首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The induction of micronuclei (MN) in mitotically active cells has been widely used and promoted as a biological marker of exposure to environmental toxins. In our study the effect of zinc on cadmium genotoxicity was investigated in V 79 cells. The results indicate that cadmium chloride exposure for 24 h increased micronucleus frequency and the percentage of binucleated cells in dose-dependent manner. At the highest concentration of cadmium (50 microM Cd) 23 MN were found in 1000 cells. The protective effect of zinc on cadmium genotoxicity was investigated at lower concentrations (5-25 microM CdCl2). At 50 microM Cd, the number of MN increased significantly (16 MN).  相似文献   

2.
Acetaldehyde (AA) is known to induce DNA-protein cross-links (DPX) and other genotoxic and mutagenic effects in cultured mammalian cells. Compared to formaldehyde (FA), AA is a very weak inducer of DPX and increased DPX levels are only measured at high, cytotoxic concentrations by different methods. Besides DPX, AA also induces DNA-DNA cross-links. Because the comet assay is increasingly used for the detection of cross-linking agents, we characterized the effects of AA in the comet assay in relation to cytotoxicity and other genetic endpoints such as the induction of sister chromatid exchange (SCE) and micronuclei (MN). The standard alkaline comet assay did not indicate induction of DNA strand-breaks by AA in a range of concentrations from 0.2 to 20 mM. AA at a concentration of 20 mM was clearly cytotoxic and reduced cell growth and population doubling to less than 50% of the control. Using the comet assay modification with proteinase K, slightly enhanced DNA migration was measured in comparison to treatment with AA only. No significant induction of cross-links by AA (measured as reduction of gamma ray-induced DNA migration) was determined by the comet assay. A small and reproducible but statistically not significant effect was measured for the AA concentration 20 mM. A clear and concentration-related increase in the frequency of sister chromatid exchange (SCE) and micronuclei (MN) was already measured at lower concentrations (0.2 and 0.5 mM, respectively). These results suggest that the comet assay has a low sensitivity for the detection of AA-induced DNA lesions leading to the induction of SCE and MN.  相似文献   

3.
Differentiation of micronuclei (MN) caused by ionizing radiation from those caused by chemicals is a crucial step for managing treatment of individuals exposed to radiation. MN in binucleated lymphocytes in peripheral blood are widely used as biomarkers for estimating dose of radiation, but they are not specific for ionizing radiation. MN induced by ionizing radiation originate predominantly as a result of chromosome breaks (clastogenic action), whereas MN caused by chemical agents are derived from the loss of entire chromosomes (aneugenic action). C-banding highlights centromeres, which might make it possible to distinguish radiation induced MN, i.e., as a byproduct of acentric fragments, from those caused by the loss of entire chromosomes. To test the use of C-banding for identifying radiation induced MN, a blood sample from a healthy donor was irradiated with 3 Gy of Co-60 gamma rays and cultured. Cells were harvested and dropped onto slides, divided into a group stained directly with Giemsa and another processed for C banding, then stained with Giemsa. The frequency of MN in 500 binucleated cells was scored for each method. In preparations stained with Giemsa directly, the MN appeared as uniformly stained structures, whereas after C banding, some MN exhibited darker regions corresponding to centromeres that indicated that they were not derived from acentric fragments. The C-banding technique enables differentiation of MN from acentric chromosomal material. This distinction is useful for improving the specificity of the MN assay as a biomarker for ionizing radiation.  相似文献   

