首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Xu J  Cheng JJ 《Bioresource technology》2011,102(4):3861-3868
Sodium hydroxide (NaOH) and lime (Ca(OH)2) were innovatively used together in this study to improve the cost-effectiveness of alkaline pretreatment of switchgrass at ambient temperature. Based on the sugar production in enzymatic hydrolysis, the best pretreatment conditions were determined as: residence time of 6 h, NaOH loading of 0.10 g/g raw biomass, NaOH addition at the beginning, Ca(OH)2 loading of 0.02 g/g raw biomass, and biomass wash intensity of 100 ml water/g raw biomass, at which the glucose and xylose yields were respectively 59.4% and 57.3% of the theoretical yields. The sugar yield of the biomass pretreated using the combination of 0.10 g NaOH/g raw biomass and 0.02 g Ca(OH)2/g raw biomass was found comparable with that of the biomass pretreated using 0.20 g NaOH/g raw biomass at the same conditions, while the chemical expense was remarkably reduced due to the low cost of lime and the reduced loading of NaOH.  相似文献   

2.
Biorefineries that plan to use switchgrass exclusively will encounter year-to-year variability in feedstock production. The economic success of the biorefinery will depend in part on the ability of the management team to strategically identify land for conversion from current use to the production of switchgrass enabling a flow of feedstock for the life of the biorefinery. The objective of this research is to determine the optimal quality, quantity, and location of land to lease while considering the spatial and temporal variability of switchgrass biomass yield. A calibrated biophysical simulation model was used to simulate switchgrass biomass yields for 50 years based on historical weather data from 1962 to 2011, for three land capability classes for each of 30 counties. Mathematical programming models were constructed and solved to determine the optimal leasing scheme for each of three strategies for a biorefinery that requires 2,000 Mg/day. As expected, a model based on the assumption that the average yield would be obtained in each year finds that production from land identified for leasing would be insufficient to fulfill the biorefinery’s needs in half of the years. In the absence of other sources of biomass, the feedstock shortage would require forced idling of the biorefinery for an average of 29.5 days during these years. Results of a strategy of leasing sufficient land to cover feedstock needs in the worst year from among 50 years for which data are available are compared to that of a strategy enabling year-to-year storage.  相似文献   

3.
Quantifying actual and theoretical ethanol yields from biomass conversion processes such as simultanteous saccharification and fermentation (SSF) requires expensive, complex fermentation assays, and extensive compositional analyses of the biomass sample. Near-infrared reflectance spectroscopy (NIRS) is a non-destructive technology that can be used to obtain rapid, low-cost, high-throughput, and accurate estimates of agricultural product composition. In this study, broad-based NIRS calibrations were developed for switchgrass biomass that can be used to estimate over 20 components including cell wall and soluble sugars and also ethanol production and pentose sugars released as measured using a laboratory SSF procedure. With this information, an additional 13 complex feedstock traits can be determined including theoretical and actual ethanol yields from hexose fermentation. The NIRS calibrations were used to estimate feedstock composition and conversion information for biomass samples from a multi-year switchgrass (Panicum virgatum L.) biomass cultivar evaluation trial. There were significant differences among switchgrass strains for all biomass conversion and composition traits including actual ethanol yields, ETOHL (L Mg?1) and theoretical ethanol yields, ETOHTL (L Mg?1), based on cell wall and non-cell wall composition NIRS analyses. ETOHL means ranged from 98 to 115 L Mg?1 while ETOHTL means ranged from 203 to 222 L Mg?1. Because of differences in both biomass yields and conversion efficiency, there were significant differences among strains for both actual (2,534?C3,720 L ha?1) and theoretical (4,878?C7,888 L ha?1) ethanol production per hectare. It should be feasible to improve ethanol yields per hectare by improving both biomass yield and conversion efficiency by using NIRS analyses to quantify differences among cultivars and management practices.  相似文献   

