首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the presence of a nonlethal concentration of Cu(II), washed Escherichia coli ATCC11775 cells were killed by (-)-epigallocatechin (EGC) and (-)-epicatechin (EC). Cell killing was accompanied by a depletion in both the ATP and potassium pools of the cells, but the DNA double strand was not broken, indicating that the bactericidal activity of catechins in the presence of Cu(II) results from damage to the cytoplasmic membrane. Induction of endogenous catalase in E. coli cells increased their resistance to being killed by the combination of catechins and Cu(II). In all cases studied, EGC and EC with Cu(II) were found to generate hydrogen peroxide, but its concentration was too low to account for the bactericidal activity. The bactericidal activity of EGC in the presence of Cu(II) was completely suppressed by ethylenediaminetetraacetate, bathocuproine, catalase, superoxide disumutase (SOD), heated catalase, and heated SOD, but not by dimethyl sulfoxide. When catalase, either heated or unheated, was added to the cells incubated with EGC in the presence of Cu(II), it completely inhibited further killing of the cells. These findings suggest that recycling redox reactions between Cu(II) and Cu(I), involving catechins and hydrogen peroxide on the cell surface, must be important in the mechanism of the killing.  相似文献   

2.
In the presence of a nonlethal concentration of Cu(II), washed Escherichia coli ATCC8739 cells were killed by a novel tripyrrole 1, isolated as a red pigment from the Serratia sp. Cell killing was accompanied by a depletion in the potassium pools of the cells due to the damage to the cytoplasmic membrane, without any detectable DNA damage as revealed by the transformed plasmid DNA and phage induction assay. This revealed that the bactericidal activity of compound 1 in the presence of Cu(II) results from membrane damage. Induction of endogenous catalase in the E. coli cells increased their resistance against the combination of compound 1 and Cu(II). Although compound 1 alone generated large amount of reactive oxygen species (ROS), it did not show any cell killing against E. coli in the absence of Cu(II). The Cu(II)-dependent bactericidal activity of compound 1 was suppressed by ethylenediaminetetraacetate, bathocuproine, catalase and superoxide disumutase (SOD), but not by dimethyl sulfoxide. These findings suggest that recycling redox reactions between Cu(II) and Cu(I), involving compound 1 and hydrogen peroxide on the cell surface, must be important in the mechanism of the killing. Compound 1 alone showed selective bactericidal activity against the gram positive bacterium, Bacillus cereus ATCC 6630, possibly due to its differential cellular transport.  相似文献   

3.
《Free radical research》2013,47(1):479-488
Washed or growing E. coli cells are killed by epinephrine, norepinephrine or dopamine in the presence of non lethal concentrations of Cu(II). Killing is enhanced by anoxia and by sublethal Concentrations of H2O1. The rate of killing is proportional to the rate of catecholamine oxidation. The copper epinephrine complex binds to E. coli cells, induces membrane damage and depletion of the cellular ATP pool. The cells may be partially protected by SOD or catalase but not by OH radical scavengers. Addition of H2O2 to cells which were sensitized by preincubation with the epinephrine-copper complex, causes rapid killing and DNA degradation. Sensitized cells are not protected by BSA.  相似文献   

4.
Both components of the polyamine oxidase (PAO)-polyamine system are known to be present in phagocytes and have thus been postulated to contribute to the antimicrobial activity of these cells. Therefore, the effects of the PAO-polyamine system on three medically important opportunistic fungi were examined. Yeasts of Cryptococcus neoformans, but not Candida albicans blastoconidia or Aspergillus fumigatus conidia, were efficiently killed by the system. Two putative end products of the system, hydrogen peroxide and acrolein, both killed C. neoformans at concentrations attainable with the whole system. However, catalase failed to inhibit activity of the whole system, making hydrogen peroxide an unlikely mediator of killing. Although C. albicans blastoconidia and A. fumigatus conidia were not killed by the PAO-polyamine system, germ tube formation by the former, and hyphal growth by the latter, were markedly inhibited. These data establish that the PAO-polyamine system possesses antifungal activity.  相似文献   

