首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Exposure of hematopoietic cells to DNA-damaging agents induces p53-independent cell cycle arrest at a G(1) checkpoint. Previously, we have shown that this growth arrest can be overridden by cytokine growth factors, such as erythropoietin or interleukin-3, through activation of a phosphatidylinositol 3-kinase (PI 3-kinase)/Akt-dependent signaling pathway. Here, we show that gamma-irradiated murine myeloid 32D cells arrest in G(1) with active cyclin D-cyclin-dependent kinase 4 (Cdk4) but with inactive cyclin E-Cdk2 kinases. The arrest was associated with elevated levels of the Cdk inhibitors p21(Cip1) and p27(Kip1), yet neither was associated with Cdk2. Instead, irradiation-induced inhibition of cyclin E-Cdk2 correlated with absence of the activating threonine-160 phosphorylation on Cdk2. Cytokine treatment of irradiated cells induced Cdk2 phosphorylation and activation, and cells entered into S phase despite sustained high-level expression of p21 and p27. Notably, the PI 3-kinase inhibitor, LY294002, completely blocked cytokine-induced Cdk2 activation and cell growth in irradiated 32D cells but not in nonirradiated cells. Together, these findings demonstrate a novel mechanism underlying the DNA damage-induced G(1) arrest of hematopoietic cells, that is, inhibition of Cdk2 phosphorylation and activation. These observations link PI 3-kinase signaling pathways with the regulation of Cdk2 activity.  相似文献   

3.
Retinoids are promising agents for the prevention and treatment of several human malignancies including lung cancer. In this study, the effect of retinoic acid (RA) on cell growth and the mechanism of growth modulation were examined in human lung squamous carcinoma CH27 cells. Here we report that RA mediated the dose- and time-dependent growth arrest in G1 phase, accompanied by the up-regulation of p27(Kip1) and the down-regulation of the cyclin-dependent kinase 3 (Cdk3) and p21(CIP1/Waf1) proteins. Furthermore, RA-induced growth arrest of CH27 cells was also associated with increased retinoic acid receptor beta (RARbeta) and reduced c-Myc expression. However, RA had no effect on the levels of cyclins A, D1, D3, E, or H, or on Cdk2, Cdk4, Cdk5, CDk6, Cdk7, p16(Ink4A), p15(Ink4B), p53, or pRb proteins in CH27 cells. Evaluation of the kinase activity of cyclin-Cdk complexes showed that RA increases p27(Kip1) expression in CH27 cells leading to markedly reduced cyclin A/Cdk2 kinase activity and slightly reduced cyclin E/Cdk2 kinase activity, with no effect on cyclin D/Cdk4 and cyclin D/Cdk6 activities. Moreover, coincident with the decrease in kinase activity was a drastic increase in cyclin A-bound p27(Kip1). These results suggest that increases in the levels of p27(Kip1) and its binding to cyclin A, as well as reduction of Cdk3 protein expression, are strong candidates for the cell cycle regulator that prevents the entry into the S phase in RA-treated CH27 cells, with prolongation of G1 phase and inhibition of DNA synthesis.  相似文献   

4.
ErbB2/Neu destabilizes the cyclin-dependent kinase (Cdk) inhibitor p27 and increases expression of cyclin D1. Therefore, we studied the roles of p27 and cyclin D1 in ErbB2-mediated mammary epithelial cell transformation. Overexpression of ErbB2 or cyclin D1 in p27(+/-) primary murine mammary epithelial cells resulted in increased proliferation, cyclin D1 nuclear localization, and colony formation in soft agar compared to those in p27(+/+) cells. In contrast, ErbB2- or cyclin D1-overexpressing p27(-/-) cells displayed reduced proliferation, anchorage-independent growth, Cdk4 activity, cyclin D1 expression, and cyclin D1 nuclear localization compared to wild-type cells. A cyclin D1 mutation in its nuclear export sequence (T286A) partially rescued nuclear localization of cyclin D1 in p27(-/-) cells but did not increase proliferation or Cdk4 kinase activity. Overexpression of E2F1, however, increased proliferation to the same degree in p27(+/+), p27(+/-), and p27(-/-) cells. Mammary glands from MMTV (mouse mammary tumor virus)-neu/p27(+/-) mice exhibited alveolar hyperplasia, enhanced proliferation, decreased apoptosis, and accelerated tumor formation compared to MMTV-neu/p27(+/+) glands. However, MMTV-neu/p27(-/-) glands showed decreased proliferation, cyclin D1 expression, and Cdk4 activity, as well as markedly prolonged tumor latency, compared to MMTV-neu/p27(+/+) glands. These results suggest that p27(+/-) mammary epithelium may be more susceptible to oncogene-induced tumorigenesis, whereas p27-null glands, due to severely impaired cyclin D1/Cdk4 function, are more resistant to transformation.  相似文献   

