首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 216 毫秒
1.
痘病毒ANK/F-box蛋白的生物学特性及泛素化相关功能   总被引:1,自引:0,他引:1  
陈轶霞  龙玲  王明明 《病毒学报》2017,33(4):631-637
锚蛋白重复序列(ANK)和F-box结构域蛋白是痘病毒编码的大分子蛋白家族之一,大小在400~650个氨基酸之间,其N-末端有5~10个ANK重复序列,C-末端包含与F-box结构域相类似的保守序列,具有将底物募集到细胞SCF泛素连接酶复合物上的功能。研究表明,痘病毒的大多数ANK/F-box蛋白能够与Skp1、Cul1相互作用,靶向细胞的SCF1复合物。抑制NF-κB信号通路是这些蛋白的一个重要功能。此文着重阐述了痘病毒ANK/Fbox蛋白的特征以及泛素化相关功能的研究概况。  相似文献   

2.
G蛋白偶联受体(G protein-coupled receptor,GPCR)家族蛋白在细胞感受各种胞外信号过程中发挥重要作用。Ste2是酵母细胞中GPCR蛋白之一。大量文献报道了Ste2蛋白突变体对其功能和表达的影响,但关于Ste2亚细胞定位的研究相对较少。这项工作的目的在于确定Ste2亚细胞定位,探究Ste2不同跨膜域、胞内外环状结构域和N端、C端对其亚细胞定位的影响。构建了一系列结构域删除或替换突变体,通过荧光显微镜观察判断不同结构区域对Ste2亚细胞定位的影响,并通过与已知的细胞器标记蛋白共定位观察验证亚细胞定位判读结果。结果显示:野生型Ste2荧光信号出现在质膜和液泡内腔; C端缺失突变体荧光信号出现在质膜和内质网。在N端、C端、各环状结构域序列采用动物GPCR蛋白ORI7、OR17-40相应结构域替换的突变体中,C端替换导致液泡内腔信号消失,质膜信号强于野生型; N端和部分环状结构域替换不同程度减弱或消除了质膜定位,液泡腔内信号类似于野生型;部分突变体在胞内出现点状分布的荧光信号。由此推断:Ste2 N端,第一、第二胞外环状结构域和第三胞内环状结构域可能具有影响Ste2运输定位到质膜的功能;而C端则可能在Ste2离开细胞膜进入液泡的过程中发挥作用。初步确定了Ste2的不同结构区域对其定位的影响,为深入研究GPCR蛋白的亚细胞定位机制奠定基础。  相似文献   

3.
α辅肌动蛋白的结构和功能   总被引:5,自引:0,他引:5  
α辅肌动蛋白是近年来在细胞骨架与细胞运动研究中的热点蛋白 .目前发现有α辅肌动蛋白 1、2、3和 4四种类型 ,呈细胞或组织特异性分布 .这四种蛋白的共同结构特征是在细胞内均为反向平行的二聚体 ,并具有N末端肌动蛋白结合结构域 (ABD)、血影蛋白样中央重复结构域和C末端“EF手”结构域 .作为细胞骨架中一种重要的肌动蛋白交联蛋白 ,α辅肌动蛋白通过与其相关蛋白包括整合素 (integrins)、钙粘素 (cadherin)以及细胞信号传导通路中的信号分子等的协同作用 ,在稳定细胞粘附、调节细胞形状及细胞运动中发挥着重要作用 .因此 ,肿瘤的发生、发展和恶化与α辅肌动蛋白的结构、功能密切相关 .本文结合本实验室的研究工作 ,综述了α辅肌动蛋白家族成员的结构、功能及其与肿瘤发生的相关性 .  相似文献   

