首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patterns in juvenile mortality rates can have a profound affect on the distribution and abundance of adult individuals, and may be the result of a number of interacting factors. Field observations at Lizard Island (Great Barrier Reef, Australia) showed that for a coral reef damselfish, Pomacentrus moluccensis, juvenile mortality (over 1 year) varied between 20 and almost 100% among sites. Correlative data showed that juvenile mortality increased as a function of initial densities (recruitment), predator densities and the availability of preferred coral substrata. A multiple regression showed that these three variables together did not explain significantly more variation in mortality than the single factor showing the strongest relationship. This appeared to be because recruitment, predator densities and preferred coral substrata were all highly correlated, suggesting that one, two or all of these factors may be influencing juvenile mortality rates. One hypothesis was that density-dependent mortality in juveniles was the result of an interaction between predators (which appear to aggregate at high-recruitment sites) and the availability of preferred substrata (predator refuges). We tested this hypothesis by using both laboratory and field experiments to see whether fish predation could significantly alter survivorship of this damselfish, and whether this impact was dependent upon the coral substratum. The laboratory experiment was designed to test the effects of three common predators (Pseudochromis fuscus, Cephalopholis boenak and Thalassoma lunare) and three different coral substrata that varied in their complexity (Pocillopora damicornis, Acropora nasuta and A. nobilis) on the survival of juvenile Pomacentrus moluccensis. There was a significant interaction between predator species and microhabitat in determining survival. Pseudochromis fuscus and C. boenak were both significantly better at capturing juvenile damselfish than T. lunare. Juvenile survivorship was significantly better when they were given the more complex corals, Pocillopora damicornis and A. nasuta, compared with those given the open-structured species A. nobilis. This pattern reflects habitat selection in the field. Predators differed in their strike rates and the proportion of strikes that were successful, but all exhibited greater success at prey capture where A. nobilis was provided as shelter. The interaction between the effect of predator species and microhabitat structure on damselfish survival was tested in the field for a cohort of juvenile Pomacentrus moluccensis. We examined juvenile survival in the presence and absence of two predators that co-occur on natural patch reefs (C. boenak and Pseudochromis fuscus). The experimental patch reefs we used for this purpose were constructed from both high complexity (Pocillopora damicornis) and low complexity (A. nobilis) coral substrata. Both juveniles and predators were translocated to reefs at natural densities. The effects of predation were clearly dependent upon the microhabitat. Reefs of the high-complexity coral with predators supported the same high numbers of Pomacentrus moluccensis as the reefs with no resident predators. However, damselfish abundance was significantly lower on low-complexity reefs with resident predators, relative to the other treatments. Background rates of loss were high, even on preferred coral in the absence of the manipulated predator, suggesting that transient predators may be even more important than the residents. We suggest that adult abundances in this species were strongly influenced by the densities of different predators and the availability of preferred refuges. Received: 3 April 1997 / Accepted: 26 August 1997  相似文献   

2.
Despite the potential importance of predation as a process structuring coral reef fish communities, few studies have examined how the diet of piscivorous fish responds to fluctuations in the abundance of their prey. This study focused on two species of rock-cod, Cephalopholis cyanostigma (Valenciennes, 1828) and Cephalopholis boenak (Bloch, 1790) (Serranidae), and monitored their diet in two different habitats (patch and contiguous reef) at Lizard Island on the northern Great Barrier Reef, Australia, over a 2-year period. The abundance of the rock-cods and the abundance and family composition of their prey were monitored at the same time. Dietary information was largely collected from regurgitated samples, which represented approximately 60% of the prey consumed and were unbiased in composition. A laboratory experiment showed that fish were digested approximately four times faster than crustaceans, leading to gross overestimation of the importance of crustaceans in the diet. When this was taken into account fish were found to make up over 90% of the diet of both species. Prey fish of the family Apogonidae, followed by Pomacentridae and Clupeidae, dominated the diet of both species of rock-cod. The interacting effect of fluctuations in prey abundance and patterns of prey selection caused dietary composition to vary both temporally and spatially. Mid-water schooling prey belonging to the families Clupeidae and to a lesser extent Caesionidae were selected for over other families. In the absence of these types of prey, apogonids were selected for over the more reef-associated pomacentrids. A laboratory experiment supported the hypothesis that such patterns were mainly due to prey behaviour. Feeding rates of both species of rock-cod were much higher in summer than in winter, and in summer they concentrated on small recruit sized fish. However, there was little variation in feeding rates between habitats, despite apparent differences in prey abundance. In summary, our observations of how the feeding ecology of predatory fish responded to variation in prey abundance provide potential mechanisms for how predation may affect the community structure of coral reef fishes.  相似文献   