4.
Genotoxic effects of occupational exposure to lead and cadmium   总被引:20,自引:0,他引:20  
This study was designed to assess genotoxic damage in somatic cells of workers in a Polish battery plant after high-level occupational exposure to lead (Pb) and cadmium (Cd), by use of the following techniques: the micronucleus (MN) assay, combined with in situ fluorescence hybridization (FISH) with pan-centromeric probes, analysis of sister chromatid exchanges (SCEs), and the comet assay. Blood samples from 44 workers exposed to lead, 22 exposed to cadmium, and 52 unexposed persons were used for SCE and MN analysis with 5'-bromodeoxyuridine (BrdU) or cytokinesis block, respectively. In parallel, the comet assay was performed with blood samples from the same persons for detection of DNA damage, including single-strand breaks (SSB) and alkali-labile sites (ALS). In workers exposed mostly to lead, blood Pb concentrations ranged from 282 to 655 microg/l, while the range in the controls was from 17 to 180 microg/l. Cd concentration in lead-exposed workers fell in the same range as for the controls. In workers exposed mainly to cadmium, blood Cd levels varied from 5.4 to 30.8 microg/l, with respective values for controls within the range of 0.2-5.7 microg/l. Pb concentrations were similar as for the controls. The incidence of MN in peripheral lymphocytes from workers exposed to Pb and Cd was over twice as high as in the controls (P<0.01). Using a combination of conventional scoring of MN and FISH with pan-centromeric probes, we assessed that this increase may have been due to clastogenic as well as aneugenic effects. In Cd- and Pb-exposed workers, the frequency of SCEs as well as the incidence of leukocytes with DNA fragmentation in lymphocytes were slightly, but significantly increased ( P<0.05) as compared with controls. After a 3h incubation of the cells to allow for DNA repair, a clear decrease was found in the level of DNA damage in the controls as well as in the exposed workers. No significant influence of smoking on genotoxic damage could be detected in metal-exposed cohorts. Our findings indicate that lead and cadmium induce clastogenic as well as aneugenic effects in peripheral lymphocytes, indicating a potential health risk for working populations with significant exposures to these heavy metals.  相似文献   

5.
Styrene is used in the production of plastics, resins and rubber. The highest human exposures to styrene take place by inhalation during the production of fiberglass reinforced plastics. Styrene is metabolized mainly in the liver to styrene-7,8-oxide (SO), its principal in vivo mutagenic metabolite. In this study, human peripheral white blood cells were exposed to several SO concentrations (10-200 microM) in order to evaluate its genotoxic properties by means of comet assay, sister-chromatid exchanges (SCE) and cytokinesis-blocked micronucleus (MN) test, in addition to determine its clastogenic or aneugenic properties by combining MN with fluorescence in situ hybridization (FISH) procedures. Our results show that SO induces DNA damage, SCE and MN in human leukocytes in vitro at concentrations above 50 microM, and that there is a strong relationship between DNA damage, as measured by the comet assay, and cytogenetic damage induced by SO at the doses employed. SO shows preferentially a clastogenic activity and produces a cytostatic effect at high doses, reflected by the significant decrease of the calculated proliferation indices. A good dose-effect relationship is obtained in the three tests performed at the concentration range assayed.  相似文献   

6.
Earthworms are useful indicators of soil quality and are widely used as model organisms in terrestrial ecotoxicology. The assessment of genotoxic effects caused by environmental pollutants is of great concern because of their relevance in carcinogenesis. In this work, the earthworm Eisenia andrei was exposed for 10 and 28 days to artificial standard soil contaminated with environmentally relevant concentrations of benzo[a]pyrene (B[a]P) (0.1, 10, 50ppm) and 2,3,7,8-tetrachloro-dibenzo-para-dioxin (TCDD) (1×10(-5), 1×10(-4), 2×10(-3)ppm). Micronucleus (MNi) induction was evaluated in earthworm coelomocytes after DNA staining with the fluorescent dye DAPI. In the same cells, the DNA damage was assessed by means of the alkaline comet assay. Induction of MNi in coelomocytes, identified according to standard criteria, was demonstrated. B[a]P exposure for 10 and 28 days induced a significant increase in MNi frequency. In TCDD-treated earthworms, a significant effect on chromosomal damage was observed at all the concentrations used; surprisingly, greater effects were induced in animals exposed to the lowest concentration (1×10(-5)ppm). The data of the comet assay revealed a significant increase in the level of DNA damage in coelomocytes of earthworms exposed for 10 and 28 days to the different concentrations of B[a]P and TCDD. The results show that the comet and MN assays were able to reveal genotoxic effects in earthworms exposed even to the lowest concentrations of both chemicals tested here. The combined application in E. andrei of the comet assay and the micronucleus test, which reflect different biological mechanisms, may be suggested to identify genotoxic effects induced in these invertebrates by environmental contaminants in terrestrial ecosystems.  相似文献   