4.
α输入蛋白存在于胞质溶胶中,是核孔转运复合体的重要组成部分,与核定位信号结合,通过受体介导蛋白物质转入和转出,在此过程中起连接器的作用。该研究以千里光全长c DNA文库为基础,对α输入蛋白的序列、结构、性质和功能进行了分析,并在千里光α输入蛋白核苷酸序列的基础上,采用生物信息学软件,分析α输入蛋白的氨基酸序列结构和基因进化树,得到了α输入蛋白的一级、二级、三级等结构和结构域特征,以此为依据,系统分析千里光α输入蛋白的理化性质、结构和功能。结果表明:千里光α输入蛋白基因编码529个氨基酸,与烟草(Gen Bank登录号:ABM05487.1)的同源性最高,为84%;蛋白质分子量58.46 k Da,理论等电点5.08;二级结构由α螺旋、无规则卷曲和延伸主链构成;高级结构域由IBB和ARM结构构成;三级结构是4个功能结构域构成的空间立体结构。此外,还发现千里光α输入蛋白具有调控激素反应、传输信号、细胞生长、信息转录和转录调控功能的概率较高,推测可能与细胞非凋亡性死亡、抗病性防御反应、激素受体反应以及基因转录调控表达密切相关。该研究结果可为其他物种α输入蛋白结构与功能关系的分析提供参考。  相似文献   

5.
神经轴突生长抑制因子Nogo 家族的研究进展*   总被引:1,自引:0,他引:1       下载免费PDF全文
Nogo家族是一类神经轴突生长抑制因子家族,目前成员包括Nogo-A,Nogo-B,Nogo-C三个亚型。Nogo家族成员因C末端具有保守的RHD结构域而归属于RTNs家族,表明它们的分布和功能与内质网密切相关。Nogo家族C末端还具有一个进化保守的66氨基酸的功能段称为Nogo-66,体外表达的Nogo-66片段具有抑制神经突生长的作用。Nogo家族成员结构上的区别主要表现在不同剪切长短的N末端序列。Nogo-A主要在中枢和外周神经系统中广泛分布,Nogo-C主要分布在骨骼肌,而Nogo-B则几乎遍布于各种组织与细胞之中。目前,发现可介导Nogo胞内信号转导通路的受体主要是膜外糖蛋白偶联的NgR和跨膜受体p75NTR组成的共受体,但NgR与Nogo-A在胚胎发育中时空表达并不同步提示可能还有其它受体存在。虽然Nogo家族作为神经轴突生长抑制因子被发现,但越来越多的研究表明其可能在胚胎发育、细胞凋亡或神经退行性变等重大事件中扮演重要角色。本文拟就Nogo家族迄今为止突出的研究进展作一综述,旨在为下一步的功能研究工作提供理论参考和依据。  相似文献   

6.
细胞膜蛋白与细胞骨架蛋白相互作用研究进展   总被引:1,自引:0,他引:1  
细胞膜蛋白与胞浆骨架蛋白的相互作用对于维持细胞正常形态 ,细胞粘附与信号传导有重要作用。含有 4 .1 JEF结构域的蛋白 4 .1超家族与含有PDZ结构域的MAGUK蛋白家族能结合多种膜蛋白胞内区与胞浆蛋白 ,在膜蛋白与胞浆蛋白之间建立联系 ,对于细胞、细胞 -细胞间连接的正常结构与功能的维持有着重要作用。  相似文献   

7.
细胞膜蛋白与细胞骨架蛋白相互作用研究进展   总被引:1,自引:0,他引:1  
细胞膜蛋白与胞浆骨架蛋白的相互作用对于维持细胞正常形态,细胞粘附与信号传导有重要作用,含有4.1/JEF结构域的蛋白4.1超家族与含有PDZ结构域的MAGUK蛋白家族能结合多种膜蛋白胞内区与胞浆蛋白,在膜蛋白与胞浆蛋白之间建立联系,对于细胞、细胞-细胞间连接的正常结构与功能的维持有着重要作用。  相似文献   

8.
SUN(Sad-1,UNC-84)结构域家族蛋白是一种广泛分布于酵母、线虫等真核生物的膜蛋白,主要定位于细胞核膜以及内质网。由于在酵母中发现Sad-1突变后的表型与线虫中UNC-84突变的表型一致,并且两者C-端有近一半的同源相似性,因此得名SUN结构域,其家族成员也都具有SUN结构域。根据SUN结构域所在家族成员中蛋白质一级序列位置的不同,分为经典及非经典家族蛋白,经典的家族蛋白一般通过与KASH(Klarsicht、ANC-1、Syne homology)蛋白相互作用行使功能。越来越多的研究结果表明,SUN蛋白可能参与核膜锚定、核膜重塑、细胞迁移和DNA损伤修复等过程,其形成的复合体与人类进行性肌营养不良等疾病的发生发展也有紧密联系。该文就SUN家族各成员蛋白的结构特性以及功能特点的研究进展进行简要综述。  相似文献   