5.
A spin-trapping method was applied to examine the formation of the hydroxyl (OH) radical from a tea catechin-Cu(II) system to elucidate a previous result that some tea catechin-Cu(II) systems induced DNA scission. Three tea catechins, (-)-epigallocatechin (EGC), (-)-epigallocatechin gallate (EGCg) and (-)-epicatechin (EC), were used. The spin-trapping agent, 5,5'-dimethyl-pyrroline-1-oxide (DMPO), was dissolved in a pH 9 phosphate buffer solution, then a catechin and Cu(II) were added in that order, and the ESR spectral change was monitored for one hour. The order of adding the catechin and Cu(II) was then reversed, and the ESR spectral change was again monitored to examine the coordinating activity of each catechin toward the Cu(II) ion and the effect on OH radical generation. The intensity changes of the spin adducts, DMPO-OH, DMPO-CH3 and DMPO-H, were analyzed, the results suggesting that the OH radical generated in the system decomposed DMPO, resulting in the formation of DMPO-CH3 and DMPO-H. The results show that EGC formed a stable complex with Cu(II) and generated the OH radical. EGCg seemed to have this activity, but the OH radical that was generated was scavenged by the gallate group existing in the complex. EC did not show strong coordinating and OH-generating activities. These characteristics of the three catechins are consistent with the results shown for DNA scission.  相似文献   

6.
The ability of various tea catechins to generate H2O2 and the hydroxyl radical in the presence of the Cu2+ ion was investigated and compared with the effect of iron ions. The presence of Cu2+ accelerated the generation of H2O2 by EGC, while EGCg with Cu2+ generated a little H2O2. The presence of iron ions inhibited the generation of H2O2 by EGC. EGC and EC with Cu2+ generated the hydroxyl radical, while EGCg and ECg with Cu2+ did not. The fact that EGCg showed less prooxidative activity than EGC can be explained by the chelating ability of catechin gallates to metal ions under the experimental conditions.  相似文献   

7.
The possible involvement of metal ions and free radicals in the cytotoxic mechanism of Adriamycin (ADR) was investigated, using a model system ofEscherichia coli cells. It is shown thatE. coli mediated the production of free radicals under anaerobic (ADR-semiquinone) and aerobic (superoxide) conditions. ADR-induced loss of colony-forming ability was enhanced by the addition of iron (Fe) chelates. These observations suggested that a Fenton-type free radical mechanism was responsible for ADR toxicity. However, the mortality rate was essentially unchanged by the exclusion of oxygen. It was also unaffected by the addition of H2O2, catalase, or chelating agents. Cu(II), Zn(II) or Mg(II) had no effect on ADR toxicity. ADR and iron chelates did not induce measurable amounts of DNA strand-breaks. These observations suggest a mechanism of ADR-induced cell killing that is enhanced by Fe chelates, but does not directly involve oxygen-derived free radicals.  相似文献   

8.
Drought and heat stress have been studied extensively in plants, but most reports involve analysis of response to only one of these stresses. Studies in which both stresses were studied in combination have less commonly been reported. We report the combined effect of drought and heat stress on Photosystem II (PSII) of Lotus japonicus cv. Gifu plants. Photochemistry of PSII was not affected by drought or heat stress alone, but the two stresses together decreased PSII activity as determined by fluorescence emission. Heat stress alone resulted in degradation of D1 and CP47 proteins, and D2 protein was also degraded by combined drought–heat stress. None of these proteins were degraded by drought stress alone. Drought alone induced accumulation of hydrogen peroxide but the drought–heat combination led to an increase in superoxide levels and a decrease in hydrogen peroxide levels. Furthermore, combined drought–heat stress was correlated with an increase in oxidative damage as determined by increased levels of thiobarbituric acid reactive substances. Heat also induced degradation of chloroplast Cu/Zn superoxide dismutase (SOD: EC 1.15.1.1) as shown by reduced protein levels and isozyme‐specific SOD activity. Loss of Cu/Zn SOD and induction of catalase (CAT: EC 1.11.1.6) activity would explain the altered balance between hydrogen peroxide and superoxide in response to drought vs combined drought–heat stress. Degradation of PSII could thus be caused by the loss of components of chloroplast antioxidant defence systems and subsequent decreased function of PSII. A possible explanation for energy dissipation by L. japonicus under stress conditions is discussed.  相似文献   