4.
Improving plant characteristics for better environmental resilience and more cost-effective transformation to fuels and chemicals is one of the focus areas in biomass feedstock development. In order to bridge lignin engineering and conversion technologies, this study aimed to fractionate and characterize lignin streams from wild-type and engineered switchgrass using three different pretreatment methods, i.e., dilute sulfuric acid (DA), ammonium hydroxide (AH), and aqueous ionic liquid (IL). Results demonstrate the low lignin content and high S/G ratio switchgrass mutant (4CL) was more susceptible to pretreatment and subsequently more digestible by enzymes as compared to wild-type switchgrass and AtLOV1 mutant. In addition, when compared to DA and AH pretreatment, aqueous IL (cholinium lysinate) was demostrated to be an efficient lignin solvent, as indicated by the high (> 80%) lignin solubility and reduced lignin molecular weight. FTIR and differential scanning calorimetry measurements suggest that pretreatment chemistry greatly influenced the structural and compositional changes and thermal properties of the pretreated switchgrass and recovered lignin-rich streams. The comparative data obtained from this work deepen our understanding of how lignin modification impacts the fractionation and properties of biomass feedstocks.  相似文献   

5.
Switchgrass (Panicum virgatum L.) is being developed as a biofuel feedstock for the United States. Efficient and accurate methods to estimate switchgrass biomass feedstock supply within a production area will be required by biorefineries. Our main objective was to determine the effectiveness of indirect methods for estimating biomass yields and composition of switchgrass fields. Indirect measurements were conducted in eastern Nebraska from 2003 to 2007 in which switchgrass biomass yields were manipulated using three nitrogen rates (0 kg N ha-1, 60 kg N ha-1, and 120 kg N ha-1) and two harvest periods (August and post-killing frost). A modified Robel pole was used to determine visual obstruction, elongated leaf height, and canopy height measurements. Prediction models from the study showed that elongated leaf height, visual obstruction, and canopy height measurements accounted for >?91%, >?90%, and >?82% of the variation in switchgrass biomass, respectively. Regression slopes were similar by cultivar (“Cave-in-Rock” and “Trailblazer”), harvest period, and across years indicating that a single model is applicable for determining biomass feedstock supply within a region, assuming similar harvesting methods. Sample numbers required to receive the same level of precision were as follows: elongated leaf height<canopy height<visual obstruction. Twenty to 30 elongated leaf height measurements in a field could predict switchgrass biomass yield within 10% of the mean with 95% confidence. Visual obstruction is recommended on switchgrass fields with low to variable stand densities while elongated leaf height measurements would be recommended on switchgrass fields with high, uniform stand densities. Incorporating an ocular device with a Robel pole provided reasonable frequency estimates of switchgrass, broadleaf weeds, and grassy weeds at the field scale.  相似文献   

6.
Biorefineries that rely on lignocellulosic feedstocks require dependable and safe methods for storing biomass. Storing biomass wet in the presence of sulfuric acid and the absence of oxygen has been shown to preserve carbohydrates and enhance cellulose conversion but has not been demonstrated at farm-scale. To that end, switchgrass (Panicum virgatum L.) and reed canarygrass (Phalaris arundinacea L.) were pretreated with 18?N sulfuric acid with two methods: during bagging (on-line) and thoroughly mixed in a commercial feed mixer (mixed) and both stored for 90 days. The two methods, applied at rates from 28 to 54 g(kg DM)?1 not only helped to preserve biomass substrates under on-farm conditions (anaerobic, ambient temperature and pressure) through inhibition of microbial activity but also enhanced conversion of cellulose to ethanol by simultaneous saccharification and fermentation (SSF) using Saccharomyces cerevisiae. Acid-pretreated substrate yielded 19 and 7 percentage points higher ethanol conversion efficiencies than fresh reed canarygrass and switchgrass, respectively. The on-line method of pretreatment out-yielded the mixed method both as a preservative and as an agent for enhanced cell wall degradation. This result was thought to be an outcome of more uniform acid application as indicated by the on-line method’s more consistent pH profile and decreased fermentation products, as compared to the mixed method. Although significant levels of acetate and lactate were present in the biomass following storage, concentrations were not sufficient to inhibit S. cerevisiae in SSFs with a 10% solids loading.  相似文献   

7.
Switchgrass (Panicum virgatum L.) may have value as forage and a bioenergy feedstock. Our objective was to evaluate how harvest system and N fertilizer rates affected biomass yield and nutrient composition of young stands of switchgrass (cv. Alamo) in the southern Great Plains, USA. Nitrogen fertilization increased biomass yields from 10.4, 10.8, and 12.2 Mg ha?1 at 0 kg N?ha?1 to 13.7, 14.6, and 21.0 Mg ha?1 at 225 kg N?ha?1 when harvested after seed set (October), after frost (December), and twice per year after boot stage (July) and frost, respectively. Nutrient concentrations and removal were generally twice as great when biomass was harvested twice versus once per year. Precipitation strongly affected biomass yields across the two years of these experiments. When late-summer precipitation is available to support regrowth in this environment, harvesting switchgrass twice per year will result in greater biomass yields. Harvesting twice per year, however, will increase fertilization requirements and reduce feedstock biomass quality. Switchgrass harvested during mid-summer after boot stage was of poor forage quality. To have value as a dual-purpose forage and bioenergy feedstock, switchgrass would need to be utilized during spring to early summer while in a vegetative stage.  相似文献   

