首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
Bacillus thuringiensis subsp. medellin produces numerous proteins among which 94 kDa known as Cry11Bb, has mosquitocidal activity. The mode of action of the Cry11 proteins has been described as similar to those of the Cry1 toxins, nevertheless, the mechanism of action is still not clear. In this study we investigated the in vivo binding of the Cry11Bb toxin to the midgut of the insect species Anopheles albimanus, Aedes aegypti, and Culex quinquefasciatus by immunohistochemical analysis. Spodoptera frugiperda was included as negative control. The Cry11Bb protein was detected on the apical microvilli of the midgut epithelial cells, mostly on the posterior midgut and gastric caeca of the three mosquito species. Additionally, the toxin was detected in the Malpighian tubules of An. albimanus, Ae. aegypti, Cx. quinquefasciatus, and in the basal membrane of the epithelial cells of Ae. aegypti midgut. No toxin accumulation was observed in the peritrophic membrane of any of the mosquito species studied. These results confirm that the primary site of action of the Cry11 toxins is the apical membrane of the midgut epithelial cells of mosquito larvae.  相似文献   

3.
Knowledge of parasite-mosquito interactions is essential to develop strategies that will reduce malaria transmission through the mosquito vector. In this study we investigated the development of two model malaria parasites, Plasmodium berghei and Plasmodium gallinaceum, in three mosquito species Anopheles stephensi, Anopheles gambiae and Aedes aegypti. New methods to study gamete production in vivo in combination with GFP-expressing ookinetes were employed to measure the large losses incurred by the parasites during infection of mosquitoes. All three mosquito species transmitted P. gallinaceum; P. berghei was only transmitted by Anopheles spp. Plasmodium gallinaceum initiates gamete production with high efficiency equally in the three mosquito species. By contrast P. berghei is less efficiently activated to produce gametes, and in Ae. aegypti microgamete formation is almost totally suppressed. In all parasite/vector combinations ookinete development is inefficient, 500-100,000-fold losses were encountered. Losses during ookinete-to-oocyst transformation range from fivefold in compatible vector parasite combinations (P. berghei/An. stephensi), through >100-fold in poor vector/parasite combinations (P. gallinaceum/An. stephensi), to complete blockade (>1,500 fold) in others (P. berghei/Ae. aegypti). Plasmodium berghei ookinetes survive poorly in the bloodmeal of Ae. aegypti and are unable to invade the midgut epithelium. Cultured mature ookinetes of P. berghei injected directly into the mosquito haemocoele produced salivary gland sporozoites in An. stephensi, but not in Ae. aegypti, suggesting that further species-specific incompatibilities occur downstream of the midgut epithelium in Ae. aegypti. These results show that in these parasite-mosquito combinations the susceptibility to malarial infection is regulated at multiple steps during the development of the parasites. Understanding these at the molecular level may contribute to the development of rational strategies to reduce the vector competence of malarial vectors.  相似文献   

4.
The mosquito midgut is a hostile environment that vector‐borne parasites must survive to be transmitted. Commensal bacteria in the midgut can reduce the ability of mosquitoes to transmit disease, either by having direct anti‐parasite effects or by stimulating basal immune responses of the insect host. As different bacteria have different effects on parasite development, the composition of the bacterial community in the mosquito gut is likely to affect the probability of disease transmission. We investigated the diversity of mosquito gut bacteria in the field using 454 pyrosequencing of 16S rRNA to build up a comprehensive picture of the diversity of gut bacteria in eight mosquito species in this population. We found that mosquito gut typically has a very simple gut microbiota that is dominated by a single bacterial taxon. Although different mosquito species share remarkably similar gut bacteria, individuals in a population are extremely variable and can have little overlap in the bacterial taxa present in their guts. This may be an important factor in causing differences in disease transmission rates within mosquito populations.  相似文献   