7.
Protection by essential metals against the genotoxic effects of toxic elements is an open question. Here, human Hs27 dermal fibroblasts and B-mel melanoblasts were exposed for 10 days to (1 μM) zinc (Zn) or copper (Cu) or selenium (+ 4, Sei; + 6, Sea). Afterwards, cells were exposed for 3 days to subtoxic concentrations of lead (Pb, 100 μM) or vanadium (+ 5, V, 2 μM) or cadmium (Cd, 3 μM), slightly reducing, by themselves, cell proliferation and unaffecting cell viability and apoptosis. Genotoxic damage was evaluated by cytokinesis-block micronucleus assay (CBMN) and single cell gel electrophoresis (Comet assay, CA). CBMN and CA were preliminarly assessed following 3, 10 and 30 days of exposure to the above concentrations of Pb, V and Cd: Pb induced micronuclei (MN) formation in both Hs27 and B-mel cells, without determining direct DNA damage (as shown by CA); V did not reveal genotoxic effects on fibroblasts (as shown by CBMN and CA) but increased the frequency of MN and comets in melanoblasts; Cd induced a great number of MN and comets in fibroblasts but not in melanoblasts; all these effects did not differ after 3, 10 or 30 days of exposure to such elements so that Hs27 and B-mel cells were exposed to Pb,V and Cd for 3 days following pretreatment with (1 μM) Zn, Cu, Sei or Sea. By itself, the 10 day-exposure to (1 μM) Zn, Cu, Sei or Sea did not affect cell proliferation, viability, apoptosis and formation of MN or comets in either Hs27 or B-mel cells. Only Zn significantly reduced the Cd- and V-induced MN and comet formation in fibroblasts and melanoblasts, respectively; in these cells, however, Zn did not affect the Pb-induced MN formation. These results emphasize the role of Zn, in respect to other essential metals, in opposing the genotoxic effects of cancerogenic (Cd) or potentially cancerogenic elements (V).  相似文献   

8.
Glutaraldehyde (GA) induces DNA-protein crosslinks (DPX), but conflicting results have been reported with regard to other genotoxic and mutagenic effects in mammalian cells in vitro. We, therefore, characterized the genotoxic and mutagenic potential of GA in V79 cells. Using the alkaline comet assay we demonstrated the induction of DPX by GA (reduction of gamma ray-induced DNA migration) at a concentration of 10 microM and above. The standard comet assay did not reveal a significant DNA strand-breaking activity of GA. Cross-linking concentrations of GA were also cytotoxic, i.e. inhibited cell growth of treated V79 cultures. Interestingly, a small but statistically significant increase in sister chromatid exchange (SCE) and micronuclei (MN) was already measured at lower concentrations (2 and 5 microM). FISH analysis revealed that the majority of GA-induced MN was due to chromosome breaks. We also compared the genotoxic activity of GA to that of formaldehyde (FA). Similar to GA, FA-induced DPX, SCE and MN, but distinct differences exist with regard to the sensitivity of the endpoints and the relationship between genotoxicity and cytotoxicity. However, the differences in genotoxicity cannot readily explain the different carcinogenic activities of the two compounds.  相似文献   

9.
Three different biomarkers: sister-chromatid exchanges (SCE), micronuclei (MN), and the Comet assay, were used to evaluate different kinds of genetic damage in peripheral blood lymphocytes from 34 male workers at Barcelona airport, exposed to low levels of hydrocarbons and jet fuel derivatives. The control group consisted of 11 unexposed men. We also investigated the ras p21 protein levels in plasma, in order to evaluate whether the ras gene could serve as a suitable potential marker of carcinogenic pollution in occupationally exposed cohorts. SCE and MN analyses failed to detect any statistically significant increase in the airport workers when compared with the controls, and in fact, the frequency of binucleated cells with MN in the exposed group was significantly lower than that obtained in the control. However, slight but significant differences in the mean comet length and genetic damage index were observed between the exposed and control groups when using the Comet assay. There were no statistically significant differences between both groups in p21 plasma levels. Smoking was shown to affect significantly both SCE and high frequency cells (HFC) in the exposed group.  相似文献   

