首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temperature and light intensity effects on biomass and lipid production were investigated in Ettlia oleoabundans to better understand some fundamental properties of this potentially useful but poorly studied microalgal species. E. oleoabundans entered dormant state at 5 °C, showed growth at 10 °C, and when exposed to light at 70 μmol photons per square meter per second at 10 °C, cells reached a biomass concentration of >2.0 g?L?1 with fatty acid methyl esters of 11.5 mg?L?1. Highest biomass productivity was at 15 °C and 25 °C regardless of light intensity, and accumulation of intracellular lipids was stimulated by nitrate depletion under these conditions. Although growth was inhibited at 35 °C, at 130 μmol photons per square meter per second lipid content reached 10.37 mg?L?1 with fatty acid content more favorable to biodiesel dominating; this occurred without nitrate depletion. In a two-phase temperature shift experiment at two nitrate levels, cells were shifted after 21 days at 15 °C to 35 °C for 8 days. Although after the shift growth continued, lipid productivity per cell was less than that in the 35 °C cultures, again without nitrate depletion. This study showed that E. oleoabundans grows well at low temperature and light intensity, and high temperature can be a useful trigger for lipid accumulation independent of nitrate depletion. This will prove useful for improving our knowledge about lipid production in this and other oleaginous algae for modifying yield and quality of algal lipids being considered for biodiesel production.  相似文献   

2.
The influences of urea, nitrate and glycine with four concentration levels on attached culture of Nannochloropsis oculata were investigated. The organic nitrogen source glycine was effective on improving not only adhesion biomass productivity but also adhesion rate. The maximum adhesion biomass productivity of 15.76 ± 0.52 g m?2 day?1 with adhesion rate of 76.67 ± 0.42 % was achieved with 18 mM glycine. To increase the lipid production, three lipid enhancing strategies were conducted afterwards, including nitrogen starvation, high light, and the combination of nitrogen starvation and high light. In nitrogen starvation situation, although the lipid content was greatly increased, the adhesion biomass productivity dropped probably due to the low cell viability. Increasing light intensity was effective on enhancing both adhesion biomass productivity and lipid content. The results indicated that nitrogen starvation was effective on improving both lipid content and adhesion rate when high light was applied. The maximum lipid yield of 4.32 ± 0.14 g m?2 day?1 with adhesion biomass productivity of 21.32 ± 0.65 g m?2 day?1, adhesion rate of 86.81 ± 0.10 % and lipid content of 20.24 ± 0.06 % was achieved with the combination strategy.  相似文献   

3.
There has been renewed interest in the combined use of high-rate algal ponds (HRAP) for wastewater treatment and biofuel production. Successful wastewater treatment requires year-round efficient nutrient removal while high microalgal biomass yields are required to make biofuel production cost-effective. This paper investigates the year-round performance of microalgae in a 5-ha demonstration HRAP system treating primary settled wastewater in Christchurch, New Zealand. Microalgal performance was measured in terms of biomass production, nutrient removal efficiency, light absorption and photosynthetic potential on seasonal timescales. Retention time-corrected microalgal biomass (chlorophyll a) varied seasonally, being lowest in autumn and winter (287 and 364 mg m?3day?1, respectively) and highest in summer (703 mg m?3day?1), while the conversion efficiency of light to biomass was greatest in winter (0.39 mg Chl- a per μmol) and lowest in early summer (0.08 mg Chl- a per μmol). The percentage of ammonium (NH4–N) removed was highest in spring (79 %) and summer (77 %) and lowest in autumn (47 %) and winter (53 %), while the efficiency of NH4–N removal per unit biomass was highest in autumn and summer and lowest in winter and spring. Chlorophyll-specific light absorption per unit biomass decreased as total chlorophyll increased, partially due to the package effect, particularly in summer. The proportional increase in the maximum electron transport rate from winter to summer was significantly lower than the proportional increase in the mean light intensity of the water column. We concluded that microalgal growth and nutrient assimilation was constrained in spring and summer and carbon limitation may be the likely cause.  相似文献   