5.
6.
Retinoids are promising agents for the prevention and treatment of several human malignancies including lung cancer. In this study, the effect of retinoic acid (RA) on cell growth and the mechanism of growth modulation were examined in human lung squamous carcinoma CH27 cells. Here we report that RA mediated the dose- and time-dependent growth arrest in G1 phase, accompanied by the up-regulation of p27Kip1 and the down-regulation of the cyclin-dependent kinase 3 (Cdk3) and p21CIP1/Waf1 proteins. Furthermore, RA-induced growth arrest of CH27 cells was also associated with increased retinoic acid receptor β (RARβ) and reduced c-Myc expression. However, RA had no effect on the levels of cyclins A, D1, D3, E, or H, or on Cdk2, Cdk4, Cdk5, CDk6, Cdk7, p16Ink4A, p15Ink4B, p53, or pRb proteins in CH27 cells. Evaluation of the kinase activity of cyclin–Cdk complexes showed that RA increases p27Kip1 expression in CH27 cells leading to markedly reduced cyclin A/Cdk2 kinase activity and slightly reduced cyclin E/Cdk2 kinase activity, with no effect on cyclin D/Cdk4 and cyclin D/Cdk6 activities. Moreover, coincident with the decrease in kinase activity was a drastic increase in cyclin A-bound p27Kip1. These results suggest that increases in the levels of p27Kip1 and its binding to cyclin A, as well as reduction of Cdk3 protein expression, are strong candidates for the cell cycle regulator that prevents the entry into the S phase in RA-treated CH27 cells, with prolongation of G1 phase and inhibition of DNA synthesis.  相似文献   

7.
8.
Cells expressing human papillomavirus type 16 (HPV-16) E7, similar to those which express HPV-16 E6, are resistant to a p53-mediated G1 growth arrest. We examined the p53-mediated DNA damage response pathway in E7-expressing cells to determine the mechanism by which E7-containing cells continue to cycle. In response to DNA damage, no dramatic difference was detected in G1- or S-phase cyclin or cyclin-dependent kinase (Cdk) levels when E7-expressing cells were compared to the parental cell line, RKO. Furthermore, Cdk2 kinase activity was inhibited in both RKO cells and E7-expressing cells, while Cdk2 remained active in E6-expressing cells. However, the steady-state levels of pRB and p107 protein were substantially lower in E7-expressing cells than in the parental RKO cells or E6-expressing cells. There was no reduction in pRB mRNA levels, but the half-life of pRB in E7-expressing cells was markedly shorter. Infection of primary human foreskin keratinocytes with recombinant retroviruses expressing HPV-16 E7 resulted in a decrease in pRB protein levels, indicating this phenomenon is a consequence of E7 expression, not of immortalization or transformation. These data strongly suggest E7 interferes with the stability of pRB and p107 protein. We propose that the removal of these components of the p53-mediated G1 growth arrest pathway in E7-expressing cells contributes to the ability of E7 to overcome a p53-mediated G1 growth arrest.  相似文献   