3.
Predators have important effects on coral reef fish populations, but their effects on community structure have only recently been investigated and are not yet well understood. Here, the effect of predation on the diversity and abundance of young coral reef fishes was experimentally examined in Moorea, French Polynesia. Effects of predators were quantified by monitoring recruitment of fishes onto standardized patch reefs in predator-exclosure cages or uncaged reefs. At the end of the 54-day experiment, recruits were 74% less abundant on reefs exposed to predators than on caged ones, and species richness was 42% lower on reefs exposed to predators. Effects of predators varied somewhat among families, however, rarefaction analysis indicated that predators foraged non-selectively among species. These results indicate that predation can alter diversity of reef fish communities by indiscriminately reducing the abundance of fishes soon after settlement, thereby reducing the number of species present on reefs.  相似文献   

4.
Video cameras recorded the diurnal visitation rates of transient (large home range) piscivorous fishes to coral patch reefs in The Bahamas and identified 11 species. Visits by bar jack Caranx ruber, mutton snapper Lutjanus analis, yellowtail snapper Ocyurus chrysurus, barracuda Sphyraena barracuda and cero Scomberomorus regalis were sufficiently frequent to correlate with a range of biophysical factors. Patch‐reef visitation rates and fish abundances varied with distance from shore and all species except S. regalis were seen more frequently inshore. This pattern is likely to be caused by factors including close proximity to additional foraging areas in mangroves and on fore‐reefs and higher abundances close to inshore nursery habitats. Visitation rates and abundances of C. ruber, L. analis, O. chrysurus and S. regalis also varied seasonally (spring v. winter), possibly as fishes responded to temperature changes or undertook spawning migrations. The abundance of each transient predator species on the patch reefs generally exhibited limited diurnal variability, but L. analis was seen more frequently towards dusk. This study demonstrates that the distribution of transient predators is correlated spatially and temporally with a range of factors, even within a single lagoon, and these drivers are species specific. Transient predators are considered an important source of mortality shaping reef‐fish assemblages and their abundance, in combination with the biomass of resident predators, was negatively correlated with the density of prey fishes. Furthermore, transient predators are often targeted by fishers and understanding how they utilize seascapes is critical for protecting them within reserves.  相似文献   

5.
Srinivasan M 《Oecologia》2003,137(1):76-84
Many coral reef fishes have restricted depth ranges that are established at settlement or soon after, but the factors limiting these distributions are largely unknown. This study examines whether the availability of microhabitats (reef substrata) explains depth limits, and evaluates whether juvenile growth and survival are lower beyond these limits. Depth-stratified surveys of reef fishes at Kimbe Bay (Papua New Guinea) showed that the abundance of new settlers and the cover of coral substrata differed significantly among depths. A field experiment investigated whether settling coral reef fishes preferred particular depths, and whether these depth preferences were dependent on microhabitat. Small patch reefs composed of identical coral substrata were set up at five depths (3, 6, 10, 15 and 20 m), and settlement patterns were compared to those on unmanipulated reef habitat at the same five depths. For all species, settlement on patch reefs differed significantly among depths despite uniform substratum composition. For four of the six species tested, depth-related settlement patterns on unmanipulated habitat and on patch reefs did not differ, while for the other two, depth ranges were greater on the patch reefs than on unmanipulated habitat. A second experiment examined whether depth preferences reflected variation in growth and survival when microhabitat was similar. Newly settled individuals of Chrysiptera parasema and Dascyllus melanurus were placed, separately, on patch reefs at five depths (as above) and their survival and growth monitored. D. melanurus, which is restricted to shallow depths, had highest survival and growth at the shallowest depth. Depth did not affect either survival or growth of C. parasema, which has a broader depth range than D. melanurus (between 6 and 15 m). This suggests that the fitness costs potentially incurred by settling outside a preferred depth range may depend on the strength of the depth preference.  相似文献   