4.
The growth and total lipid content of four green microalgae (Chlorella sp., Chlorella vulgaris CCAP211/11B, Botryococcus braunii FC124 and Scenedesmus obliquus R8) were investigated under different culture conditions. Among the various carbon sources tested, glucose produced the largest biomass or microalgae grown heterotrophically. It was found that 1 % (w/v) glucose was actively utilized by Chlorella sp., C. vulgaris CCAP211/11B and B. braunii FC124, whereas S. obliquus R8 preferred 2 % (w/v) glucose. No significant difference in biomass production was noted between heterotrophic and mixotrophic (heterotrophic with light illumination/exposure) growth conditions, however, less production was observed for autotrophic cultivation. Total lipid content in cells increased by approximately two-fold under mixotrophic cultivation with respect to heterotrophic and autotrophic cultivation. In addition, light intensity had an impact on microalgal growth and total lipid content. The highest total lipid content was observed at 100 μmol m?2s?1 for Chlorella sp. (22.5 %) and S. obliquus R8 (23.7 %) and 80 μmol m?2s?1 for C. vulgaris CCAP211/11B (20.1 %) and B. braunii FC124 (34.9 %).  相似文献   

5.
Higher lipid production and nutrient removal rates are the pursuing goals for synchronous biodiesel production and wastewater treatment technology. An oleaginous alga Chlorella sp. HQ was tested in five different synthetic water, and it was found to achieve the maximum biomass (0.27 g L?1) and lipid yield (41.3 mg L?1) in the synthetic secondary effluent. Next, the effects of the stationary phase elongation and initial nitrogen (N) and phosphorus (P) concentrations were investigated. The results show that the algal characteristics were affected apparently under different N concentrations but not P, which were verified by Logistic and Monod models. At the early stationary phase, the algal biomass, lipid and triacylglycerols (TAGs) yields, and P removal efficiency increased and reached up to 0.19 g L?1, 46.7 mg L?1, 14.3 mg L?1, and 94.3 %, respectively, but N removal efficiency decreased from 86.2 to 26.8 % under different N concentrations. And the largest TAGs yield was only 6.4 mg L?1 and N removal efficiency was above 71.1 % under different P concentrations. At the late stationary phase, the maximal biomass, lipid and TAGs yields, and P removal efficiencies primarily increased as the initial N and P concentrations increase and climbed up to 0.49 g L?1, 99.2 mg L?1, 54.0 mg L?1, and 100.0 %, respectively. It is concluded that stationary phase elongation is of great importance and the optimal initial N/P ratio should be controlled between 8/1 and 20/1 to serve Chlorella sp. HQ for better biodiesel production and secondary effluent purification.  相似文献   

6.
The present work evaluated biomass productivity, carbon dioxide fixation rate, and biochemical composition of two microalgal species, Phaeodactylum tricornutum (Bacillariophyta) and Tetradesmus obliquus (Chlorophyta), cultivated indoors in high-technology photobioreactors (HT-PBR) and outdoors both in pilot ponds and low-technology photobioreactors in a greenhouse in southern Italy. Microalgae were grown in standard media, under nitrogen starvation, and in two liquid digestates obtained from anaerobic digestion of agro-zootechnical and vegetable biomass. P. tricornutum, cultivated in semi-continuous mode in indoor HT-PBRs with standard medium, showed a biomass productivity of 21.0?±?2.3 g m?2 d?1. Applying nitrogen starvation, the lipid productivity increased from 2.3 up to 4.5?±?0.5 g m?2 d?1, with a 24 % decrease of biomass productivity. For T. obliquus, a biomass productivity of 9.1?±?0.9 g m?2 d?1 in indoor HT-PBR was obtained using standard medium. Applying liquid digestates as fertilizers in open ponds, T. obliquus gave a biomass productivity (10.8?±?2.0 g m?2 d?1) not statistically different from complete medium such as P. tricornutum (6.5?±?2.2 g m?2 d?1). The biochemical data showed that the fatty acid composition of the microalgal biomass was affected by the different cultivation conditions for both microalgae. In conclusion, it was found that the microalgal productivity in standard medium was about doubled in HT-PBR compared to open ponds for P. tricornutum and was about 20 % higher for T. obliquus.  相似文献   

