首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hyperactive and inattentive children have been discussed in both the pedagogic and medical literature since the nineteenth century, and many controversies associated with attention deficit and hyperactivity disorder (ADHD) have been repeatedly analyzed in different contexts. The ‘prehistory’ of the ADHD concept—that is, up to the definition of ADHD in DSM-III and of the corresponding ‘hyperkinetic disorder’ in ICD-9—is outlined, with an emphasis on the literature not previously discussed in English language reviews of the subject.  相似文献   

2.
The differentiation of attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) poses a clinical challenge. In children, overlap of psychopathological and cognitive findings has been found for both disorders. In addition, some children suffer from both disorders. The Social Communication Questionnaire (SCQ) is a screening instrument for ASD symptoms which indicates the presence of ASD in a rapid and economic way. However, validity to differentiate ASD and ADHD as differential or comorbid diagnoses has not been studied. Here, the differential validity was compared in groups of children with ASD, ADHD, ASD + ADHD, and typically developing (TD) children and IQ > 70. ROC analyses indicated an excellent differentiation between ASD and TD with ROC–AUC = .941 and between ASD + ADHD with ROC–AUC = .993. The optimal cutoff was below the originally recommended one of 15. The differentiation between children with ASD with (ROC–AUC = .982) or without ADHD (ROC–AUC = .864) and ADHD alone also showed acceptable differential validity, and here, the optimal cutoff corresponded to the recommended. Taken together, the SCQ can be recommended as a screening instrument for a first differentiation between children with ASD and typically developing children as well as children with ADHD.  相似文献   

3.
Hypoarousal as indicated by skin conductance and electroencephalography (EEG) has been discussed as a pathogenetic factor in attention-deficit/hyperactivity disorder (ADHD). The aim of this paper was to review these arousal-related pathogenetic concepts and to present the more recently proposed vigilance regulation model of affective disorders and ADHD. The latter builds on methodological advances in classifying short EEG segments into vigilance stages (Vigilance Algorithm Leipzig, VIGALL), indicating different states of global brain function (“brain arousal”). VIGALL allows the objective assessment of vigilance regulation under defined conditions, e.g. how fast vigilance declines to lower vigilance stages associated with drowsiness during 15–20-min EEG recordings under resting conditions with eyes closed. According to the vigilance regulation model, the hyperactivity and sensation seeking observed in overtired children, ADHD and mania may be interpreted as an autoregulatory attempt to create a stimulating environment in order to stabilize vigilance. The unstable regulation of vigilance observed in both mania and ADHD may thus explain the attention deficits, which become especially prominent in monotonous sustained attention tasks. Among the arguments supporting the vigilance regulation model are the facts that destabilizing vigilance (e.g. via sleep deprivation) can trigger or exacerbate symptoms of ADHD or mania, whereas stabilizing vigilance (e.g. via psychostimulants, reducing sleep deficits) alleviates these symptoms. The potential antimanic effects of methylphenidate are presently being studied in an international randomized controlled trial. We propose vigilance regulation as a converging biomarker, which could be useful for identifying treatment responders to psychostimulants and forming pathophysiologically more homogeneous ADHD subgroups for research purposes.  相似文献   

4.
Adult attention deficit hyperactivity disorder (ADHD) is associated with a variety of cognitive impairments, which were shown to affect academic achievement and quality of life. Current treatment strategies, such as stimulant drug treatment, were demonstrated to effectively improve cognitive functions of patients with ADHD. However, most treatment strategies are associated with a number of disadvantages in a considerable proportion of patients, such as unsatisfactory effects, adverse clinical side effects or high financial costs. In order to address limitations of current treatment strategies, whole-body vibration (WBV) might represent a novel approach to treat cognitive dysfunctions of patients with ADHD. WBV refers to the exposure of the whole body of an individual to vibration and was found to affect physiology and cognition. In the present study, WBV was applied on 10 consecutive days to an adult diagnosed with ADHD. Neuropsychological assessments were performed repeatedly at three different times, i.e., the day before the start of the treatment, on the day following completion of treatment and 14 days after the treatment have been completed (follow-up). An improved neuropsychological test performance following WBV treatment points to the high clinical value of WBV in treating patients with neuropsychological impairments such as ADHD.  相似文献   