9.
Some high-molecular weight antioxidant defense system components of two thermophilic bacteria isolated from spa waters of Serbia (Yugoslavia) and identified as Bacillus stearothermophilus and Thermothrix sp. were studied. In addition to superoxide dismutase (SOD; EC 1.15.1.1), qualitative analyses demonstrated the presence of catalase (EC 1.11.1.6), peroxidases and oxidases in both bacterial strains. Cell-free extracts were subjected to nondenaturing polyacrylamide gel electrophoresis (PAGE) and SOD activity in the eluates of the corresponding bands was examined in the presence of several specific inhibitors. A slight decrease of SOD activity observed in the presence of 0.3 M potassium cyanide and its complete insensitivity to hydrogen peroxide (5 mM) and sodium azide (20 mM) action suggest that the enzyme occurring in the two thermophiles represents Mn SOD. A high SOD activity recorded in cell-free extracts strongly recommends these two bacterial strains as potential producers of this important antioxidant defense system component at industrial scale.  相似文献   

10.
Germination of lupine (Lupinus luteus L.) seeds was accompanied by an increase in concentration of free radicals with g 1 and g 2 values of 2.0056 ± 0.0003 and 2.0033 ± 0.0005, respectively. The highest intensity of free radical signal was observed in embryo axes immediately after radicle protruded through the seed coat. Hydrogen peroxide accumulated in embryonic axes and cotyledons during imbibition before the onset of germination in the seed population. The activities of superoxide dismutase (SOD, EC 1.15.1.1) and catalase (CAT, EC 1.11.1.6) rose progressively in embryo axes. In cotyledons SOD activity did not change significantly, while that of CAT increased during germination. The enhancement of Cu, Zn-SODs and Mn-SOD isoforms in embryonic axes was observed. A new isoform of catalase was synthesized, suggesting that it plays a relevant role during germination. SOD and CAT activities were detected in dry seeds. Free radical generation and response of antioxidative enzymes differed between embryo axes and cotyledons during the germination timecourse.  相似文献   

11.
Washed or growing E. coli cells are killed by epinephrine, norepinephrine or dopamine in the presence of non lethal concentrations of Cu(II). Killing is enhanced by anoxia and by sublethal Concentrations of H2O1. The rate of killing is proportional to the rate of catecholamine oxidation. The copper epinephrine complex binds to E. coli cells, induces membrane damage and depletion of the cellular ATP pool. The cells may be partially protected by SOD or catalase but not by OH radical scavengers. Addition of H2O2 to cells which were sensitized by preincubation with the epinephrine-copper complex, causes rapid killing and DNA degradation. Sensitized cells are not protected by BSA.  相似文献   

12.
The DNA cleavage activities of (+)-catechin (C), (-)-epicatechin (EC), (-)-epigallocatechin (EGC), and (-)-epigallocatechin gallate (EGCg) were examined with 16 different metal ions. Cu(2+) with all the catechins facilitated DNA cleavage, while Ag+ with EGC and EC showed a strong repressive effect. The other metal ions examined showed little effect.  相似文献   