7.
The feasibility of attached culture Chlorella vulgaris in a porous substratum biofilm reactor (PSBR) for simultaneous wastewater treatment and biofuel production was investigated. The characteristics, including algal biofilm growth, lipid yield, nutrient removal, and energy efficiency of the outdoor cultures, were investigated under the influence of both inoculum densities and the percent submerged area. A maximum biofilm productivity of 57.87 g m?2 d?1 with 81.9 % adhesion was achieved under optimal conditions (inoculum density of 18 g m?2 and the percent submerged area of 5.7 %). The lipid content and lipid yield were 38.56 % and 27.25 g m?2 d?1, respectively. Meanwhile, the algae removed 99.95 % ammonia, 96.05 % total nitrogen (TN), and 99.83 % total phosphorus (TP). Further, the energy life cycle for the PSBR was analyzed. The biomass productivity per unit irradiance was up to 4.6 g MJ?1 (photosynthetic efficiency of 10.65 %). The PSBR was considered to be economically feasible due to the net energy ratio of 1.3 (>1).  相似文献   

8.
In the present study, process engineering strategy was applied to achieve lipid-rich biomass with high density of Chlorella sp. FC2 IITG under photoautotrophic condition. The strategy involved medium optimization, intermittent feeding of limiting nutrients, dynamic change in light intensity, and decoupling growth and lipid induction phases. Medium optimization was performed using combinations of artificial neural network or response surface methodology with genetic algorithm (ANN-GA and RSM-GA). Further, a fed-batch operation was employed to achieve high cell density with intermittent feeding of nitrate and phosphate along with stepwise increase in light intensity. Finally, mutually exclusive biomass and lipid production phases were decoupled into two-stage cultivation process: biomass generation in first stage under nutrient sufficient condition followed by lipid enrichment through nitrogen starvation. The key findings were as follows: (i) ANN-GA resulted in an increase in biomass titer of 157 % (0.95 g L?1) in shake flask and 42.8 % (1.0 g L?1) in bioreactor against unoptimized medium at light intensity of 20 μE m?2 s?1; (ii) further optimization of light intensity in bioreactor gave significantly improved biomass titer of 5.6 g L?1 at light intensity of 250 μE m?2 s?1; (iii) high cell density of 13.5 g L?1 with biomass productivity of 675 mg L?1 day?1 was achieved with dynamic increase in light intensity and intermittent feeding of limiting nutrients; (iv) finally, two-phase cultivation resulted in biomass titer of 17.7 g L?1 and total lipid productivity of 313 mg L?1 day?1 which was highest among Chlorella sp. under photoautotrophic condition.  相似文献   

9.
A laboratory study was conducted on biomass and lipid production by Scenedesmus sp. and the removal of total nitrogen (TN) and total phosphorus (TP) from filtered anaerobically digested piggery wastewater. The dry weight (DW), lipid content and productivity, total nitrogen, and total phosphorus removal rate were assessed in five media: modified soil extract (MSE) medium, 5 % anaerobic digested wastewater (ADWW), 10 % ADWW, 15 % ADWW, and 5 % ADWW supplemented with NaNO3. The highest biomass productivity appeared in the 15 % ADWW group, which was 20.4 % higher than MSE group. The highest lipid content was found in the 5 % ADWW group (31.60 %), while the highest lipid productivity was in the 10 % ADWW group (27.01 mg L?1 day?1). Compared with the 5 % ADWW group, the 5 % ADWW group supplemented with NaNO3 had a similar biomass amount but lower lipid content and productivity. The fatty acids percentage of Scenedesmus sp. showed a slight difference in different media, but with the four dominant fatty acids (C16:0, C18:1, C18:2, C18:3) accounting for 87 % of the total fatty acids, suggests that Scenedesmus sp. in ADWW medium was no different than MSE in terms of lipid composition and content. TN removal rates were 82.85, 82.51, 85.85, 91.28, and 78.71 % in groups 1 to 5, and TP removal rates were 53.05, 88.53, 87.77, 88.72, and 80.64 %. Our experiment also shows the feasibility of using ADWW as a substitute of all the elements of MSE medium except for carbon, which would significantly reduce the costs of microalgal culture.  相似文献   