5.
While suicidal behaviour has been implicated in a plethora of psychiatric disorders including depression, psychoses and substance abuse, its association with adult ADHD is largely under-researched. Given that emotional instability and the high prevalence of comorbid conditions such as mood disorders and alcohol/drug dependence are typical for ADHD, the question of suicide risk must not be neglected in this patient group. A review of the current literature focusing on this issue provides strong evidence that ADHD patients are at a significant risk for experiencing suicidal ideations and committing suicide. For daily clinical practice, it is therefore essential to incorporate this aspect into the diagnostic and therapeutic process and to take preventive measures.  相似文献   

6.
The dopamine transporter (DAT) is a functional element of the dopaminergic synapse in the brain. Its primary role is the regulation of dopamine (DA) availability by forward and reverse transport of DA from and to the synaptic cleft by which extracellular DA concentrations are being regulated. The DAT gene and especially the DAT 10/10 genotype have been intensively discussed as a candidate for several neuropsychiatric disorders including attention-deficit–hyperactivity disorder (ADHD). We found recently that the DAT 10/10 genotype is associated with increased levels of CSF DA and is present more frequently in HIV-infected individuals than in uninfected subjects, suggesting that personality traits related to this polymorphism may increase the risk of acquisition of HIV. In this article, we review studies on the DAT 10/10 genotype and the association with ADHD and its endophenotypes, express concerns on the reported DA neurochemistry in ADHD and discuss consequences of the DAT 10/10 genotype on the epidemiology of HIV infection.  相似文献   

7.
Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopment disorders in childhood. Clinically, the core symptoms of this disorder include inattention, hyperactivity, and impulsivity. Previous studies have documented that these behavior deficits in ADHD children are associated with not only regional brain abnormalities but also changes in functional and structural connectivity among regions. In the past several years, our understanding of how ADHD affects the brain’s connectivity has been greatly advanced by mapping topological alterations of large-scale brain networks (i.e., connectomes) using noninvasive neurophysiological and neuroimaging techniques (e.g., electroencephalograph, functional MRI, and diffusion MRI) in combination with graph theoretical approaches. In this review, we summarize the recent progresses of functional and structural brain connectomics in ADHD, focusing on graphic analysis of large-scale brain systems. Convergent evidence suggests that children with ADHD had abnormal small-world properties in both functional and structural brain networks characterized by higher local clustering and lower global integrity, suggesting a disorder-related shift of network topology toward regular configurations. Moreover, ADHD children showed the redistribution of regional nodes and connectivity involving the default-mode, attention, and sensorimotor systems. Importantly, these ADHD-associated alterations significantly correlated with behavior disturbances (e.g., inattention and hyperactivity/impulsivity symptoms) and exhibited differential patterns between clinical subtypes. Together, these connectome-based studies highlight brain network dysfunction in ADHD, thus opening up a new window into our understanding of the pathophysiological mechanisms of this disorder. These works might also have important implications on the development of imaging-based biomarkers for clinical diagnosis and treatment evaluation in ADHD.  相似文献   

8.
Attention deficit/hyperactivity disorder (ADHD) is one of the most prevalent childhood psychiatric disorders. During the past decades, studies have focused on its genetic background and the abnormality of the brain structure and function. Recently, an advanced technique linking these two areas, namely, the imaging genetics emerged and kept growing. Imaging genetics primarily identifies genes that influence the brain variations. There are three main strategies of doing an imaging genetic study: using neuroimaging as endophenotypes to find the associated DNA variants, finding neuroimaging effects of risk genes, and hypothesis-free whole-brain voxelwise genome-wide association study. In this review, we begin with demonstrating the basic principles of imaging genetics precisely, with examples from other psychiatric conditions, and then go on to synthesize the existing imaging genetic studies in ADHD. Finally, we elaborate the challenges of applying imaging genetics to ADHD. We conclude that imaging genetics has somewhat showed its potential to provide a more precise understanding of how the genes shape the brain variations and further the clinical features of ADHD.  相似文献   

9.
Genetic abnormalities in components important for the folate cycle confer risk for various disorders since adequate folate turnover is necessary for normal methylation, gene expression and chromosome structure. However, the system has rarely been studied in children diagnosed with attention deficit hyperactivity disorder (ADHD). We hypothesized that ADHD related cognitive deficit could be attributed to abnormalities in the folate cycle and explored functional single nucleotide polymorphisms in methylenetetrahydrofolate dehydrogenase (rs2236225), reduced folate carrier (rs1051266), and methylenetetrahydrofolate reductase (rs1801131 and rs1801133) in families with ADHD probands (N = 185) and ethnically matched controls (N = 216) recruited following the DSM-IV. After obtaining informed written consent for participation, peripheral blood was collected for genomic DNA isolation and PCR-based analysis of target sites. Data obtained was analyzed by UNPHASED. Interaction between sites was analyzed by the multi dimensionality reduction (MDR) program. Genotypic frequencies of the Indian population were strikingly different from other ethnic groups. rs1801133 “T” allele showed biased transmission in female probands (p < 0.05). Significant difference in genotypic frequencies for female probands was also noticed. rs1801131 and rs1801133 showed an association with low intelligence quotient (IQ). MDR analysis exhibited independent effects and contribution of these sites to IQ, thus indicating a role of these genes in ADHD related cognitive deficit.  相似文献   