9.
为对家蝇Prohibitin蛋白序列进行生物信息学分析,从而为该基因功能研究奠定基础。利用在线分析程序和相关工具软件分析Prohibitin蛋白的理化性质、结构域、并预测其空间结构和功能。结果表明家蝇Prohibitin蛋白由277个氨基酸组成,分子量为30.54 k Da,理论等电点为5.26,为稳定蛋白,有跨膜区,但不含信号肽,该蛋白属于PHB保守结构域家族,亚细胞定位于细胞质,二级结构以α-螺旋为主。蛋白同源性比对结果显示,昆虫中的Prohibitin蛋白具有较高的同源性。这些分析结果可为今后深入研究该蛋白的结构特征和功能提供参考。  相似文献   

10.
包含SPX结构域的蛋白在高等真核生物中广泛存在,这类蛋白的功能多数还不太清晰,但发现有些与磷信号相关,有些与铁信号相关。拟南芥中含有SPX结构域的蛋白可分为4个家族,本研究中的拟南芥SPX1(At SPX1)属于一个只含有SPX结构域的蛋白组成的家族,其它家族成员还包含额外的基因序列。进化树分析表明,At SPX1编码的氨基酸序列与双子叶植物具有较高的一致性,与单子叶植物进化距离较远。为了揭示At SPX1蛋白的结构形态与其生物学功能之间的联系,开展了At SPX1蛋白质体外可溶性表达实验,构建了原核体外表达载体,在大肠杆菌(E.coli)细胞中获得了该蛋白可溶性高表达。表达的蛋白包含有His标签方便了蛋白纯化,插入的SUMO融合蛋白标签可以通过蛋白酶切除,而目标蛋白通过硫酸铵沉淀实现了纯化。进一步分子筛层析分析表明At SPX1以单体形式存在。实验结果提供了一套表达纯化At SPX1蛋白的有效方案。  相似文献   

11.
Alvarez E  Zhou W  Witta SE  Freed CR 《Gene》2005,357(1):18-28
To better understand the development of ventral mesencephalic dopamine neurons, we performed subtractive hybridization screens to find ventral mesencephalic genes expressed at rat embryonic day 10 when these neurons begin to differentiate. The most commonly identified genes in these screens were members of the Bex (Brain expressed X-linked) gene family, rat Bex1 (Rex3), and a novel gene, rat Bex4. After identifying these genes, we then sought to characterize the Bex gene family. Two additional novel Bex genes (human Bex5 and mouse Bex6) were discovered through genomic databases. Bex5 is present in humans and monkeys, but not rodents, while Bex6 exists in mice, but not humans. Bex4 and Bex5 are localized to the X chromosome, are expressed in brain, and are similar in sequence. Bex4 and Bex5 are 54% and 56% identical to human Bex3 (pHGR74, NADE). Mouse Bex6 is on chromosome 16 and is 67% identical to mouse Bex4. Human Bex gene expression was studied with tissue expression arrays probed with specific oligonucleotides. Human Bex1 and Bex2 have similar expression patterns in the central nervous system with high levels in pituitary, cerebellum, and temporal lobe, and Bex1 is widely expressed outside of the central nervous system with high expression in the liver. Human Bex4 is highly expressed in heart, skeletal muscle, and liver, while Bex3 and Bex5 are more widely expressed. The subcellular localization of the Bex proteins varies from nuclear (rat Bex1) to cytoplasmic (rat Bex3, human Bex5, and mouse Bex6) and to both nuclear and cytoplasmic (rat Bex2 and rat Bex4). Rat Bex3, rat Bex4, human Bex5, and mouse Bex6 are degraded by the proteasome, while rat Bex1 or Bex2 are not. Rat Bex3 protein can likely bind transition metals through a histidine-rich domain. Because this gene family was originally named Bex and because these genes are unified by sequence similarity and gene structure, we believe the Bex nomenclature should prevail over nomenclature based on function (NADE) that has not been extended to the other Bex genes. We conclude that the Bex gene family members are highly homologous but differ in their expression patterns, subcellular localization, and degradation by the proteasome.  相似文献   