10.
Three different biomarkers: sister-chromatid exchanges (SCE), micronuclei (MN), and the Comet assay, were used to evaluate different kinds of genetic damage in peripheral blood lymphocytes from 34 male workers at Barcelona airport, exposed to low levels of hydrocarbons and jet fuel derivatives. The control group consisted of 11 unexposed men. We also investigated the ras p21 protein levels in plasma, in order to evaluate whether the ras gene could serve as a suitable potential marker of carcinogenic pollution in occupationally exposed cohorts. SCE and MN analyses failed to detect any statistically significant increase in the airport workers when compared with the controls, and in fact, the frequency of binucleated cells with MN in the exposed group was significantly lower than that obtained in the control. However, slight but significant differences in the mean comet length and genetic damage index were observed between the exposed and control groups when using the Comet assay. There were no statistically significant differences between both groups in p21 plasma levels. Smoking was shown to affect significantly both SCE and high frequency cells (HFC) in the exposed group.  相似文献   

11.
Cadmium (Cd) is a toxic heavy metal of continuing occupational and environmental concern with a wide variety of adverse effects. Several studies have shown that cadmium produces DNA strand breaks, DNA-protein cross-links, oxidative DNA damage, chromosomal aberrations, dysregulation of gene expression resulting in enhanced proliferation, depressed apoptosis and/or altered DNA repair. This study was undertaken to investigate the ability of cadmium chloride (CdCl(2)) and cadmium sulphate (CdSO(4)) to induce point mutations in codon 12 of the K-ras protooncogene assessed by polymerase chain reaction-single strand conformation polymorphisms (PCR-SSCP) and RFLP-enriched PCR methods. Also their genotoxic effects were analyzed by the comet assay and sister chromatid exchanges test. The human lung fibroblast cell line MRC-5 was used for the experiments. Sister chromatid exchanges assay (SCEs) frequencies were significantly increased in cells exposed to cadmium salts in relation to controls (p<0.001). Despite the slow increment observed in the three comet parameters considered when cells were treated with cadmium chloride, significant differences between groups were only found in the variable comet moment (CM) (p<0.005). On the other hand, when cells were exposed to cadmium sulphate, the Kruskal-Wallis test showed highly significant differences between groups for migration, tail moment and comet moment parameters (p<0.001). Nevertheless, a null or weak point mutation induction in K-ras protooncogene was detected using polymerase chain reaction-low ionic strength-single strand conformation polymorphisms (PCR-LIS-SSCP) and RFLP-enriched PCR methods when cells were treated with cadmium salts. Thus, inorganic cadmium produces genotoxicity in human lung fibroblast MRC-5 cells, in the absence of significant point mutation of the K-ras gene.  相似文献   

12.
Raposo A  Carvalho CR  Otoni WC 《Hereditas》2004,141(3):318-322
The present study reports the use of the fluorescence plus Giemsa (FPG) technique, image analysis and statistical methods to assess the sister chromatid exchanges (SCEs) frequency in maize. Roots derived from germinated maize seeds were treated with BrdU solution and fixed. The slides were prepared by enzymatic cellular dissociation, air-drying technique, stained with Hoechst 33258 fluorochrome, and incubated in salt solution. The chromosomes were irradiated with ultraviolet light and stained with Giemsa solution. The FPG technique associated with digital analysis system was used to measure the length of 597 BrdU-incorporated maize chromosomes and to identify 0.5243 SCE per chromosome. A range from 0 to 4 SCE events were classified and the chi-square test (chi2=1.586, P=0.662) showed a good fit to the hypothesis that the SCEs are independent and random events that follow Poisson distribution. The SCE frequencies in long and short chromosome arms corresponded to a mean value of 0.876 SCE microm(-1). Considering that the maize line used in this study contains 5.78 picogram (pg) DNA (2C value) in interphasic G0/G1 nuclei or 11.56 pg DNA (4C value) in metaphase, and that the DNA mean value corresponds to 0.578 pg/metaphasic chromosome, the analysis suggests an occurrence of approximately 0.9 SCE/pg DNA.  相似文献   