6.
Predation is a key process driving coral reef fish population dynamics, with higher per capita prey mortality rates on reefs with more predators. Reef predators often forage together, and at high densities, they may either cooperate or antagonize one another, thereby causing prey mortality rates to be substantially higher or lower than one would expect if predators did not interact. However, we have a limited mechanistic understanding of how prey mortality rates change with predator densities. We re-analyzed a previously published observational dataset to investigate how the foraging response of the coney grouper (Cephalopholis fulva) feeding on the bluehead wrasse (Thalassoma bifasciatum) changed with shifts in predator and prey densities. Using a model-selection approach, we found that per-predator feeding rates were most consistent with a functional response that declines as predator density increases, suggesting either antagonistic interactions among predators or a shared antipredator behavioral response by the prey. Our findings suggest that variation in predator density (natural or anthropogenic) may have substantial consequences for coral reef fish population dynamics.  相似文献   

7.
Coral reefs offer settling fish larvae a spatial mosaic of microhabitats that differ not only in structural complexity but also in the abundance and diversity of predators. This paper provides evidence that interactions between predators and prey are causally linked to variation in relevant architectural characteristics of natural substrates. Juvenile bicolor damselfish, Stegastes partitus, experienced greater mortality on Montastrea annularis boulder coral than on piles of Porites porites coral rubble. This pattern was consistent on both back and fore reef habitats. Architectural differences, variable encounter rates with predators, and access to different food sources all contributed to higher mortality. Spatial and structural differences among refuges provided by the two substrates were most important in affecting survival. Porites rubble contained almost three times the number of crevices (39.9 vs. 14.3 crevices m–2AM2), had a much smaller mean crevice size (15.9 vs. 48.5 cm2), and had a more complex internal structure than Montastrea coral. Survival of juvenile fish living on Montastrea coral was positively correlated with crevice density (r2 = 0.41) whereas survival of fish living on Porites rubble was negatively correlated with crevice size (r2 = 0.43). These patterns were evident on fore reef habitats only, whereas on back reef habitats no clear patterns emerged. The effect of these natural differences in architecture on mortality rates of juvenile S. partitus was experimentally tested in the field using a combination of natural and artificial substrates. As the number of large shelters was increased I found that the density of potential predators increased but the survival rates of juvenile bicolor damselfish declined. These results highlight the importance of structural architecture among common reef substrates in affecting predator-prey relationships and in determining the survivorship and small-scale distribution patterns of juvenile reef fish.  相似文献   

8.
Coral communities of Biscayne National Park (BNP) on offshore linear bank-barrier reefs are depauperate of reef corals and have little topographic relief, while those on lagoonal patch reefs have greater coral cover and species richness despite presumably more stressful environmental regimes closer to shore. We hypothesized that differences in rates of coral recruitment and/or of coral survivorship were responsible for these differences in community structure. These processes were investigated by measuring: (1) juvenile and adult coral densities, and (2) size-frequency distributions of smaller coral size classes, at three pairs of bank- and patch-reefs distributed along the north-south range of coral reefs within the Park. In addition, small quadrats (0.25 m2) were censused for colonies <2 cm in size on three reefs (one offshore and one patch reef in the central park, and one intermediate reef at the southern end), and re-surveyed after 1 year. Density and size frequency data confirmed that large coral colonies were virtually absent from the offshore reefs, but showed that juvenile corals were common and had similar densities to those of adjacent bank and patch reefs. Large coral colonies were more common on inshore patch reefs, suggesting lower survivorship (higher mortality) of small and intermediate sized colonies on the offshore reefs. The more limited small-quadrat data showed similar survivorship rates and initial and final juvenile densities at all three sites, but a higher influx of new recruits to the patch reef site during the single annual study period. We consider the size-frequency data to be a better indicator of juvenile coral dynamics, since it is a more time-integrated measurement and was replicated at more sites. We conclude that lack of recruitment does not appear to explain the impoverished coral communities on offshore bank reefs in BNP. Instead, higher juvenile coral mortality appears to be a dominant factor structuring these communities. Accepted: 9 September 1999  相似文献   