10.
The principal fatty acids from the lipid profiles of two autochthonous dinoflagellates (Alexandrium minutum and Karlodinium veneficum) and one raphidophyte (Heterosigma akashiwo) maintained in bubble column photobioreactors under outdoor culture conditions are described for the first time. The biomass production, lipid content and lipid productivity of these three species were determined and the results compared to those obtained when the strains were cultured indoors. Under the latter condition, the biotic values did not significantly differ among species, whereas under outdoor conditions, differences in both duplication time and fatty acids content were observed. Specifically, A. minutum had higher biomass productivity (0.35 g·L?1 day?1), lipid productivity (80.7 mg lipid·L?1 day?1) and lipid concentration (252 mg lipid·L?1) at harvest time (stationary phase) in outdoor conditions. In all three strains, the growth rate and physiological response to the light and temperature fluctuations of outdoor conditions greatly impacted the production parameters. Nonetheless, the species could be successfully grown in an outdoor photobioreactor and were of sufficient robustness to enable the establishment of long-term cultures yielding consistent biomass and lipid production.  相似文献   

11.
It is important to understand switchgrass (Panicum virgatum L.) productivity with relation to diverse nutrient deficiency conditions in order to optimize continuous biomass production in marginal lands. This study was conducted on a wasteland sandy soil (Aridosol) to assess biomass yield, nutrient uptake and nitrogen (N) recovery of switchgrass, and soil nitrate-N (NO3?-N) accumulation responses to N (120 kg N ha?1), phosphorus (P, 100 kg P2O5 ha?1), and potassium (K, 45 kg K2O ha?1) applications during 2015 and 2016 in Inner Mongolia, China. The experiment layout was a randomized complete block design with fertilizer mixture treatments of N, P, and K (NPK), P and K (PK), N and K (NK), N and P (NP), and a control with no fertilizer input (CK). Plant height and stem diameter remained unaffected by the different fertilizer treatments. Biomass yield with the NPK treatment in 2015 was 8.9 Mg ha?1 and in 2016 it was 7.3 Mg ha?1. In 2015, compared with the NPK treatment, a significant yield reduction of 33.7% was found with PK, 22.5% with NK, 28.1% with NP, and 40.5% with CK; however, in 2016, yield declined significantly only with CK compared to the rest of the fertilizer treatments, for which yields were statistically similar. Plant N content was reduced for the treatment PK (i.e. N omission); conversely, plant P and K content remained unaffected with P and K omission treatments. Plant nutrient uptake, particularly of N and K, was severely decreased by the nutrient omission treatments when averaged across 2 years. Apparent N recovery (ANR; quantity of N uptake per unit of N applied) was reduced for the NP and NK treatments, which led to an increase in soil NO3?-N accumulation in the top 0–20 cm layer, compared with the NPK treatment. However, ANR was the highest (37.2% in 2015) with the NPK treatment, which also reduced soil NO3?-N accumulation. A balanced N, P, and K fertilizer management approach is suggested to sustain switchgrass yield and stand persistence on semiarid, marginal, sandy wasteland.  相似文献   

12.
The fatty acid composition, the effect of different concentrations of nitrogen (16.5-344 mg ?L?1), phosphorus (9–45 mg? L?1), iron (9–45 mg? L?1) and salinity levels (0–20 psu) on lipid production in the green microalga Scenedesmus dimorphus KMITL, a new strain isolated from a tropical country, Thailand, were studied. The alga was isolated from a freshwater fish pond, and cultured in Chlorella medium by varying one parameter at a time. The main fatty acid composition of this strain was C16–C18 (97.52 %) fatty acids. A high lipid content was observed in conditions of 16.5 mg? L?1-N, or 22 mg ?L?1-P, or 45 mg ?L?1-Fe, or 5 psu salinity, which accumulated lipids to 20.3?±?0.4, 19.4?±?0.2, 24.7?±?0.5, and 14.3?±?0.2 % of algal biomass, respectively. Increasing lipid content and lipid productivity was noted when the alga was cultured under high iron concentration and high salinity, as well as under reduced phosphorus conditions, whereas nitrogen limitation only resulted in an increased lipid content.  相似文献   