5.
6.
We show for the first time that the ventral diverticulum of the mosquito gut (impermeable sugar storage organ) harbors microorganisms. The gut diverticulum from newly emerged and non-fed Aedes aegypti was dissected under aseptic conditions, homogenized and plated on BHI medium. Microbial isolates were identified by sequencing of 16S rDNA for bacteria and 28S rDNA for yeast. A direct DNA extraction from Ae. aegypti gut diverticulum was also performed. The bacterial isolates were: Bacillus sp., Bacillus subtilis and Serratia sp. The latter was the predominant bacteria found in our isolations. The yeast species identified was Pichia caribbica.  相似文献   

7.
Wolbachia is a maternal transmitted endosymbiotic bacterium that is estimated to infect up to 65% of insect species. The ability of Wolbachia to both induce viral interference and spread into mosquito vector population makes it possible to develop Wolbachia as a biological control agent for dengue control. While Wolbachia induces resistance to dengue virus in the transinfected Aedes aegypti mosquitoes, a similar effect was not observed in Aedes albopictus, which naturally carries Wolbachia infection but still serves as a dengue vector. In order to understand the mechanism of this lack of Wolbachia-mediated viral interference, we used both Ae. albopictus cell line (Aa23) and mosquitoes to characterize the impact of Wolbachia on dengue infection. A serial of sub-lethal doses of antibiotic treatment was used to partially remove Wolbachia in Aa23 cells and generate cell cultures with Wolbachia at different densities. We show that there is a strong negative linear correlation between the genome copy of Wolbachia and dengue virus with a dengue infection completely removed when Wolbacha density reaches a certain level. We then compared Wolbachia density between transinfected Ae. aegypti and naturally infected Ae. albopictus. The results show that Wolbachia density in midgut, fatbody and salivary gland of Ae. albopictus is 80-, 18-, and 24-fold less than that of Ae. aegypti, respectively. We provide evidence that Wolbachia density in somatic tissues of Ae. albopictus is too low to induce resistance to dengue virus. Our results will aid in understanding the mechanism of Wolbachia-mediated pathogen interference and developing novel methods to block disease transmission by mosquitoes carrying native Wolbachia infections.  相似文献   

8.
Evidence suggests that midgut trypsins in Aedes aegypti condition the mosquito's ability to become infected with the dengue-2 flavivirus (DEN2). The activity of early trypsin protein peaks approximately 3 h after blood feeding and then drops within a few hours. We use association mapping to test the hypothesis that segregating sites in early trypsin condition midgut susceptibility to DEN2 virus. A total of 1642 females from throughout Mexico and the southern US were fed an artificial blood meal containing DEN2. After 2 weeks, mosquito heads and midguts were tested for DEN2. Mosquitoes with an infected head were classified as susceptible, those without a midgut infection had an infection barrier, and those with an infected gut but no head infection had an escape barrier. The early trypsin gene was amplified in two overlapping pieces from each mosquito and analyzed for single strand conformation polymorphisms (SSCPs). Unique SSCP genotypes were sequenced and 90 segregating sites were found. The dataset was divided into the four geographic regions within which Ae. aegypti is panmictic in Mexico. Heterogeneity chi2 analyses between alleles or genotypes and infection phenotypes demonstrated significant associations but allelic and genotypic effects were inconsistent among geographic regions. No consistent associations were found between segregating sites in early trypsin and susceptibility to DEN2 in Ae. aegypti in Mexico.  相似文献   