9.
By crossing TG.AC v-Ha-ras and K6/ODC transgenic mice, we found previously that an activated ras and follicular ornithine decarboxylase (ODC) overexpression cooperate to generate spontaneous tumors in the skin. Cellular proliferation was dramatically increased in the K6/ODC transgenic skin, as evidenced by elevated proliferating cell nuclear antigen and Ki67 expression compared with nontransgenic littermates. Keratinocytes isolated from transgenic skin also displayed increased clonal growth. Paradoxically, expression of the growth inhibition-associated proteins p53, p21Waf1, p27Klp1, and Bax was increased with ODC overexpression in the skin. ODC overexpression did not affect cyclin D/cyclin-dependent kinase 4 (Cdk4)-dependent phosphorylation of retinoblastoma protein but stimulated cyclin E/Cdk2 and cyclin A/Cdk2-associated kinase activity, with minimal effect on the levels of these proteins. Thus, ODC/polyamine-induced activation of cyclin E/Cdk2 and cyclin A/Cdk2-associated kinase activity may cooperate with the ras induction of cyclin D/Cdk4/6-associated retinoblastoma protein phosphorylation to not only stimulate proliferation but ultimately contribute to tumor development.  相似文献   

10.
Peripheral homeostasis and tolerance requires the suppression or removal of excessive or harmful T lymphocytes. This can occur either by apoptosis through active antigen-induced death or cytokine withdrawal. Alternatively, T cell activation can be suppressed by agents that activate the cAMP-dependent protein kinase (PKA) signaling pathway, such as prostaglandin E2. Stimulation of PKA inhibits lymphocyte proliferation and immune effector functions. Here we have investigated the mechanism by which activation of PKA induces inhibition of proliferation in human leukemic T cell lines. Using a variety of agents that stimulate PKA, we can arrest Jurkat and H9 leukemic T cells in the G(1) phase of the cell cycle, whereas cell viability is hardly affected. This G(1) arrest is associated with an inhibition of cyclin D/Cdk and cyclin E/Cdk kinase activity. Interestingly, expression of cyclin D3 is rapidly reduced by PKA activation, whereas expression of the Cdk inhibitor p27(kip1) is induced. Ectopic expression of cyclin D3 can override the growth suppression induced by PKA activation to some extent, indicating that growth inhibition of leukemic T cells by PKA activation is partially dependent on down-regulation of cyclin D3 expression. Taken together our data suggest that immunosuppression by protein kinase A involves regulation of both cyclin D3 and p27(kip1) expression.  相似文献   

11.
Down-regulation of p53 expression has been found in a broad range of human cancers and cell proliferation disorders, indicating that p53 plays a key role in cell cycle regulation and tumor suppression. In our current study, we transfected human embryonic lung fibroblast (HELF) cells with pcDNA3-wild-type p53 (pcDNA3-wtp53) plasmid, or pcDNA3-H179Y-mutated p53 (pcDNA3-mtp53) plasmid that mimics the mutation found in some human lung tumors, and further studied the role of p53 in the regulation of cell proliferation. Over expression of wild-type p53 caused cell cycle arrest at G1 phase with reduced cell size, decreased expression of cyclin D3, cyclin E, Cdk2 and Cdk4, and increased expression of p21. In contrast, over expression of H179Y-mutant p53 promoted G1 to S phase transition with enlarged cell size and increased cyclin A1 and Cdk4 expression in HELF cells. These results indicate that mutation at the p53 H179Y residue up-regulates cyclin A1 and Cdk4 expression, and promotes HELF cell proliferation.  相似文献   