13.
1. This study investigated the combined effects of light and phosphorus on the growth and phosphorus content of periphyton. To investigate the potential for colimitation of algal growth by these two resources, diatom‐dominated periphyton communities in large flow‐through laboratory streams were exposed under controlled conditions to simultaneous gradients of light and phosphorus. 2. Periphyton growth rate was predictably light‐limited by the subsaturating irradiances (12–88 μmol photons m?2 s?1) used in this experiment. However, phosphorus concentration also limited growth rate: growth increased hyperbolically with increasing soluble reactive phosphorus (SRP), reaching a threshold of growth saturation between 22 and 82 μg L?1. 3. Periphyton phosphorus content was strongly and nonlinearly related with SRP, reaching a maximum at 82 μg L?1 SRP. Contrary to the Light : Nutrient Hypothesis, periphyton phosphorus content did not decrease with increasing light, even at the lowest concentrations of SRP. Periphyton phosphorus was highly correlated with periphyton growth rate (Spearman's ρ = 0.63, P < 0.005). 4. Multiple regression analysis reinforced evidence of simultaneous light and phosphorus limitation. Both light and periphyton phosphorus content were significant variables in multiple regressions with growth parameters as dependent variables. Light alone accounted for 67% of the variance in periphyton biomass, and the addition of periphyton phosphorus as an additional independent variable increased the total amount of variance explained to 81%. 5. Our results did not support the hypothesis that extra phosphorus is required for photoacclimation to low light levels. Rather, the effect of additional phosphorus may have been to accommodate increased requirements for P‐rich ribosomal RNA when growth was stimulated by increased light. The potential colimitation of periphyton growth by phosphorus and light at subsaturating irradiances has important implications in both theoretical and applied aquatic ecology.  相似文献   

14.
Growing algae to scrub nutrients from manure presents an alternative to the current practice of land application and provides utilizable algal biomass as an end product. The objective of this study was to assess algal growth, nutrient removal, and nitrification using higher light intensities and manure loading rates than in the previous experiments. Algal turfs, with periphyton mainly composed of green algal species, were grown under two light regimes (270 and 390 μmol photons·m?2· s?1) and anaerobically digested flushed dairy manure wastewater (ADFDMW) loading rates ranging from 0.8 to 3.7 g total N and 0.12 to 0.58 g total P·m?2·d?1. Filamentous cyanobacteria (Oscillatoria spp.) and diatoms (Navicula, Nitzschia, and Cyclotella sp.) partially replaced the filamentous green algae at relatively high ADFDMW loading rates and more prominently under low incident light. Mean algal production increased with loading rate and irradiance from 7.6±2.71 to 19.1±2.73 g dry weight· m?2·d?1. The N and P content of algal biomass generally increased with loading rate and ranged from 2.9%–7.3% and 0.5%–1.3% (by weight), respectively. Carbon content remained relatively constant at all loading rates (42%–47%). The maximum removal rates of N and P per unit algal biomass were 70 and 13 mg·g?1 dry weight·m?2·d?1, respectively. Recovery of nutrients in harvested algal biomass accounted for about 31%–52% for N and 30%–59% for P. Recovery of P appeared to be uncoupled with N at higher loading rates, suggesting that algal potential for accumulation of P may have already been saturated. It appears that higher irradiance level enhancing algal growth was the overriding factor in controlling nitrification in the algal turf scrubber units.  相似文献   

15.
Energy sorghum tolerates adverse climatic and edaphic conditions and has great potential as biofuel feedstock in marginal land. This study investigates the potential energy sorghum biomass production and uptake of nitrogen (N), phosphorus (P), and potassium (K) on a sandy loam marginal land in a semi-arid region, in order to define optimum N fertilizer rate to produce the highest biomass yield with minimal nutrient elimination. Five N rate treatments (0, 60, 120, 180, and 240 kg ha?1) and two sorghum varieties (sweet type Guotian-8 (GT-8) and biomass type Guoneng-11 (GN-11)) were used. Yield increment was observed as N level increased, but the standout treatment appeared to be N rate of 60 kg ha?1 which significantly increased biomass yield vs. controls by 68.8% in 2014 and 64.1% in 2015. Biomass yield exhibited non-significant differences between N rate treatments from 60 to 240 kg ha?1, although the highest biomass yield (9.2–11.9 t ha?1) was observed in the 120 kg N ha?1 treatment. Nutrient analysis showed that N, P, and K accumulation in aboveground plants increased with N rate increase, ranging between 32.2 and 119.1, 7.9 and 19.2, and 22.1 and 94.0 kg ha?1, respectively, for the highest N rate of 240 kg ha?1. Substantial amounts of N were extracted from the soil in control and 60 kg N ha?1 treatments, despite the low fertility and organic matter content of the soil. Moreover, nitrogen (N) use efficiency (NUE) was maximized at lower N rates. A decline in physiological N use efficiency (PNUE) resulted in decreased agronomic N use efficiency (ANUE) at higher N rates. Hence, it is concluded that N fertilizer rate between 60 and 120 kg ha?1 would be the optimal N requirement to facilitate sustainable production of energy sorghum on a sandy wasteland.  相似文献   