10.
11.
Findings from research in animal models and humans have shown a clear role for the neuropeptide oxytocin (OT) on complex social behaviors. This is also true in the context of autism spectrum disorder (ASD). Previous studies on peripheral OT concentrations in children and young adults have reported conflicting results with the initial studies presenting mainly decreased OT plasma levels in ASD compared to healthy controls. Our study therefore aimed to further investigate changes in peripheral OT concentrations as a potential surrogate for the effects observed in the central nervous system (CNS) in ASD. OT plasma concentrations were assessed in 19 male children and adolescents with ASD, all with an IQ > 70 (age 10.7 ± 3.8 years), 17 healthy male children (age 13.6 ± 2.1 years) and 19 young male patients with attention deficit hyperactivity disorder (ADHD) as a clinical control group (age 10.4 ± 1.9 years) using a validated radioimmunoassay. Analysis of covariance revealed significant group differences in OT plasma concentrations (F(2, 48) = 9.574, p < 0.001, η 2 = 0.285; plasma concentrations ASD 19.61 ± 7.12 pg/ml, ADHD 8.05 ± 5.49 pg/ml, healthy controls 14.43 ± 9.64 pg/ml). Post hoc analyses showed significantly higher concentrations in children with ASD compared to ADHD (p < 0.001). After Bonferroni correction, there was no significant difference in ASD in comparison with healthy controls (p = 0.132). A significant strong correlation between plasma OT and autistic symptomatology, assessed by the Autism Diagnostic Observation Schedule, was observed in the ASD group (p = 0.013, r = 0.603). Patients with ADHD differed from healthy control children by significantly decreased OT concentrations (p = 0.014). No significant influences of the covariates age, IQ, medication and comorbidity could be seen. Our preliminary results point to a correlation of OT plasma concentrations with autistic symptom load in children with ASD and a modulation of the OT system also in the etiologically and phenotypically overlapping disorder ADHD. Further studies in humans and animal models are warranted to clarify the complex association of the OT system with social impairments as well as stress-related and depressive behavior and whether peripheral findings reflect primary changes of OT synthesis and/or release in relevant areas of the CNS.  相似文献   

12.
To compare the mRNA level of angiogenic factor vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMP)-2, and MMP-9 in cultured human brain arteriovenous malformation (AVM) endothelial cells (ECs) and normal brain endothelial cells (BECs). Tissue explants both from deformed vessels of AVM and normal microvessel were put into culture for endothelial cells. After the monolayer adherent ECs reached confluence, they were tested with endothelial specific marker CD34 and von Willebrand factor (vWF) by immunochemical assay. mRNA levels of VEGF-A, MMP-2, and MMP-9 in AVM endothelial cells (AVMECs) and BECs were measured by PCR. Immunostaining confirmed that more than 95 % of the cultured cells were CD34 (Fig. 1b) and/or vWF positive. Expression levels of VEGF-A and MMP-2 mRNAs were significantly higher in AVMECs than in BECs. The MMP-9 level was also increased in AVMECs, but the difference was not statistically significant. Vascular tissue explants adherent method is a better approach for isolation and culture of AVMECs. Cultured AVMECs expressed higher angiogenic factors (VEGF, MMP-2) than the controlled BECs, implicating angiogenesis plays an important role in the pathogenesis of AVM.  相似文献   