12.
Mechanisms of Cyclin-Dependent Kinase Inactivation by Progestins   总被引:8,自引:2,他引:6       下载免费PDF全文
The steroid hormone progesterone regulates proliferation and differentiation in the mammary gland and uterus by cell cycle phase-specific actions. In breast cancer cells the predominant effect of synthetic progestins is long-term growth inhibition and arrest in G1 phase. Progestin-mediated growth arrest of T-47D breast cancer cells was preceded by inhibition of cyclin D1-Cdk4, cyclin D3-Cdk4, and cyclin E-Cdk2 kinase activities in vitro and reduced phosphorylation of pRB and p107. This was accompanied by decreases in the expression of cyclins D1, D3, and E, decreased abundance of cyclin D1- and cyclin D3-Cdk4 complexes, increased association of the cyclin-dependent kinase (CDK) inhibitor p27 with the remaining Cdk4 complexes, and changes in the molecular masses and compositions of cyclin E complexes. In control cells cyclin E eluted from Superdex 200 as two peaks of ~120 and ~200 kDa, with the 120-kDa peak displaying greater cyclin E-associated kinase activity. Following progestin treatment, almost all of the cyclin E was in the 200-kDa, low-activity form, which was associated with the CDK inhibitors p21 and p27; this change preceded the inhibition of cell cycle progression. These data suggest preferential formation of this higher-molecular-weight, CDK inhibitor-bound form and a reduced number of cyclin E-Cdk2 complexes as mechanisms for the decreased cyclin E-associated kinase activity following progestin treatment. Ectopic expression of cyclin D1 in progestin-inhibited cells led to the reappearance of the 120-kDa active form of cyclin E-Cdk2 preceding the resumption of cell cycle progression. Thus, decreased cyclin expression and consequent increased CDK inhibitor association are likely to mediate the decreases in CDK activity accompanying progestin-mediated growth inhibition.  相似文献   

13.
14.
15.
16.
Nuclear accumulation of cyclin D1 because of altered trafficking or degradation is thought to contribute directly to neoplastic transformation and growth. Mechanisms of cyclin D1 localization in S phase have been studied in detail, but its control during exit from the cell cycle and quiescence is poorly understood. Here we report that translokin (Tlk), a microtubule-associated protein also termed Cep57, interacts with cyclin D1 and controls its nucleocytoplasmic distribution in quiescent cells. Tlk binds to regions of cyclin D1 also involved in binding to cyclin-dependent kinase 4 (Cdk4), and a fraction of cyclin D1 associates to the juxtanuclear Tlk network in the cell. Downregulation of Tlk levels results in undue nuclear accumulation of cyclin D1 and increased Cdk4-dependent phosphorylation of pRB under quiescence conditions. In turn, overexpression of Tlk prevents proper cyclin D1 accumulation in the nucleus of proliferating cells in an interaction-dependent manner, inhibits Cdk4-dependent phosphorylation of pRB and hinders cell cycle progression to S phase. We propose that the Tlk acts as a key negative regulator in the pathway that drives nuclear import of cyclin D1, thus contributing to prevent pRB inactivation and to maintain cellular quiescence.  相似文献   

17.
18.
Smad3, a component of the TGFβ signaling pathway, contributes to G1 arrest in breast cancer cells. Overexpression of the cell cycle mitogen, cyclin E, is associated with poor prognosis in breast cancer, and cyclin E/CDK2 mediated phosphorylation of Smad3 has been linked with inhibition of Smad3 activity. We hypothesized that the biological aggressiveness of cyclin E overexpressing breast cancer cells would be associated with CDK2 phosphorylation and inhibition of the tumor suppressant action of Smad3. Expression constructs containing empty vector, wild type (WT) Smad3, or Smad3 with CDK phosphorylation site mutations were co-transfected with a Smad3-responsive reporter construct into parental, vector control (A1), or cyclin E overexpressing (EL1) MCF7 cells. Smad3 function was evaluated by luciferase reporter assay and mRNA analysis. The impact of a Cdk2 inhibitor and cdk2 siRNA on Smad3 activity was also assessed. Cells expressing Smad3 containing mutations of the CDK phosphorylation sites had higher p15 and p21 and lower c-myc mRNA levels, as well as higher Smad3-responsive reporter activity, compared with controls or cells expressing WT Smad3. Transfection of cdk2 siRNA resulted in a significant increase in Smad3-responsive reporter activity compared with control siRNA; reporter activity was also increased after the treatment with a Cdk2 inhibitor. Thus, cyclin E-mediated inhibition of Smad3 is regulated by CDK2 phosphorylation of the Smad3 protein in MCF7 cells. Inhibition of CDK2 may lead to restoration of Smad3 tumor suppressor activity in breast cancer cells, and may represent a potential treatment approach for cyclin E overexpressing breast cancers.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号