9.
A wide range of parasites are known to cause behavioral changes in their hosts and parasitized insects are especially amenable to the study of such changes. The majority of studies addressing parasite-induced behavioral alterations have focused on parasites with complex life cycles and the adaptive nature of such changes. Behavioral changes caused by parasitoids, single-host parasites that kill their host upon emergence, have been studied less and the adaptive nature of these changes is likely to be different than those in complex life cycles. I investigated behavioral alterations in Aedes aegypti mosquito larvae infected with parasitoid nematodes (family Mermithidae). I conducted several experiments in which I tested the following hypotheses: 1) Mermithid nematodes induce behavioral changes in mosquito larvae and the changes are density dependent. 2) Different species of mermithid nematodes induce similar changes in mosquito larvae behavior. 3) Behavioral alterations vary with mermithid developmental stage. 4) Mosquito larvae infected with mermithid nematodes behave similarly to uninfected food-deprived mosquito larvae. I found that 4th instar Ae. aegypti infected with Romanomermis culicivorax or Strelkovimermis spiculatus exhibited resting behaviors significantly more often than uninfected controls but that intensity of infection did not affect activity levels. In earlier instars, infected mosquito larvae were more active than uninfected control larvae in some behaviors associated with feeding. There was no significant difference between infected and uninfected food-deprived mosquitoes in nine of the ten behaviors observed. The decrease in activity of late instar Ae. aegypti larvae infected with mermithids may be a parasitoid adaptation that reduces the risk of predation and thus increases host and parasitoid survival. The increase in feeding activity in earlier instars as well as the similarity between uninfected food-deprived and infected Ae. aegypti behavior may indicate that these behaviors are adaptive for the parasitoid, increasing nutritional acquisition for successful parasitoid development.  相似文献   

10.
Cry11Ba is one of the most toxic proteins to mosquito larvae produced by Bacillus thuringiensis. It binds Aedes aegypti brush border membrane vesicles (BBMV) with high affinity, showing an apparent dissociation constant (K(d)) of 8.2 nM. We previously reported that an anticadherin antibody competes with Cry11Ba binding to BBMV, suggesting a possible role of cadherin as a toxin receptor. Here we provide evidence of specific cadherin repeat regions involved in this interaction. Using cadherin fragments as competitors, a C-terminal fragment which contains cadherin repeat 7 (CR7) to CR11 competed with Cry11Ba binding to BBMV. This binding was also efficiently competed by the CR9, CR10, and CR11 peptide fragments. Moreover, we show CR11 to be an important region of interaction with Cry11Ba toxin. An alkaline phosphatase (AaeALP1) and an aminopeptidase-N (AaeAPN1) also competed with Cry11Ba binding to Ae. aegypti BBMV. Finally, we found that Cry11Ba and Cry4Ba share binding sites. Synthetic peptides corresponding to loops α8, β2-β3 (loop 1), β8-β9, and β10-β11 (loop 3) of Cry4Ba compete with Cry11Ba binding to BBMV, suggesting Cry11Ba and Cry4Ba have common sites involved in binding Ae. aegypti BBMV. The data suggest that three different Ae. aegypti midgut proteins, i.e., cadherin, AaeALP1, and AaeAPN1, are involved in Cry11Ba binding to Ae. aegypti midgut brush border membranes.  相似文献   

11.
The mosquito Aedes aegypti is the most important vector of yellow fever and dengue fever flaviviruses. Ae. aegypti eradication campaigns have not been sustainable and there are no effective vaccines for dengue viruses. Alternative control strategies may depend upon identification of mosquito genes that condition flavivirus susceptibility and may ultimately provide clues for interrupting transmission. Quantitative trait loci affecting the ability of Ae. aegypti to develop a dengue-2 infection in the midgut have been mapped previously. Herein we report on QTL that determine whether mosquitoes with a dengue-2-infected gut can then disseminate the virus to other tissues. A strain selected for high rates of dengue-2 dissemination was crossed to a strain selected for low dissemination rates. QTL were mapped in the F(2) and again in an F(5) advanced intercross line. QTL were detected at 31 cM on chromosome I, at 32 cM on chromosome II, and between 44 and 52 cM on chromosome III. Alleles at these QTL were additive or dominant in determining rates of dengue-2 dissemination and accounted for approximately 45% of the phenotypic variance. The locations of dengue-2 midgut infection and dissemination QTL correspond to those found in earlier studies.  相似文献   