8.
Pretreatment plays an important role in making the cellulose accessible for enzyme hydrolysis and subsequent conversion because it destroys more or less resistance and recalcitrance of biomass. Radio frequency (RF)-assisted dielectric heating was utilized in the alkaline pretreatment on agricultural residues (corn stover), herbaceous crops (switchgrass), hardwood (sweetgum) and softwood (loblolly pine). Pretreatment was performed at 90 °C with either RF or traditional water bath (WB) heating for 1 h after overnight soaking in NaOH solution (0.2 g NaOH/g Biomass). Pretreated materials were characterized by chemical compositional analysis, enzyme hydrolysis, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The glucan yields of RF-heated four categories of hydrolysates were 89.6, 72.6, 21.7, and 9.9 %. Interestingly, RF heating raised glucan yield on switchgrass and sweetgum but not on corn stover or loblolly pine. The SEM images and FTIR spectra agreed with results of composition analysis and hydrolysis. GC–MS detected some compounds only from RF-heated switchgrass. These compounds were found by other researchers only in high-temperature (150–600 °C) and high-pressure pyrolysis processes.  相似文献   

9.
Front-end protein recovery from biomass at different maturities, and its effects on chemical pretreatment and enzyme hydrolysis of partially deproteinized fiber were investigated. The protein recovery from alfalfa and switchgrass biomass using sodium dodecyl sulfate and potassium hydroxide treatments was ~50–65 % of initial biomass protein. When hot water was used as extraction media, the protein recovery was 52.9 and 43.7 % of total protein in switchgrass and alfalfa, respectively. For any treatment, relative protein recovery was higher from switchgrass than from alfalfa. Only approximately half the total protein was recovered from relatively mature (early fall) biomass compared with midsummer harvested biomass. When protein was recovered partially using sodium dodecyl sulfate or potassium hydroxide, and leftover fiber pretreated, aqueous ammonia pretreatment removed 58.5–60.1 % of lignin and retained more cellulose in the fiber compared with acid pretreatment (nearly no lignin removal). Protein removal was helpful in the enzyme digestibility of fibers. Delignification of ammonia pretreated partially deproteinized alfalfa fiber was in the range of 34.4–45 %, while dilute sulfuric acid did not remove lignin effectively. Overall, the higher delignification and enzyme digestibilities were observed in aqueous ammonia pretreated partially deproteinized alfalfa fibers regardless of biomass type.  相似文献   

10.
To date, cellulosic ethanol production has not been commercialized in the United States. However, government mandates aimed at increasing second-generation biofuel production could spur exploratory development in the cellulosic ethanol industry. We conducted an in-depth analysis of the fuelshed surrounding a starch-based ethanol plant near York, Nebraska that has the potential for cellulosic ethanol production. To assess the feasibility of supplying adequate biomass for year-round cellulosic ethanol production from residual maize (Zea mays) stover and bioenergy switchgrass (Panicum virgatum) within a 40-km road network service area of the existing ethanol plant, we identified ~14,000 ha of marginally productive cropland within the service area suitable for conversion from annual rowcrops to switchgrass and ~132,000 ha of maize-enrolled cropland from which maize stover could be collected. Annual maize stover and switchgrass biomass supplies within the 40-km service area could range between 429,000 and 752,000 metric tons (mT). Approximately 140–250 million liters (l) of cellulosic ethanol could be produced, rivaling the current 208 million l annual starch-based ethanol production capacity of the plant. We conclude that sufficient quantities of biomass could be produced from maize stover and switchgrass near the plant to support year-round cellulosic ethanol production at current feedstock yields, sustainable removal rates and bioconversion efficiencies. Modifying existing starch-based ethanol plants in intensive agricultural fuelsheds could increase ethanol output, return marginally productive cropland to perennial vegetation, and remove maize stover from productive cropland to meet feedstock demand.  相似文献   