13.
A large number of workers are potentially exposed to cadmium during mining and processing. Therefore, there is a concern regarding the potential carcinogenic hazards of cadmium to exposed workers. Studies have been performed to determine if cadmium chloride (CdCl(2)) can induce morphological cell transformation, DNA from CdCl(2)-induced transformed cells can transform other mammalian cells, and the transformed cells induced by CdCl(2) can form tumors in nude mice. BALB/c-3T3 cells were treated with different concentrations of CdCl(2) for 72 h. The frequency of transformed foci from each treatment was determined after cells were cultured for 4 to 5 weeks. DNAs from five CdCl(2)-induced transformed cell lines were isolated and gene transfection assay was performed using NIH-3T3 cells. Non-transformed BALB/c-3T3 cells and cells from 10 transformed cell lines induced by CdCl(2) were injected into both axillary regions of nude mice. Mice were screened once a week for the appearance and size of tumors. CdCl(2) caused a statistically significant, concentration-related increase in the transformation frequency. DNA from all five CdCl(2)-induced transformed cell lines tested was found to induce varying degrees of transfection-mediated transformation in NIH-3T3 cells. All 10 CdCl(2)-induced transformed cell lines formed fibrosarcomas in nude mice within 39 days of inoculation. Within this time period, no tumors were found in nude mice injected with non-transformed BALB/c-3T3 cells. These results indicate that CdCl(2) is capable of inducing morphological cell transformation and that the transformed cells induced by CdCl(2) are potentially tumorigenic.  相似文献   

14.
In the present study, we investigated in vitro radioprotective potential of caffeic acid (CA), a naturally occurring catecholic acid against gamma radiation-induced cellular changes. Different concentrations of CA (5.5, 11, 22, 44, 66, and 88 microM) were incubated with lymphocytes for 30 min prior to gamma-irradiation, and micronuclei (MN) scoring and comet assay were performed to fix the effective concentration of CA against gamma-irradiation. Among all concentrations, 66 microM of CA showed the optimum protection by effectively decreasing the MN frequencies and comet attributes. From the above-mentioned results, 66 microM of CA was selected as the effective concentration and was further used to investigate its radioprotective efficacy. For that purpose, a separate experiment was carried out on the lymphocytes in which lymphocytes were preincubated with CA (66 microM) and were exposed to different doses of radiation (1, 2, 3, and 4 Gy). Genetic damage (MN, dicentric aberration, and comet attributes) and biochemical changes were measured. Gamma-irradiated lymphocytes showed a dose-dependent increase in the genetic damage and thiobarbituric acid reactive substances, accompanied by the significant decrease in the antioxidant status, whereas CA pretreatment positively modulated all the radiation-induced changes through its antioxidant potential. The current study demonstrates that CA is effective in protecting lymphocytes against radiation-induced toxicity and encourages further in vivo study to evaluate radioprotective efficacy of CA.  相似文献   

15.
This study investigates different effects in roots of Vicia faba (broad bean) after exposure to cadmium. Genotoxic effects were assessed by use of the well-known Vicia root tip micronucleus assay. Cytotoxic effects were evaluated by determining the mitotic index in root tip cells. Finally, molecular induction mechanisms were evaluated by measuring phytochelatins with HPLC. After hydroponical exposure of V. faba roots to a range of cadmium concentrations and during different exposure times, the results of this approach showed large variations, according to the endpoint measured: after 48 h of exposure, genotoxic effects were found between 7.5 x 10(-8) and 5 x 10(-7)M CdCl(2), and cytotoxic effects were observed between 2.5 x 10(-7) and 5 x 10(-7)M CdCl(2). Statistically significant phytochelatin (PC) concentrations were measured at >or=10(-6)M CdCl(2) for PC(2), and at >or=10(-5)M CdCl(2) for PC3 and PC4.  相似文献   