12.
Apoptosis has been extensively studied in Drosophila by both biochemical and genetic approaches, but there is a lack of knowledge about the mechanisms of apoptosis regulation in other insects. In mosquitoes, apoptosis occurs during Plasmodium and arbovirus infection in the midgut, suggesting that apoptosis plays a role in mosquito innate immunity. We searched the Aedes aegypti genome for apoptosis-related genes using Drosophila and Anopheles gambiae protein sequences as queries. In this study we have identified eleven caspases, three inhibitor of apoptosis (IAP) proteins, a previously unreported IAP antagonist, and orthologs of Drosophila Ark, Dnr1, and BG4 (also called dFadd). While most of these genes have been previously annotated, we have improved the annotation of several of them, and we also report the discovery of four previously unannotated apoptosis-related genes. We examined the developmental expression profile of these genes in Ae. aegypti larvae, pupae and adults, and we also studied the function of a novel IAP antagonist, IMP. Expression of IMP in mosquito cells caused apoptosis, indicating that it is a functional pro-death protein. Further characterization of these genes will help elucidate the molecular mechanisms of apoptosis regulation in Ae. aegypti.  相似文献   

13.
The identification and cloning of genes conferring mosquito refractoriness to the malaria parasite is critical for understanding malaria transmission mechanisms and holds great promise for developing novel approaches to malaria control. The mosquito midgut is the first major site of interaction between the parasite and the mosquito. Failure of the parasite to negotiate this environment can be a barrier for development and is likely the main cause of mosquito refractoriness. This paper reports a study on Aedes aegypti midgut expressed sequence tag (EST) identification and the determination of genes differentially expressed in mosquito populations susceptible and refractory to the avian malaria parasite Plasmodium gallinaceum. We sequenced a total of 1200 cDNA clones and obtained 1183 high-quality mosquito midgut ESTs that were computationally collapsed into 105 contigs and 251 singlets. All 1200 midgut cDNA clones, together with an additional 102 genetically or physically mapped Ae. aegypti clones, were spotted on single arrays with 12 replicates. Of those interrogated microarray elements, 28 (2.3%) were differentially expressed between the susceptible and refractory mosquito populations. Twenty-seven elements showed at least a two-fold increase in expression in the susceptible population level relative to the refractory population and one clone showed reduced expression. Sequence analysis of these differentially expressed genes revealed that 10 showed no significant similarity to any known genes, 6 clones had matches with unannotated genes of Anopheles gambiae, and 12 clones exhibited significant similarity to known genes. Real-time quantitative RT-PCR of selected clones confirmed the mRNA expression profiles from the microarray analysis.  相似文献   

14.
In holometabolous insects such as mosquito, Aedes aegypti, midgut undergoes remodeling during metamorphosis. Insect metamorphosis is regulated by several hormones including juvenile hormone (JH) and 20-hydroxyecdysone (20E). The cellular and molecular events that occur during midgut remodeling were investigated by studying nuclear stained whole mounts and cross-sections of midguts and by monitoring the mRNA levels of genes involved in 20E action in methoprene-treated and untreated Ae. aegypti. We used JH analog, methoprene, to mimic JH action. In Ae. aegypti larvae, the programmed cell death (PCD) of larval midgut cells and the proliferation and differentiation of imaginal cells were initiated at about 36h after ecdysis to the 4th instar larval stage (AEFL) and were completed by 12h after ecdysis to the pupal stage (AEPS). In methoprene-treated larvae, the proliferation and differentiation of imaginal cells was initiated at 36h AEFL, but the PCD was initiated only after ecdysis to the pupal stage. However, the terminal events that occur for completion of PCD during pupal stage were blocked. As a result, the pupae developed from methoprene-treated larvae contained two midgut epithelial layers until they died during the pupal stage. Quantitative PCR analyses showed that methoprene affected midgut remodeling by modulating the expression of ecdysone receptor B, ultraspiracle A, broad complex, E93, ftz-f1, dronc and drice, the genes that are shown to play key roles in 20E action and PCD. Thus, JH analog, methoprene acts on Ae. aegypti by interfering with the expression of genes involved in 20E action resulting in a block in midgut remodeling and death during pupal stage.  相似文献   