16.
There has been considerable interest in cultivation of green microalgae (Chlorophyta) as a source of lipid that can alternatively be converted to biodiesel. However, almost all mass cultures of algae are carbon-limited. Therefore, to reach a high biomass and oil productivities, the ideal selected microalgae will most likely need a source of inorganic carbon. Here, growth and lipid productivities of Tetraselmis suecica CS-187 and Chlorella sp were tested under various ranges of pH and different sources of inorganic carbon (untreated flue gas from coal-fired power plant, pure industrial CO2, pH-adjusted using HCl and sodium bicarbonate). Biomass and lipid productivities were highest at pH 7.5 (320?±?29.9 mg biomass L?1 day?1and 92?±?13.1 mg lipid L?1 day?1) and pH 7 (407?±?5.5 mg biomass L?1 day?1 and 99?±?17.2 mg lipid L?1 day?1) for T. suecica CS-187 and Chlorella sp, respectively. In general, biomass and lipid productivities were pH 7.5?>?pH 7?>?pH 8?>?pH 6.5 and pH 7?>?pH 7.5?=?pH 8?>?pH 6.5?>?pH 6?>?pH 5.5 for T. suecica CS-187 and Chlorella sp, respectively. The effect of various inorganic carbon on growth and productivities of T. suecica (regulated at pH?=?7.5) and Chlorella sp (regulated at pH?=?7) grown in bag photobioreactors was also examined outdoor at the International Power Hazelwood, Gippsland, Victoria, Australia. The highest biomass and lipid productivities of T. suecica (51.45?±?2.67 mg biomass L?1 day?1 and 14.8?±?2.46 mg lipid L?1 day?1) and Chlorella sp (60.00?±?2.4 mg biomass L?1 day?1 and 13.70?±?1.35 mg lipid L?1 day?1) were achieved when grown using CO2 as inorganic carbon source. No significant differences were found between CO2 and flue gas biomass and lipid productivities. While grown using CO2 and flue gas, biomass productivities were 10, 13 and 18 %, and 7, 14 and 19 % higher than NaHCO3, HCl and unregulated pH for T. suecica and Chlorella sp, respectively. Addition of inorganic carbon increased specific growth rate and lipid content but reduced biomass yield and cell weight of T. suecica. Addition of inorganic carbon increased yield but did not change specific growth rate, cell weight or content of the cell weight of Chlorella sp. Both strains showed significantly higher maximum quantum yield (Fv/Fm) when grown under optimum pH.  相似文献   

17.
Due to similarities in their chemical behaviors, studies examining interactions between arsenic (As)—in special arsenate—and phosphorus (P) are important for better understanding arsenate uptake, toxicity, and accumulation in plants. We evaluated the effects of phosphate addition on plant biomass and on arsenate and phosphate uptake by Anadenanthera peregrina, an important Brazilian savanna legume. Plants were grown for 35 days in substrates that received combinations of 0, 10, 50, and 100 mg kg?1 arsenate and 0, 200, and 400 mg kg?1 phosphate. The addition of P increased the arsenic-phytoremediation capacity of A. peregrina by increasing As accumulation, while also alleviating As-induced oxidative stress. Arsenate phytotoxicity in A. peregrina is due to lipid peroxidation, but not hydrogen peroxide accumulation. Added P also increased the activity of important reactive oxygen species-scavenging enzymes (catalase and ascorbate peroxidase) that help prevent lipid peroxidation in leaves. Our findings suggest that applying P represents a feasible strategy for more efficient As phytoremediation using A. peregrina.  相似文献   