9.
Caribbean coral reefs have transformed into algal-dominated habitats over the past half-century, but the role of specific anthropogenic drivers is unresolved due to the lack of ecosystem-level data predating human disturbance. To better understand the extent and causes of long-term Caribbean reef declines, we produced a continuous 3000-yr record of the ecosystem state of three reefs in Bocas del Toro, Caribbean Panama. From fossils and sediments obtained from reef matrix cores, we tracked changes in reef accretion rates and the taxonomic and functional group composition of fish, coral, urchin, bivalve and benthic foraminifera. This dataset provided a comprehensive picture of reef community and environmental change. At all sites, reefs shifted from systems with greater relative abundance of herbivorous fish, epifaunal suspension feeding bivalves and Diadema urchins to systems with greater relative abundance of micropredator fish, infaunal bivalves and Echinometra urchins. These transitions were initiated a millennium ago at two less-degraded reefs fringing offshore islands and ~250 yr ago at a degraded patch reef near the continental coast. Ecosystem shifts were accompanied by a decline in reef accretion rates, and at the patch reef, a decline in water quality since the 18th century. Within all cores, synchronous increases in infaunal bivalves and declines in herbivorous fish regardless of water quality suggest a loss of hard substrate and increasingly hypoxic sediment conditions related to herbivore loss. While the early timing of ecosystem transitions at the fringing reefs implicates large-scale hydrological change, the more recent timing of change and loss of water quality at the patch reef implicates terrigenous runoff from land-clearing. Our whole-ecosystem reconstruction reveals that reef ecosystem deterioration appears to follow a predictable trajectory whether driven by natural or anthropogenic disturbances and that historical local human activities have quickly unraveled reefs at a scale similar to longer-term natural environmental change.  相似文献   

10.
This study assesses the patterns of corallivory by parrotfishes across reefs of the Florida Keys, USA. These reefs represent a relatively unique combination within the wider Caribbean of low coral cover and high parrotfish abundance suggesting that predation pressure could be intense. Surveys across eight shallow forereefs documented the abundance of corals, corallivorous parrotfishes, and predation scars on corals. The corals Porites porites and Porites astreoides were preyed on most frequently with the rates of predation an order of magnitude greater than has been documented for other areas of the Caribbean. In fact, parrotfish bite density on these preferred corals was up to 34 times greater than reported for corals on other reefs worldwide. On reefs where coral cover was low and corals such as Montastraea faveolata, often preferred prey for parrotfishes, were rare, predation rates on P. porites and P. astreoides, and other less common corals, intensified further. The intensity of parrotfish predation increased significantly as coral cover decreased. However, parrotfish abundance showed only a marginal positive relationship with predation pressure on corals, likely because corallivorous parrotfish were abundant across all reefs. Parrotfishes often have significant positive impacts on coral cover by facilitating coral recruitment, survival, and growth via their grazing of algae. However, abundant corallivorous parrotfishes combined with low coral cover may result in higher predation on corals and intensify the negative impact that parrotfishes have on remaining corals.  相似文献   