15.
Mosquito midgut plays a crucial role in its vector susceptibility and pathogen interaction. Identification of the sustainable microflora of the midgut environment can therefore help in evaluating its contribution in mosquito-pathogen interaction and in turn vector competence. To understand the bacterial diversity in the midgut of Aedes aegypti mosquitoes, we conducted a screening study of the gut microbes of these mosquitoes which were either collected from fields or reared in the laboratory "culture-dependent" approach. This work demonstrated that the microbial flora of larvae and adult Ae. aegypti midgut is complex and is dominated by Gram negative proteobacteria. Serratia odorifera was found to be stably associated in the midguts of field collected and laboratory reared larvae and adult females. The potential influence of this sustainable gut microbe on DENV-2 susceptibility of this vector was evaluated by co-feeding S. odorifera with DENV-2 to adult Ae. aegypti females (free of gut flora). The observations revealed that the viral susceptibility of these Aedes females enhanced significantly as compared to solely dengue-2 fed and another gut inhabitant, Microbacterium oxydans co-fed females. Based on the results of this study we proposed that the enhancement in the DENV-2 susceptibility of Ae. aegypti females was due to blocking of prohibitin molecule present on the midgut surface of these females by the polypeptide of gut inhabitant S. odorifera.  相似文献   

16.
Pantoea stewartii subsp. stewartii is a Gram-negative enteric bacterium that primarily infects sweet corn. Studies of this bacterium have provided useful insight into how xylem-dwelling bacteria establish themselves and incite disease in their hosts. Pantoea stewartii subsp. stewartii is a remarkable bacterial system for laboratory studies because of its relative ease of propagation and genetic manipulation, and the fact that it appears to employ a minimal number of pathogenicity mechanisms. In addition, P. stewartii subsp. stewartii produces copious amounts of its quorum sensing (QS) signal, acyl-homoserine lactone (AHL), making it an excellent organism for studying QS-controlled gene regulation in a plant-pathogenic bacterium. In fact, P. stewartii subsp. stewartii has become the microbial paradigm for QS control of gene expression by both repression and activation via a QS regulator that binds DNA in the absence and dissociates in the presence of the signal ligand. Moreover, P. stewartii subsp. stewartii is a member of the Enterobacteriaceae, and lessons learned from its interaction with plants may be extrapolated to other plant-associated enterics, such as Erwinia, Dickeya and Pectobacterium spp., or enteric human pathogens associated with plants, such as Escherichia coli and Salmonella spp. TAXONOMY: Bacteria; Gammaproteobacteria; family Enterobacteriaceae; genus Pantoea; species stewartii (Mergaert et al., 1993). MICROBIOLOGICAL PROPERTIES: Gram-negative, motile, yellow pigmented, mucoid, facultative anaerobe. HOST RANGE: Pantoea stewartii subsp. stewartii (Smith, 1898) Dye causes Stewart's wilt of corn (Zea mays). Early-maturing sweet corn varieties and some elite inbred maize lines are particularly susceptible. DISEASE SYMPTOMS: There are two major phases of Stewart's wilt disease: (i) wilt and (ii) leaf blight. The wilt phase occurs when young seedlings are infected with P. stewartii subsp. stewartii (Fig. 1A). Water-soaked lesions first appear on the young expanding leaves and, later, seedlings may become severely wilted (Fig. 1B). The plants usually die when infected at the seedling stage. The leaf blight phase occurs when mature plants are infected (Fig. 1C). The bacteria enter the xylem and cause long linear yellow-grey lesions with a wavy margin that run parallel to the leaf veins. These lesions later turn necrotic and dark in colour. The leaf blight phase is most apparent after tasselling and does not generally cause death of the plant. In addition, the bacteria can sometimes break out of the xylem and cause pith rot in mature sweet corn plants. In resistant varieties, lesions are usually limited to only a few centimetres depending on the level of resistance of the particular hybrid (Claflin, 2000; Pataky, 2003). USEFUL WEBSITES: http://www.apsnet.org/publications/apsnetfeatures/Pages/StewartsWilt.aspx.  相似文献   