13.
Blood plasma was incubated with 50 mM AAPH [2, 2'-azobis-(2-amidinopropane) hydrochloride] in the absence or presence of catechins (5-100 microM). Lipid oxidation was evaluated by measuring the formation of 2-thiobarbituric acid reactive substances (TBARS). The concentration of alpha-tocopherol (AT), beta-carotene (BC), ascorbic acid (AA), and catechins was determined by reverse phase high performance liquid chromatography (HPLC) with electrochemical detection. All the assayed catechins inhibited plasma TBARS formation. Based on the calculated IC50, the order of effectiveness was: epicatechin gallate (ECG) > epigallocatechin gallate (EGCG) > epigallocatechin (EGC) > epicatechin (EC) > catechin (C). Catechins protected plasma AT and BC from AAPH-mediated oxidation. The order of effectiveness for AT protection was ECG > EGCG > EC = C > EGC; and for BC protection, the order was EGCG > ECG > EGC > > EC > C. The addition of catechins modified the kinetics of TBARS formation and AT depletion, but the rate of AA depletion was not affected. Catechin oxidation did not start until the complete depletion of AA, and it preceded AT depletion. These results indicate that catechins are effective antioxidants in human blood plasma, delaying the lipid oxidation and depletion of endogenous lipid-soluble antioxidants (AT and BC).  相似文献   

14.
To investigate the role of catalase and superoxide dismutase (SOD) in the acetic acid (AA) induced yeast programmed cell death (AA-PCD), we compared Saccharomyces cerevisiae cells (C-Y) and cells individually over-expressing catalase T (CTT1-Y) and Cu,Zn-SOD (SOD1-Y) with respect to cell survival, hydrogen peroxide (H2O2) levels and enzyme activity as measured up to 200 min after AA treatment. AA-PCD does not occur in CTT1-Y, where H2O2 levels were lower than in C-Y and the over-expressed catalase activity decreased with time. In SOD1-Y, AA-PCD was exacerbated; high H2O2 levels were found, SOD activity increased early, remaining constant en route to AA-PCD, but catalase activity was strongly reduced.  相似文献   

15.
A. R. McEuen  H. A. O. Hill 《Planta》1982,154(4):295-297
The possible involvement of superoxide and hydrogen peroxide in the oxidative gelling of phloem exudate from Cucurbita pepo. was investigated. Neither superoxide dismutase (EC 1.15.1.1) nor catalase (EC 1.11.1.6) inhibited the reaction. Although catalase could not be detected in exudate, both peroxidase (EC. 1.11.1.7) and superoxide dismutase were present in reasonable amounts. Polyacrylamide gel electrophoresis revealed one major and one minor isozyme of superoxide dismutase, both of which were adjudged to contain copper and zinc as their prosthetic metals, on the basis of cyanide inhibition and molecular weight.Abbreviations SOD superoxide dismutase  相似文献   

16.
Tea catechins inhibited TBARS accumulation in HepG2 cells, the order of effectiveness being (-)-epigallocatechin gallate (EGCG) > (-)-epigallocatechin (EGC) > or = (-)-epicatechin gallate (ECG) > (-)-epicatechin (EC). EGCG and EGC protected the depletion of alpha-tocopherol in the cells, and the glutathione content was enhanced by all four catechins. Moreover, all four catechins suppressed the formation of glutathione disulfide and the activation of glutathione peroxidase induced by tert-butylated hydroperoxide.  相似文献   

17.
The effect of hydrogen peroxide on the survival and activity of antioxidant and associated enzymes in Saccharomyces cerevisiae has been studied. A difference found in the response of wild-type yeast strains treated with hydrogen peroxide was probably related to the different protective effects of antioxidant enzymes in these strains. Exposure of wild-type YPH250 cells to 0.25 mM H2O2 for 30 min increased activities of catalase and superoxide dismutase (SOD) by 3.4-and 2-fold, respectively. However, no activation of catalase in the EG103 strain, as well as of SOD in the YPH98 and EG103 wild strains was detected, which was in parallel to lower survival of these strains under oxidative stress. There is a strong positive correlation (R 2 = 0.95) between activities of catalase and SOD in YPH250 cells treated with different concentrations of hydrogen peroxide. It is conceivable that catalase would protect SOD against inactivation caused by oxidative stress and vice versa. Finally, yeast cell treatment with hydrogen peroxide can lead to either a H2O2-induced increase in activities of antioxidant and associated enzymes or their decrease depending on the H2O2 concentration used or the yeast strain specificity. Published in Russion in Biokhimiya, 2006, Vol. 71, No. 9, pp. 1243–1252.  相似文献   