11.
Short‐term lime pretreatment uses lime and high‐pressure oxygen to significantly increase the digestibility of poplar wood. When the treated poplar wood was enzymatically hydrolyzed, glucan and xylan were converted to glucose and xylose, respectively. To calculate product yields from raw biomass, these sugars were expressed as equivalent glucan and xylan. To recommend pretreatment conditions, the single criterion was the maximum overall glucan and xylan yields using a cellulase loading of 15 FPU/g glucan in raw biomass. On this basis, the recommended conditions for short‐term lime pretreatment of poplar wood follow: (1) 2 h, 140°C, 21.7 bar absolute and (2) 2 h, 160°C, and 14.8 bar absolute. In these two cases, the reactivity was nearly identical, thus the selected condition depends on the economic trade off between pressure and temperature. Considering glucose and xylose and their oligomers produced during 72 h of enzymatic hydrolysis, the overall yields attained under these recommended conditions follow: (1) 95.5 g glucan/100 g of glucan in raw biomass and 73.1 g xylan/100 g xylan in raw biomass and (2) 94.2 g glucan/100 g glucan in raw biomass and 73.2 g xylan/100 g xylan in raw biomass. The yields improved by increasing the enzyme loading. An optimal enzyme cocktail was identified as 67% cellulase, 12% β‐glucosidase, and 24% xylanase (mass of protein basis) with cellulase activity of 15 FPU/g glucan in raw biomass and total enzyme loading of 51 mg protein/g glucan in raw biomass. Ball milling the lime‐treated poplar wood allowed for 100% conversion of glucan in 120 h with a cellulase loading of only 10 FPU/g glucan in raw biomass. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

12.
Lignocellulosic biomass was pretreated with lime, and used for the production of VFA (volatile fatty acid) through batch anaerobic digestion. About 0.34 g VFA yield was obtained using 10 g/L reed, after 3 days of fermentation with lime treatment; however, a higher VFA yield (more than 0.5 g/g biomass) was achieved with a modified lime treatment. Overall, our study showed that that the modified lime treatment is better suited for VFA production. VFAs can be widely used in platforms for fuels and chemicals from biomass.  相似文献   

13.
An abundant agricultural residue, rice straw (RS) was pretreated using ammonia fiber expansion (AFEX) process with less than 3% sugar loss. Along with commercial cellulase (Spezyme® CP) at 15 filter paper unit/g of glucan, the addition of Multifect® Xylanase at 2.67 mg protein/g glucan and Multifect® Pectinase at 3.65 mg protein/g glucan was optimized to greatly increase sugar conversion of AFEX-treated RS. During enzymatic hydrolysis even at 6% glucan loading (equivalent to 17.8% solid loading), about 80.6% of glucan and 89.6% of xylan conversions (including monomeric and oligomeric sugars) were achieved. However, oligomeric glucose and xylose accounted for 12.3% of the total glucose and 37.0% of the total xylose, respectively. Comparison among the three ethanologenic strains revealed Saccharomyces cerevisiae 424A(LNH-ST) to be a promising candidate for RS hydrolysate with maximum ethanol metabolic yield of 95.3% and ethanol volumetric productivity of 0.26 g/L/h. The final concentration of ethanol at 37.0 g/L was obtained by S. cerevisiae 424A(LNH-ST) even with low cell density inoculum. A biorefinery combining AFEX pretreatment with S. cerevisiae 424A(LNH-ST) in separate hydrolysis and fermentation could achieve 175.6 g EtOH/kg untreated rice straw at low initial cell density (0.28 g dw/L) without washing pretreated biomass, detoxification, or nutrient supplementation.  相似文献   

14.
Perennial grass systems are being evaluated as a bioenergy feedstock in the northern Great Plains. Inter-annual and inter-seasonal precipitation variation in this region will require efficient water use to maintain sufficient yield production to support a mature bioenergy industry. Objectives were to evaluate the impact of a May–June (early season) and a July–August (late season) drought on the water use efficiency (WUE), amount of water used, and biomass production in monocultures of switchgrass (Panicum virgatum L.), western wheatgrass (Pascopyrum smithii (Rydb.) Á. Löve), and a western wheatgrass–alfalfa (Medicago sativa L.) mixture using an automated rainout shelter. WUE was strongly driven by biomass accumulation and ranged from 5.6 to 7.4 g biomass mm?1 water for switchgrass to 1.06 to 2.07 g biomass mm?1 water used with western wheatgrass. Timing of water stress affected WUE more in western wheatgrass and the western wheatgrass–alfalfa mixture than switchgrass. Water deficit for the western wheatgrass–alfalfa mixture was 23 % lower than western wheatgrass (P?=?0.0045) and 31 % lower than switchgrass (P?<?0.0001) under the May–June stress water treatment, while switchgrass had a 37 and 38 % greater water deficit than did western wheatgrass or western wheatgrass–alfalfa mixture, respectively (P?<?0.001) under the July–August water stress treatment. Water depletion was always greatest in the upper 30 cm. Switchgrass had greater WUE but resulted in greater soil water depletion at the end of the growing season compared to western wheatgrass and a western wheatgrass–alfalfa mixture which may be a concern under multi-year drought conditions.  相似文献   