12.
Identification of genes specifically expressed in stem/progenitor cells is an important issue in developmental and stem cell biology. Genome-wide gene expression analyses in liver cells performed in this study have revealed a strong expression of X-linked genes that include members of the brain-expressed X-linked (Bex) gene family in stem/progenitor cells. Bex family genes are expressed abundantly in the neural cells and have been suggested to play important roles in the development of nervous tissues. However, the physiological role of its individual members and the precise expression pattern outside the nervous system remain largely unknown. Here, we focused on Bex2 and examined its role and expression pattern by generating knock-in mice; the enhanced green fluorescence protein (EGFP) was inserted into the Bex2 locus. Bex2-deficient mice were viable and fertile under laboratory growth conditions showing no obvious phenotypic abnormalities. Through an immunohistochemical analysis and flow cytometry-based approach, we observed unique EGFP reporter expression patterns in endocrine and stem/progenitor cells of the liver, pyloric stomach, and hematopoietic system. Although Bex2 seems to play redundant roles in vivo, these results suggest the significance and potential applications of Bex2 in studies of endocrine and stem/progenitor cells.  相似文献   

13.
14.
Kim AJ  Lee CS  Schlessinger D 《Gene》2004,343(1):79-89
Bex3 expression and possible function in growth control were studied. It was expressed in a limited number of organs, including gonads and hippocampal regions of the brain. Visualized by deconvolution microscopy as a GFP-fusion protein in F9 teratocarcinoma cells, Bex3 localized, along with concentrations of actin, at perinuclear mitochondria that were undergoing active DNA replication. Bex3 association with mitochondria required a nuclear export signal (NES) and the C-terminal four amino acids (CaaX box), and siRNA reduction of Bex3 levels led to slow or negligible growth rates of the F9 cells. Thus, Bex3 may be required in target tissues for mitochondrial function at a distinct phase of the cellular growth cycle.  相似文献   

15.
16.
The Bex1/Rex3 gene was recently identified as an X-linked gene that is differentially expressed between parthenogenetic and normal fertilized, preimplantation stage mouse embryos. The Bex1/Rex3 gene appears to be expressed preferentially from the maternal X chromosome in blastocysts, but from either X chromosome in later stage embryonic tissues and adult tissues. To investigate whether differential expression of the Bex1/Rex3 gene between normal and parthenogenetic blastocyst stage embryos reflects genomic imprinting at the Bex1/Rex3 locus itself, or instead is the result of preferential inactivation of the paternal X chromosome or differences in timing of cellular differentiation, we examined in detail the expression pattern of the Bex1/Rex3 mRNA in normal preimplantation stage embryos, and compared its expression between androgenetic, gynogenetic, and normal fertilized embryos. Expression data reveal that the Bex1/Rex3 gene is initially transcribed at the 2-cell stage, transiently induced at the 8-cell stage, and then increases in expression again at the blastocyst stage. Very little expression is observed in isolated inner cell masses, indicating selective expression in the trophectoderm. Comparisons of Bex1/Rex3 mRNA expression between male and female androgenetic and control embryos and gynogenetic embros failed to reveal any significant difference in expression between the different classes of embryos at the 8-cell stage, or the expanding blastocyst stage (121 hr post-hCG). At the late blastocyst stage (141 hr post-hCG), expression was significantly lower in XY control embryos as compared with XX controls. Bex1/Rex3 mRNA expression did not differ between XX and XY androgenones at the blastocyst stage or between gynogenones and XX control embryos. Thus, the Bex1/Rex3 gene does not appear to be regulated directly by genomic imprinting during the preimplantation period, just as it is not regulated by imprinting at later stages. Apparent differences in gene expression may arise through the effects of trophectoderm-specific expression coupled with differences in timing of trophectoderm differentiation between the different classes of embryos and effects of preferential paternal X chromosome inactivation (XCI).  相似文献   