16.
Cytogenetic damage induced in human lymphocytes by sodium bisulfite.   总被引:34,自引:0,他引:34  
Z Meng  L Zhang 《Mutation research》1992,298(2):63-69
The frequencies of chromosomal aberrations (CA), sister-chromatid exchanges (SCE), and micronuclei (MN) in human blood lymphocytes exposed to sodium bisulfite (sulfur dioxide) at various concentrations ranging from 5 x 10(-5) M to 2 x 10(-3) M in vitro were studied. It was shown that sodium bisulfite (NaHSO3 and Na2SO3, 1:3 M/M) caused an increase in SCE and MN in human blood lymphocytes in a dose-dependent manner, and also induced mitotic delays and decreased mitotic index. For CA, our results indicated that sodium bisulfite induced an increase of chromatid-type aberrations in lymphocytes from three of four donors in a dose-dependent manner. The chemical at low concentrations induced chromatid-type aberrations, but not chromosome-type aberrations; high concentrations induced both chromatid- and chromosome-type aberrations. No cytogenetic damage in human lymphocytes was induced by sodium sulfate. The results have confirmed that sulfur dioxide is a clastogenic and genotoxic agent.  相似文献   

17.
The effects of cadmium chloride (CdCl(2)) on oxidative stress in the skeletal muscle cell line C(2)C(12) were investigated. Myoblast cells that differentiated into myotubes were treated with CdCl(2) (1, 3, 5, 7.5, 10, and 12.5 microM) for 24, 48, and 72 h. Subsequent assay of cell homogenates for MTT (3-(4,5-dimethylthiozol-2-yl)-2,5-diphenyltetrazolium bromide) reduction, neutral red uptake and nucleic acid content showed that cadmium was toxic to C(2)C(12) cells in a concentration-dependent manner. Glutathione-S-transferase activity (nmol microg of protein(-1) min(-1)) was increased with 1 and 3 microM CdCl(2) (36.9 +/- 5.6 and 32.1 +/- 6.0, respectively) compared to control cells (21.8 +/- 1.5), but decreased at higher concentrations (7.5 microM = 15.9 +/- 3.3, 10 microM = 15.9 +/- 4.6, and 12.5 microM = 10.5 +/- 2.8). An increase in malondialdehyde content (nmol microg of protein(-1)), especially at high CdCl(2) concentrations (control = 7.3 +/- 0.5; CdCl(2): 7.5 microM = 11.2 +/- 3.1, 10 microM = 14.6 +/- 3.8, and 12.5 microM = 20.5 +/- 6.5) indicated that there was enhanced lipid peroxidation. Light and scanning electron microscopy showed that there was a concentration-dependent loss of adherent cells and the formation of vesicles indicative of cell death. These results indicated that CdCl(2) increased oxidative stress in C(2)C(12) cells, and this stress probably compromised cell adhesion and the cellular antioxidant defense mechanisms.  相似文献   

18.
T Ochi  M Mogi  M Watanabe  M Ohsawa 《Mutation research》1984,137(2-3):103-109
Inducibility of chromosomal aberrations and cytotoxicity in cultured Chinese hamster cells by cadmium chloride (CdCl2) was investigated under 3 different treatment conditions: (i) 2-h treatment in MEM medium supplemented with 10% fetal bovine serum (MEM + 10% FBS) or (ii) in HEPES-buffered Hanks' solution (HEPES-Hanks), and (iii) continuous treatment for 24 h in MEM + 10% FBS. Two-h treatment with CdCl2 in HEPES-Hanks or continuous treatment for 24 h in MEM + 10% FBS was respectively 2 or 3 times more cytotoxic than 2-h treatment with the metal in MEM + 10% FBS. Continuous treatment for 24 h with a CdCl2 concentration in excess of 5 X 10(-6) M was too toxic to the cells to allow chromosomal analysis, and moreover, only a slight increase in incidence of chromosomal aberrations was observed at a concentration of 5 X 10(-6) M CdCl2. In contrast, a marked and concentration-dependent increase in incidence of chromosomal aberrations was observed after post-treatment culture for 22 h follows 2-h treatment with 1 X 10(-6) M to 5 X 10(-5) M of CdCl2 in both MEM + 10% FBS and HEPES-Hanks. Two-h treatment with cadmium in HEPES-Hanks was approximately 3 times more potent for the induction of chromosomal aberrations than that in MEM + 10% FBS. Types of aberrations induced by CdCl2 mainly consisted of chromatid gaps and breaks, although a few exchanges, dicentrics and fragmentations were observed at high concentrations of cadmium. Increase in incidence of tetraploidy was also observed with a concentration dependency after 2-h treatment with CdCl2. Potency of CdCl2 to induce chromosomal aberrations after 2-h exposure was comparable to that of benzo[a]pyrene activated with S9 at equitoxic concentrations. Two-h treatment with cadmium markedly inhibited incorporation of [3H]thymidine, even at concentrations at which incorporation of [3H]uridine or [3H]leucine was less inhibited. However, the inhibition of [3H]thymidine incorporation by cadmium was reversible and the incorporation restored to the control level during 2-6 h of post-treatment incubation. These findings suggest that restoration of DNA synthesis after cadmium exposure is required for the efficient detection of chromosomal aberrations induced by the metal.  相似文献   