15.
Simultaneous saccharification and fermentation of lime-treated biomass   总被引:4,自引:0,他引:4  
Simultaneous saccharification and fermentation (SSF) was performed on lime-treated switchgrass and corn stover, and oxidatively lime-treated poplar wood to determine their compatibility with Saccharomyces cerevisiae. Cellulose-derived glucose was extensively utilized by the yeast during SSF. The ethanol yields from pretreated switchgrass, pretreated corn stover, and pretreated-and-washed poplar wood were 72%, 62% and 73% of theoretical, respectively, whereas those from -cellulose were 67 to 91% of theoretical. The lower ethanol yields from treated biomass resulted from lower cellulose digestibilities rather than inhibitors produced by the pretreatment. Oxidative lime pretreatment of poplar wood increased the ethanol yield by a factor of 5.6, from 13% (untreated) to 73% (pretreated-and-washed).  相似文献   

16.
In dry climates with long, hot summers and freezing winters, such as that of the southern Great Plains of North America, switchgrass (Panicum virgatum L.) has proven potential as a cellulosic bioenergy feedstock. This trial looked at dry matter (DM) and N yield dynamics of switchgrass overseeded with cool-season legumes and rye (Secale cereale L.), compared to switchgrass fertilized with 0, 56 and 112 kg N ha-1 yr-1 at an infertile and a fertile location. Optimal N fertilizer rate on switchgrass was 56 kg N ha-1 at the infertile location. Legume yield was greater in the first season after planting, compared to subsequent years where annual legumes were allowed to reseed and alfalfa (Medicago sativa L.) was allowed to grow. This suggests that the reseeding model for annual legumes will not work in switchgrass swards grown for biomass unless soil seed banks are built up for more than one year, and that overseeding with alfalfa may have to be repeated in subsequent years to build up plant populations. Overseeding rye and legumes generally did not suppress or enhance switchgrass biomass production compared to unfertilized switchgrass. However, cumulative spring and fall biomass yields were generally greater due to winter and spring legume production, which could be beneficial for grazing or soil conservation systems, but not necessarily for once-yearly late autumn harvest biofuel production systems.  相似文献   

17.
The control of soil moisture, vegetation type, and prior land use on soil health parameters of perennial grass cropping systems on marginal lands is not well known. A fallow wetness-prone marginal site in New York (USA) was converted to perennial grass bioenergy feedstock production. Quadruplicate treatments were fallow control, reed canarygrass (Phalaris arundinaceae L. Bellevue) with nitrogen (N) fertilizer (75 kg N ha?1), switchgrass (Panicum virgatum L. Shawnee), and switchgrass with N fertilizer (75 kg N ha?1). Based on periodic soil water measurements, permanent sampling locations were assigned to various wetness groups. Surface (0–15 cm) soil organic carbon (SOC), active carbon, wet aggregate stability, pH, total nitrogen (TN), root biomass, and harvested aboveground biomass were measured annually (2011–2014). Multi-year decreases in SOC, wet aggregate stability, and pH followed plowing in 2011. For all years, wettest soils had the greatest SOC and active carbon, while driest soils had the greatest wet aggregate stability and lowest pH. In 2014, wettest soils had significantly (p?<?0.0001) greater SOC and TN than drier soils, and fallow soils had 14 to 20% greater SOC than soils of reed canarygrass + N, switchgrass, and switchgrass + N. Crop type and N fertilization did not result in significant differences in SOC, active carbon, or wet aggregate stability. Cumulative 3-year aboveground biomass yields of driest switchgrass + N soils (18.8 Mg ha?1) were 121% greater than the three wettest switchgrass (no N) treatments. Overall, soil moisture status must be accounted for when assessing soil dynamics during feedstock establishment.  相似文献   