17.
Vector blood-feeding frequency, parity, and ovarian development are important factors that can influence pathogen transmission. Parity rates of the dengue vectors Aedes aegypti and Ae. albopictus were determined from females collected from August 2002 to July 2004 in metropolitan Rio de Janeiro. A high frequency of parous Ae. aegypti (92.9%, n = 550) and Ae. albopictus (99.1%, n = 320) females suggested high survivorship of both species. A total of 69% of wild-caught Ae. aegypti females had blood in the midgut compared to 19% of Ae. albopictus. For Ae. aegypti, red-colored midgut contents were associated with ovaries in early stages of development, and brown-colored midguts were associated with ovaries in late stages of maturation. Ovaries of Ae. aegypti females without blood in the midgut were most frequently in stages I and V of Christophers.  相似文献   

18.
The susceptibility of Aedes aegypti to Ascogregarina culicis and Aedes albopictus to Ascogregarina taiwanensis was examined with mosquito and parasite strains from Tampa, FL. When each host was bioassayed with its natural gregarine, the infection intensity indicated that Ae. aegypti was 59% more susceptible to A. culicis (87 gamonts/larva) than Ae. albopictus to A. taiwanensis (47 gamonts/larva). Infections in single and mixed host populations exposed to 100 oocysts/larva of one and both parasites demonstrated that Ae. aegypti harbors higher A. culicis gamont loads than Ae. albopictus of A. taiwanensis. In dual gregarine exposures of single host populations, the A. culicis infection intensity in Ae. aegypti was reduced by approximately 50%. A. taiwanensis exhibited the same capability of infecting Ae. albopictus in single and dual exposures. In mixed host populations there were no cross infections, but A. taiwanensis in Ae. albopictus produced an infection intensity of approximately 70% lower than that of A. culicis in Ae. aegypti.  相似文献   

19.
In Plasmodium-infected mosquitoes, oocysts are preferentially located at the posterior half of the posterior midgut. Because mosquitoes rest vertically after feeding, the effect of gravity on the ingested blood has been proposed as the cause of such a biased distribution. In this paper, we examined the oocyst distribution on the midguts of mosquitoes that were continuously rotated to nullify the effect of gravity and found that the typical pattern of oocyst distribution did not change. Invasion of the midgut epithelium by ookinetes was similarly found to be biased toward the posterior part of the posterior midgut. We examined whether the distribution of oocysts depends on the distribution of vesicular ATPase (V-ATPase)-overexpressing cells that Plasmodium ookinetes preferentially use to cross the midgut epithelium. An antiserum raised against recombinant Aedes aegypti V-ATPase B subunit indicated that the majority of V-ATPase-overexpressing cells in Ae. aegypti and Anopheles gambiae are localized at the posterior part of the posterior midgut. We propose that the typical distribution of oocysts on the mosquito midgut is attributable to the presence and the spatial distribution of the V-ATPase-overexpressing cells in the midgut epithelium.  相似文献   

20.
Although mosquito genome projects uncovered orthologues of many known developmental regulatory genes, extremely little is known about the development of vector mosquitoes. Here, we investigate the role of the Netrin receptor frazzled (fra) during embryonic nerve cord development of two vector mosquito species. Fra expression is detected in neurons just prior to and during axonogenesis in the embryonic ventral nerve cord of Aedes aegypti (dengue vector) and Anopheles gambiae (malaria vector). Analysis of fra function was investigated through siRNA-mediated knockdown in Ae. aegypti embryos. Confirmation of fra knockdown, which was maintained throughout embryogenesis, indicated that microinjection of siRNA is an effective method for studying gene function in Ae. aegypti embryos. Loss of fra during Ae. aegypti development results in thin and missing commissural axons. These defects are qualitatively similar to those observed in Dr. melanogaster fra null mutants. However, the Aa. aegypti knockdown phenotype is stronger and bears resemblance to the Drosophila commissureless mutant phenotype. The results of this investigation, the first targeted knockdown of a gene during vector mosquito embryogenesis, suggest that although Fra plays a critical role during development of the Ae. aegypti ventral nerve cord, mechanisms regulating embryonic commissural axon guidance have evolved in distantly related insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号