18.
Tewari RK  Kumar P  Sharma PN 《Planta》2006,223(6):1145-1153
The aim of the study was to implicate the generation of reactive oxygen species (ROS) and altered cellular redox environment with the effects of Cu-deficiency or Cu-excess in mulberry (Morus alba L.) cv. Kanva 2 plants. A study of antioxidative responses, indicators of oxidative damage and cellular redox environment in Cu-deficient or Cu-excess mulberry plants was undertaken. While the young leaves of plants supplied with nil Cu showed chlorosis and necrotic scorching of laminae, the older and middle leaves of plants supplied with nil or 0.1 μM Cu showed purplish-brown pigmented interveinal areas that later turned necrotic along the apices and margins of leaves. The Cu-excess plants showed accelerated senescence of the older leaves. The Cu-deficient plants showed accumulation of hydrogen peroxide and superoxide anion radical. The accumulation of hydrogen peroxide was strikingly intense in the middle portion of trichomes on Cu-deficient leaves. Though the concentration of total ascorbate increased with the increasing supply of Cu, the ratio of the redox couple (DHA/ascorbic acid) increased in Cu-deficient or Cu-excess plants. The activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), peroxidase (EC 1.11.1.7), ascorbate peroxidase (EC 1.11.1.11) and glutathione reductase (EC 1.6.4.2) increased in both Cu-deficient and Cu-excess plants. The results suggest that deficiency of Cu aggravates oxidative stress through enhanced generation of ROS and disturbed redox couple. Excess of Cu damaged roots, accelerated the rate of senescence in the older leaves, induced antioxidant responses and disturbed the cellular redox environment in the young leaves of mulberry plants.  相似文献   

19.
In Escherichia coli, Vitreoscilla hemoglobin (VHb) protects against oxidative stress, perhaps, in part, by oxidizing OxyR. Here this protection, specifically VHb-associated effects on superoxide dismutase (SOD) and catalase levels, was examined. Exponential or stationary phase cultures of SOD+ or SOD E. coli strains with or without VHb and oxyR antisense were treated with 2 mM hydrogen peroxide without sublethal peroxide induction, and compared to untreated control cultures. The hydrogen peroxide treatment was toxic to both SOD+ and SOD cells, but much more to SOD cells; expression of VHb in SOD+ strains enhanced this toxicity. In contrast, the presence of VHb was generally associated in the SOD+ background with a modest increase in SOD activity that was not greatly affected by oxyR antisense or peroxide treatment. In both SOD+ and SOD backgrounds, VHb was associated with higher catalase activity both in the presence and absence of peroxide. Contrary to its stimulatory effects in stationary phase, in exponential phase oxyR antisense generally decreased VHb levels.  相似文献   

20.
Fourteen different broth media were autoclaved under anaerobic conditions and then exposed to atmospheric oxygen. The hydrogen peroxide and superoxide radical formation as well as the bactericidal effect of the media were studied. The rate of killing of Peptostreptococcus anaerobius VPI 4330-1 was high in media that rapidly autoxidized and accumulated hydrogen peroxide. In actinomyces broth (BBL), 50% of the cells were killed within 2 min, and in Brewer thioglycolate medium (Difco), 50% were killed within 11 min, whereas more than 50% of the cells survived for more than 2 h in Clausen medium (Oxoid), fluid thioglycolate medium (BBL), and thioglycolate medium without dextrose or indicator (Difco). Only media that contained phosphate and glucose had a tendency to accumulate hydrogen peroxide. A solution of phosphate and glucose autoxidized when it had been heated to 120 degrees C for at least 5 min and when the pH of the solution was higher than 6.5. Transitional metal ions catalyzed the autoxidation, but they were not necessary for the reaction to occur. Of the other substances heated in phosphate buffer, only alpha-hydroxycarbonyl compounds autoxidized with accumulation of hydrogen peroxide. Superoxide dismutase decreased the autoxidation rate of most of the broth media. This indicated that superoxide radicals were generated in these media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号