18.
The biochemical contents and biodiesel production ability of three microalgal strains grown under different sodium nitrate, sodium carbonate, and ferric ammonium citrate (iron) levels were investigated. The highest biomass and lipid contents were found in Scenedesmus sp., Chlorella sp., and Chlamydomonas sp. when grown in normal BG‐11 containing sodium carbonate concentration at 0.03 g · L?1, and in normal BG‐11 containing iron concentration (IC) at 0.009 or 0.012 g · L?1. Increasing the sodium nitrate level increased the biomass content, but decreased the lipid content in all three microalgae. Among the three microalgae, Scenedesmus sp. showed the highest total lipid yield of 0.69 g · L?1 under the IC of 0.012 g · L?1. Palmitic and oleic acids were the major fatty acids of Scenedesmus sp. and Chlamydomonas sp. lipids. On the other hand, Chlorella sp. lipids were rich in palmitic, oleic, and linolenic acids, and henceforth contributing to poor biodiesel properties below the standard limits. The three isolated strains had a potential for biodiesel production. Nevertheless, Scenedesmus sp. from stone quarry pond water was the most suitable source for biodiesel production with tolerance toward the high concentration of sodium carbonate without the loss of its biodiesel properties.  相似文献   

19.
Increasing desire for renewable energy sources has increased research on biomass energy crops in marginal areas with low potential for food and fiber crop production. In this study, experiments were established on low phosphorus (P) soils in southern Oklahoma, USA to determine switchgrass biomass yield, nutrient concentrations, and nutrient removal responses to P and nitrogen (N) fertilizer application. Four P rates (0, 15, 30, and 45?kg?P?ha?1) and two N fertilizer rates (0 and 135?kg?N?ha?1) were evaluated at two locations (Ardmore and Waurika) for 3?years. While P fertilization had no effect on yield at Ardmore, application of 45?kg?P?ha?1 increased yield at Waurika by 17% from 10.5 to 12.3?Mg?ha?1. Across P fertilizer rates, N fertilizer application increased yields every year at both locations. In Ardmore, non-N-fertilized switchgrass produced 3.9, 6.7, and 8.8?Mg?ha?1, and N-fertilized produced 6.6, 15.7, and 16.6?Mg?ha?1 in 2008, 2009, and 2010, respectively. At Waurika, corresponding yields were 7.9, 8.4, and 12.2?Mg?ha?1 and 10.0, 12.1, and 15.9?Mg?ha?1. Applying 45?kg?P?ha?1 increased biomass N, and P concentration and N, P, potassium, and magnesium removal at both locations. Increased removal of nutrients with N fertilization was due to both increased biomass and biomass nutrient concentrations. In soils of generally low fertility and low plant available P, application of P fertilizer at 45?kg?P?ha?1 was beneficial for increasing biomass yields. Addition of N fertilizer improves stand establishment and biomass production on low P sites.  相似文献   

20.
The technique of near and short wave near-infrared spectroscopy was assessed with respect to analysis of dry matter and lipid content of microalgae with potential for biodiesel production. Microalgal culture samples were filtered through GF/C filter papers and spectral measurements of wet and oven dried (60 °C overnight) filter papers over the ranges of 300–1,100 nm and 1,100–2,500 nm were recorded. Partial least square models on culture biomass and lipid content for combined species data were poor in terms of RMSECV, R CV and the ratio of RMSECV to SD. A single species model for C. vulgaris based on 1,100–2,500 nm spectra of dry filtrate supported a model with RMSECV, R CV and SDR values of 0.32 g L?1, 0.955 and 3.38 for biomass and 0.089 g L?1, 0.874 and 2.06 with lipid, respectively. However, the dry filtrate models on biomass and lipid content performed poorly in the prediction of samples drawn from an independent series of C. vulgaris cultured under N-, P- and Fe-limited growth trial. Thus, while the near-infrared spectroscopy technique has potential for assessment of dry matter and lipid content of microalgal cultures using a dried filtrate sample, further work is required to examine the limits to model robustness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号