at levels relative to other mRNAs comparable with that seen in KOS-infected cells. Comparative nucleotide sequence analysis of the gC gene from the MP and KOS strains, coupled with the results of recently reported marker rescue experiments, indicates that the inability of MP to produce gC is due to a frameshift mutation in the gC-coding sequence. Because two different (out-of-phase) open reading frames overlap the gC-coding sequence in the region of the mutation, MP mRNA can encode two gC-related polypeptides. Two polypeptides of the predicted size and precipitable by anti-gC antibodies were produced by in vitro translation of MP mRNA. These polypeptides have not been detected in extracts from infected cells with the same antibodies. Comparative nucleotide sequence analyses led to several corrections in the published sequence for the gC gene and the 17,800-molecular-weight polypeptide gene just to the right in KOS DNA. These relatively minor effects on the predicted amino code sequence of gC are tabulated.  相似文献   

20.
Relative to wild-type herpes simplex virus type 1 (HSV-1), ICP0-null mutant viruses reactivate inefficiently from explanted, latently infected mouse trigeminal ganglia (TG), indicating that ICP0 is not essential for reactivation but plays a central role in enhancing the efficiency of reactivation. The validity of these findings has been questioned, however, because the replication of ICP0-null mutants is impaired in animal models during the establishment of latency, such that fewer mutant genomes than wild-type genomes are present in latently infected mouse TG. Therefore, the reduced number of mutant viral genomes available to reactivate, rather than mutations in the ICP0 gene per se, may be responsible for the reduced reactivation efficiency of ICP0-null mutants. We have recently demonstrated that optimization of the size of the ICP0 mutant virus inoculum and transient immunosuppression of mutant-infected mice with cyclophosphamide can be used to establish wild-type levels of ICP0-null mutant genomes in latently infected TG (W. P. Halford and P. A. Schaffer, J. Virol. 74:5957-5967, 2000). Using this procedure to equalize mutant and wild-type genome numbers, the goal of the present study was to determine if, relative to wild-type virus, the absence of ICP0 function in two ICP0-null mutants, n212 and 7134, affects reactivation efficiency from (i) explants of latently infected TG and (ii) primary cultures of latently infected TG cells. Although equivalent numbers of viral genomes were present in TG of mice latently infected with either wild-type or mutant viruses, reactivation of n212 and 7134 from heat-stressed TG explants was inefficient (31 and 37% reactivation, respectively) relative to reactivation of wild-type virus (KOS) (95%). Similarly, n212 and 7134 reactivated inefficiently from primary cultures of dissociated TG cells plated directly after removal from the mouse (7 and 4% reactivation, respectively), relative to KOS (60% reactivation). The efficiency and kinetics of reactivation of KOS, n212, and 7134 from cultured TG cells (treated with acyclovir to facilitate the establishment of latency) in response to heat stress or superinfection with a nonreplicating HSV-1 ICP4(-) mutant, n12, were compared. Whereas heat stress induced reactivation of KOS from 69% of latently infected TG cell cultures, reactivation of n212 and 7134 was detected in only 1 and 7% of cultures, respectively. In contrast, superinfection with the ICP4(-) virus, which expresses high levels of ICP0, resulted in the production of infectious virus in nearly 100% of cultures latently infected with KOS, n212, or 7134 within 72 h. Thus, although latent mutant viral genome loads were equivalent to that of wild-type virus, in the absence of ICP0, n212 and 7134 reactivated inefficiently from latently infected TG cells during culture establishment and following heat stress. Collectively, these findings demonstrate that ICP0 is required to induce efficient reactivation of HSV-1 from neuronal latency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号