19.
We tested the genotoxicity of 3,5,4'-trihydroxystilbene (resveratrol), a polyphenolic phytoalexin found in grapes, in a bacterial reverse mutation assay, in vitro chromosome aberration (CA) test, in vitro micronucleus (MN) test, and sister chromatid exchange (SCE) test. Resveratrol was negative in the strains we used in the bacterial reverse mutation assay (S. typhimurium TA98 and TA100 and E. coli WP2uvrA) in the absence and presence of a microsomal metabolizing system. It induced structural CAs at 2.5-20 microg/ml and showed weak aneuploidy induction in a Chinese hamster lung (CHL) cell line. It induced MN cells and polynuclear and karyorrhectic cells after 48h treatments in the in vitro MN test. In the SCE test, resveratrol caused a clear cell-cycle delay; at 10 microg/ml, the cell cycle took twice as long as it did in the control. Resveratrol induced SCEs dose-dependently at up to 10 microg/ml, at which it increased SCE six-fold, and the number was almost as large as mitomycin C, a strong SCE inducer. No second mitoses were observed at 20 microg/ml even after 54h. Cell cycle analysis by FACScan indicated that resveratrol caused S phase arrest, and 48h treatment induced apoptosis. Our results suggest that resveratrol may preferentially induce SCE but not CA, that is, it may cause S phase arrest only when SCEs are induced.  相似文献   

20.
To evaluate the effect of blood storage on the yield of micronuclei (MN) in both irradiated (in vivo and ex vivo) and unirradiated peripheral blood lymphocytes (PBL), we applied the MN assay in cytokinesis-blocked (CB) PBL obtained from healthy subjects (n=11), and from cancer patients (n=10) who were undergoing fractionated partial-body radiotherapy (xRT). The heparinized blood samples were exposed to 137Cs-irradiation (0 Gy or 2 Gy) immediately after blood collection and were stored upright in test tubes either at room temperature (22 degrees C) or in the refrigerator (5 degrees C). Duplicate whole blood cultures from each sample were set up at 0 h, 96 h, and 120 h after ex vivo irradiation. Giemsa (10%) stained slides were prepared from each culture. MN yield was determined per 1000 binucleated cells. As compared to that obtained from the corresponding fresh blood samples, we found that (1) the 22 degrees C blood storage temperature did not affect MN yields in PBL of either healthy subjects or cancer patients up to 96 h, either with or without ex vivo irradiation; and (2) while blood samples were stored at 5 degrees C, the MN yield increased significantly in PBL of healthy subjects (with or without ex vivo irradiation) at 120 h, and in cancer patients (with ex vivo irradiation) at 96 h and 120 h. Since handling of the blood sample is important for CBMN assay during shipment or in the laboratory, our findings showed that blood storage at 22 degrees C or at 5 degrees C up to 96 h appeared to provide insignificant variations of the MN results as compared to fresh blood samples. However, the 96 h of blood storage at 5 degrees C elevated the MN frequency in ex vivo irradiated PBL of cancer patients who were undergoing xRT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号