18.
Although upgrading bio-oil from fast pyrolysis of biomass is an attractive pathway for biofuel production, nitrogen (N) and mineral matter carried over from the feedstock to the bio-oil represents a serious contaminant in the process. Reducing the N and ash content of biomass feedstocks would improve process reliability and reduce production costs of pyrolytic biofuels. This study investigated: (1) How does switchgrass harvest date influence the yield, N concentration ([N]), and ash concentration of biomass and fast pyrolysis products? and (2) Is there a predictive relationship between [N] of switchgrass biomass and [N] of fast pyrolysis products? Switchgrass from five harvest dates and varying [N] from central Iowa were pyrolyzed using a free-fall reactor. Harvestable biomass peaked in August (8.6 Mg ha?1), dropping significantly by November (6.7 Mg ha?1, P?=?0.0027). Production of bio-oil per unit area mirrored that of harvested biomass at each harvest date; however, bio-oil yield per unit dry biomass increased from 46.6 % to 56.7 % during the season (P?=?0.0018). Allowing switchgrass to senesce lowered biomass [N] dramatically, by as much as 68 % from June to November (P?<?0.0001). Concurrently, bio-oil [N] declined from 0.51 % in June to 0.17 % by November (P?<?0.0001). Significant reductions in ash concentration were also observed in biomass and char. Finally, we show for the first time that the [N] of switchgrass biomass is a strong predictor of the [N] of bio-oil, char, and non-condensable gas with R 2 values of 0.89, 0.94, and 0.88, respectively.  相似文献   

19.
Organic fertilizers can improve soil health while providing nutrients for perennial grass growth for bioenergy feedstock, particularly under marginal soil conditions. The impact of organic fertilizer application on perennial grass composition needs clarification. Our objective was to evaluate feedstock composition, and N, P, and K dynamics of switchgrass (Panicum virgatum L.), tall fescue [Lolium arundinaceum (Schreb.)], and reed canarygrass (Phalaris arundinacea L.) provided with either inorganic or organic fertilizer sources. Grasses were established on a sandy soil and a clay soil at the Cornell University Willsboro Research Farm in Willsboro, NY. The experiment was a split-split plot randomization of a randomized block design with six replicates. Sites were whole plots, grass species were subplots, and fertility treatments were sub-subplots. Six treatments were (1) 168 kg ha?1 of N fertilizer for cool-season grasses; 84 kg ha?1 for switchgrass, (2) 56 kg ha?1 of 0-46-0 P fertilizer plus N (#1), (3) 112 kg ha?1 of 0-0-60 K fertilizer plus N (#1), (4) 89.6 Mg dairy manure ha?1, (5) 44.8 Mg dairy manure compost ha?1, and (6) a control without fertilizer. Organic fertilizers produced a net positive P and K balance, while other treatments had negative balances. Organic fertilizer treatments resulted in lower lignin and gross energy values, and higher total ash and Cl, compared to inorganic fertilizer treatments. Switchgrass biomass had higher fiber and gross energy, lower total ash, and much lower Cl content under organic fertilizer applications than cool-season grasses, making switchgrass a more desirable feedstock regardless of conversion process.  相似文献   

20.
Pine, eucalyptus, and switchgrass were evaluated for the production of fermentable sugars via ionic liquid and dilute acid pretreatments and subsequent enzymatic hydrolysis. The results show that among the three feedstocks, switchgrass has the highest sugar yields and faster hydrolysis rates for both pretreatment technologies by achieving 48 % (dilute acid) and 96 % (ionic liquid) sugar yields after 24 h. Of the two wood species, eucalyptus has a higher and faster sugar recovery after ionic liquid pretreatment than pine (93 vs. 62 % in 24 h) under 160 °C for 3 h with [C2mim][OAc]. Pretreatment of pine and eucalyptus is observed to be ineffective under 1.2 % dilute acid condition and 160 °C for 15 min, indicating that further enhancement of reaction temperature or acid concentration is necessary to increase the digestibility of pretreated materials. Raman spectroscopy data show that the extent of lignin depolymerization that occurs during pretreatment also varies for the three different feedstocks. Under similar hemicellulose removal conditions, lignin removal in ionic liquid pretreatment can help improve cellulose conversion. This finding may help explain the observed variation in the saccharification yields and kinetics. These results indicate that ionic liquid pretreatment not only improved saccharification over dilute acid for all three feedstocks but also better dealt with the differences among them, suggesting better tolerance to feedstock variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号