17.
Olfactory marker protein (OMP) expression is a hallmark of mature vertebrate olfactory receptor neurons (ORNs). Evidence for OMP function derives from altered behavioral and electrophysiological activities of OMP-KO mice. The molecular basis for the altered phenotype following the deletion of OMP is still unclear. Recent structural studies predict the involvement of OMP in protein-protein interaction. Here we report the identification of an OMP partner, Bex2, by phage-display screening of an olfactory mucosal cDNA-library. In situ hybridization demonstrates cellular co-localization of OMP mRNA with mRNAs for Bex1, Bex2, and Bex3 in ORNs of olfactory tissue of the mouse. The OMP/Bex interaction has been confirmed by demonstrating the chemical cross-linking of recombinant rat OMP with a synthetic peptide derived from the Bex amino acid sequence. The subcellular localization of Bex and OMP proteins was evaluated in transfected HEK293 cells. Bex is visualized in the nucleus and cytoplasm. Following co-transfection we observed the unexpected presence of some OMP in the nucleus along with Bex. Together, these data argue convincingly that we have identified Bex as an OMP partner whose further characterization will provide insight to the role of OMP and to the mechanism of the OMP/Bex interaction in ORN differentiation and function.  相似文献   

18.
Olfactory marker protein (OMP) participates in the olfactory signal transduction pathway. This is evident from the behavioral and electrophysiological deficits of OMP-null mice, which can be reversed by intranasal infection of olfactory sensory neurons with an OMP-expressing adenovirus. Bex, brain expressed X-linked protein, has been identified as a protein that interacts with OMP. We have now further characterized the interaction of OMP and Bex1/2 by in vitro binding assays and by immuno-coprecipitation experiments. OMP is a 19 kDa protein but these immunoprecipitation studies have revealed the unexpected presence of a 38 kDa band in addition to the expected 19 kDa band. Furthermore, the 38 kDa form was preferentially co-immunoprecipitated with Bex from cell extracts. In-gel tryptic digestion, mass spectrometry, and two-dimensional gel electrophoresis indicate that the 38 kDa protein behaves as a covalently cross-linked OMP-homodimer. The 38 kDa band was also identified in western blots of olfactory epithelium demonstrating its presence in vivo. The stabilities and subcellular localizations of the OMP-monomer and -dimer were studied in transfected cells. These results demonstrated that the OMP-dimer is much less stable than the monomer, and that while the monomer is present both in the nuclear and cytosolic compartments, the dimer is preferentially located in a Triton X-100 insoluble cytoskeletal fraction. These novel observations led us to hypothesize that regulation of the level of the rapidly turning-over OMP-dimer and its interaction with Bex1/2 is critical for OMP function in sensory transduction.  相似文献   

19.
A screening for intracellular interactors of the p75 neurotrophin receptor (p75NTR) identified brain-expressed X-linked 1 (Bex1), a small adaptor-like protein of unknown function. Bex1 levels oscillated during the cell cycle, and preventing the normal cycling and downregulation of Bex1 in PC12 cells sustained cell proliferation under conditions of growth arrest, and inhibited neuronal differentiation in response to nerve growth factor (NGF). Neuronal differentiation of precursors isolated from the brain subventricular zone was also reduced by ectopic Bex1. In PC12 cells, Bex1 overexpression inhibited the induction of NF-kappaB activity by NGF without affecting activation of Erk1/2 and AKT, while Bex1 knockdown accelerated neuronal differentiation and potentiated NF-kappaB activity in response to NGF. Bex1 competed with RIP2 for binding to the p75NTR intracellular domain, and elevating RIP2 levels restored the ability of cells overexpressing Bex1 to differentiate in response to NGF. Together, these data establish Bex1 as a novel link between neurotrophin signaling, the cell cycle, and neuronal differentiation, and suggest that Bex1 may function by coordinating internal cellular states with the ability of cells to respond to external signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号