13.
This study was conducted to determine effects of dietary supplementation with 1 % l-glutamine for 14 days on the abundance of intestinal bacteria and the activation of intestinal innate immunity in mice. The measured variables included (1) the abundance of Bacteroidetes, Firmicutes, Lactobacillus, Streptococcus and Bifidobacterium in the lumen of the small intestine; (2) the expression of toll-like receptors (TLRs), pro-inflammatory cytokines, and antibacterial substances secreted by Paneth cells and goblet cells in the jejunum, ileum and colon; and (3) the activation of TLR4-nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPK), and phosphoinositide-3-kinases (PI3K)/PI3K-protein kinase B (Akt) signaling pathways in the jejunum and ileum. In the jejunum, glutamine supplementation decreased the abundance of Firmicutes, while increased mRNA levels for antibacterial substances in association with the activation of NF-κB and PI3K-Akt pathways. In the ileum, glutamine supplementation induced a shift in the Firmicutes:Bacteroidetes ratio in favor of Bacteroidetes, and enhanced mRNA levels for Tlr4, pro-inflammatory cytokines, and antibacterial substances participating in NF-κB and JNK signaling pathways. These results indicate that the effects of glutamine on the intestine vary with its segments and compartments. Collectively, dietary glutamine supplementation of mice beneficially alters intestinal bacterial community and activates the innate immunity in the small intestine through NF-κB, MAPK and PI3K-Akt signaling pathways.  相似文献   

14.
15.
Matrix metalloproteinases (MMPs) play an important role in modeling of the extracellular matrix. There is increasing evidence that these proteases are important in neurite elongation and axonal guidance during development in the central nervous system and retina. Moreover, they are also expressed after acute injury and can be the key mediators of pathogenesis. However, the role of MMPs in the inner ear is largely unknown. Our group recently demonstrated that general inhibition of MMPs resulted in auditory hair cell loss in vitro. In the present study, we investigated the role of MMPs in inner ear spiral ganglion neuron (SGN) survival, neuritogenesis and neurite extension by blocking MMPs known to be involved in axonal guidance, neurite elongation, and apoptosis in other neuronal systems. Spiral ganglion (SG) explants from 5-day-old Wistar rats were treated with different concentrations of the general MMP inhibitor GM6001, a specific MMP-2 inhibitor, and a specific MMP-9 inhibitor, in vitro. The general inhibitor of MMPs and the specific inhibition of MMP-2 significantly reduced both the number of neurites that extended from SG explants, as well as the length of individual neurites. However, neither the general inhibitor of MMPs nor the specific inhibition of MMP-2 influenced SGN survival. Inhibition of MMP-9 had no influence on SGNs. The data suggest that MMPs, and more specifically MMP-2, influence the growth of developing afferent neurites in the mammalian inner ear in vivo.  相似文献   

16.
An elevated level of tumor necrosis factor (TNF)-α is implicated in several cardiovascular diseases including heart failure. Numerous reports have demonstrated that TNF-α activates nuclear factor (NF)-kappaB, resulting in the upregulation of several genes that regulate inflammation, proliferation, and apoptosis of cardiomyocytes. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, a major source of reactive oxygen species (ROS), is also activated by TNF-α and plays a crucial role in redox-sensitive signaling pathways. The present study investigated whether NADPH oxidase mediates TNF-α-induced NF-kappaB activation and NF-kappaB-mediated gene expression. Human cardiomyocytes were treated with recombinant TNF-α with or without pretreatment with diphenyleneiodonium (DPI) and apocynin, inhibitors of NADPH oxidase. TNF-α-induced ROS production was measured using 5-(and-6)-chloromethyl-2’, 7’-dichlorodihydrofluorescein diacetate assay. TNF-α-induced NF-kappaB activation was also examined using immunoblot; NF-kappaB binding to its binding motif was determined using a Cignal reporter luciferase assay and an electrophoretic mobility shift assay. TNF-α-induced upregulation of interleukin (IL)-1β and vascular cell adhesion molecule (VCAM)-1 was investigated using real-time PCR and immunoblot. TNF-α-induced ROS production in cardiomyocytes was mediated by NADPH oxidase. Phosphorylation of IKK-α/β and p65, degradation of IkappaBα, binding of NF-kappaB to its binding motif, and upregulation of IL-1β and VCAM-1 induced by TNF-α were significantly attenuated by treatment with DPI and apocynin. Collectively, these findings demonstrate that NADPH oxidase plays a role in regulation of TNF-α-induced NF-kappaB activation and upregulation of proinflammatory cytokines, IL-1β and VCAM-1, in human cardiomyocytes.  相似文献   

17.
A previous investigation showed that deep-sea water (DSW) can affect the expression of genes that regulate metastasis, including cyclooxygenase-2 (COX-2), matrix metalloproteinase-2 (MMP-2), urokinase plasminogen activator (uPA) and uPA receptor (uPAR), in HT-29 human colorectal adenocarcinomas. In the present study, we investigated the effects of DSW on inducible nitric oxide synthase (iNOS) expression and cell migration and also explored the mechanism of DSW-induced anti-metastatic potential in HT-29 human colorectal adenocarcinomas. Cytokine-induced expression of iNOS, which is highly expressed in colon cancer and enhances cancer growth and metastasis, was decreased in a hardness-dependent manner by DSW. Also, the wound healing assay revealed that DSW inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cell migration in a hardness-dependent manner. DSW also decreased the phosphorylation of various MAPKs, including p38, ERK and JNK, and suppressed the nuclear translocation of NF-κB but not c-Jun. The results suggest that DSW may inhibit cancer cell growth related to iNOS overexpression and PKC-mediated cell migration in HT-29 human colorectal adenocarcinomas and the antimetastatic potential of DSW may be regulated by prevention of NF-κB nuclear translocation via inhibition of p38, ERK and JNK phosphorylation. In conclusion, the present investigation demonstrates that DSW inhibits cancer growth and metastasis via down-regulation of iNOS expression and the MAPK/NF-κB signaling pathway.  相似文献   

18.
Interleukin-13 (IL-13) is associated with the production of collagen in airway remodelling of asthma. Yet, the molecular mechanisms underlying IL-13 induction of collagen remain unclear; the aim of this study is to address this issue. IL-13 dose- and time-dependently-induced collagen I production in primary cultured airway fibroblasts; this was accompanied with the STAT6 phosphorylation, and pre-treatment of cells with JAK inhibitor suppressed IL-13-induced collagen I production. Further study indicated that IL-13 stimulated JAK/STAT6-dependent PDGF production and subsequent ERK1/2 MAPK activation in airway fibroblasts, and the presence of either PDGF receptor blocker or MEK inhibitor partially suppressed IL-13-induced collagen I production. Taken together, our study suggests that activation of JAK/STAT6 signal pathway and subsequent PDGF generation and resultant ERK1/2 MAPK activation mediated IL-13-induced collagen I production in airway fibroblasts.  相似文献   

19.
As a part of ongoing studies to elucidate pharmacologically active components of Schisandra chinensis, we isolated and studied α-iso-cubebene. The neuroprotective mechanisms of α-iso-cubebene in human neuroblastoma SH-SY5Y cells were investigated. α-Iso-cubebene significantly inhibited cytotoxicity and apoptosis due to 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in dopaminergic SH-SY5Y cells. Pretreatment of cells with α-iso-cubebene reduced intracellular accumulation of ROS and calcium in response to 6-OHDA. The neuroprotective effects of α-iso-cubebene were found to result from protecting the mitochondrial membrane potential. Notably, α-iso-cubebene inhibited the release of apoptosis-inducing factor from the mitochondria into the cytosol and nucleus after 6-OHDA treatment. α-Iso-cubebene also induced the activation of PKA/PKB/CREB/Nrf2 and suppressed 6-OHDA-induced neurotoxicity. α-Iso-cubebene was found to induce phosphorylation of PKA and PKB and activate Nrf2 and CREB signaling pathways in a dose-dependent manner. Additionally, α-iso-cubebene stimulated the expression of the antioxidant response genes NQO1 and HO-1. Finally, α-iso-cubebene-mediated neuroprotective effects were found to be reversible after transfection with CREB and Nrf2 small interfering RNAs.  相似文献   

20.
Cystic fibrosis transmembrane conductance regulator (CFTR) acts as a cAMP-dependent chloride channel, has been studied in various types of cells. CFTR is abundantly expressed in vascular smooth muscle cells and closely linked to vascular tone regulation. However, the functional significance of CFTR in basilar vascular smooth muscle cells (BASMCs) remains elusive. Accumulating evidence has shown the direct role of CFTR in cell apoptosis that contributes to several main pathological events in CF, such as inflammation, lung injury and pancreatic insufficiency. We therefore investigated the role of CFTR in BASMC apoptotic process induced by hydrogen peroxide (H2O2). We found that H2O2-induced cell apoptosis was parallel to a significant decrease in endogenous CFTR protein expression. Silencing CFTR with adenovirus-mediated CFTR specific siRNA further enhanced H2O2-induced BASMC injury, mitochondrial cytochrome c release into cytoplasm, cleaved caspase-3 and -9 protein expression and oxidized glutathione levels; while decreased cell viability, the Bcl-2/Bax ratio, mitochondrial membrane potential, total glutathione levels, activities of superoxide dismutase and catalase. The pharmacological activation of CFTR with forskolin produced the opposite effects. These results strongly suggest that CFTR may modulate oxidative stress-related BASMC apoptosis through the cAMP- and mitochondria-dependent pathway and regulating endogenous antioxidant defense system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号