11.
Active restoration is being practiced to supplement conservation activities for the purpose of reversing the trend of reef degradation. In the last decade, the feasibility of different restoration approaches such as coral transplantation and restocking of other marine biota has been the focus of research and relatively few have examined experimentally its effects on the resultant communities. In this study, coral transplantation and giant clam restocking were applied on 25 degraded patch reefs (~ 25 m2) inside a marine sanctuary in Pangasinan, northwestern Philippines to examine their effects on the community structure of reef fishes. Five interventions or treatments were employed: 1) “coral” consisted of transplantation of a combination of Acropora spp. and Pocillopora spp. on concrete blocks; 2) “clam” consisted of restocking of Tridacna gigas; 3) “clam+coral” consisted of restocking of T. gigas with Acropora spp. transplanted on their shells; 4) “shell” consisted of deployment of T. gigas shells; and 5) “control” consisted of no intervention. Fish communities on the patch reefs were monitored monthly for 3 months before the intervention and were monitored further for 11 months after the intervention, including 1 recruitment season. After the intervention, the coral cover and the “other biota” category increased in the coral and clam+coral treatments, due to the transplanted corals and deployed giant clams. Consequently, the complexity of the substrate was enhanced. A month after the intervention, a rapid increase in the abundance and species richness of reef fishes on the coral, clam+coral and clam treatments was observed compared to the shell and control treatments. A change in species composition of reef fish assemblage was also apparent in the coral and clam+coral treatments relative to the clam, shell and control, especially 4 months after the intervention. The present experiment demonstrates the feasibility of improving the condition of degraded patch reefs, which can subsequently enhance the fish community. Results also show the importance of the underlying substratum and the abundance of live corals and clams to reef fishes.  相似文献   

12.
Three methods of evaluating stony coral communities were used on selected reefs in the Exuma Cays Land and Sea Park (24°22N, 77°30W) in the central Bahamas. Shallow reefs (< 4 meters depth) were selected from aerial surveys based on size, location, and physical setting, and grouped into three community types: (1) channel patch reefs, (2) soft-coral-sponge patch reefs and (3) fringing reefs. Three survey techniques used to evaluate the stony coral communities were a) species presence and absence lists, b) linear percentage and c) line transects using 1 mx1 m grids. Data collected from these survey methods was used to calculate coral colony density, species area coverage, and species diversity based on colony number and based on linear (cm) coral cover. The linear percentage sampling was considered too convervative in determining distribution patterns of a reef community; this technique takes into account the massive reef framework species such asM. annularis. The line transect technique can account for both colony number and area coverage, thus is a better method for characterizing reef communities. Sample size considerations are discussed for future applications of survey techniques for ground-truthing digital images of small, shallow reef communities.  相似文献   

13.
At the time of settlement to the reef environment, coral reef fishes differ in a number of characteristics that may influence their survival during a predatory encounter. This study investigated the selective nature of predation by both a multi-species predator pool, and a single common predator (Pseudochromis fuscus), on the reef fish, Pomacentrus amboinensis. The study focused on the early post-settlement period of P. amboinensis, when mortality, and hence selection, is known to be highest. Correlations between nine different measures of body condition/performance were examined at the time of settlement, in order to elucidate the relationships between different traits. Single-predator (P. fuscus) choice trials were conducted in 57.4-l aquaria with respect to three different prey characteristics [standard length (SL), body weight and burst swimming speed], whilst multi-species trials were conducted on open patch reefs, manipulating prey body weight only. Relationships between the nine measures of condition/performance were generally poor, with the strongest correlations occurring between the morphological measures and within the performance measures. During aquaria trials, P. fuscus was found to be selective with respect to prey SL only, with larger individuals being selected significantly more often. Multi-species predator communities, however, were selective with respect to prey body weight, with heavier individuals being selected significantly more often than their lighter counterparts. Our results suggest that under controlled conditions, body length may be the most important prey characteristic influencing prey survival during predatory encounters with P. fuscus. In such cases, larger prey size may actually be a distinct disadvantage to survival. However, these relationships appear to be more complex under natural conditions, where the expression of prey characteristics, the selectivity fields of a number of different predators, their relative abundance, and the action of external environmental characteristics, may all influence which individuals survive.  相似文献   

14.
Habitat use by the resident coral reef anemonefish, Amphiprion frenatus, was examined in the complex coral reef landscape of Shiraho Reef, Ishigaki Island, Okinawa, Japan, using an enlarged color aerial photograph processed using image analysis software as an accurate field map. The anemonefish inhabit assemblages of the host sea anemone, Entacmaea quadricolor (clonal type), which inhabit various patch reefs in the back reef moat. We located all patch reefs inhabited by the host in the map based on snorkel observations: 297 anemonefish were found in 93 host assemblages in the study site of 2.9 ha. These patch reefs could be recognized by the reef colors, including the shadows (blackish color) in the photograph. Using image analysis software, the colors of the patch reefs were chosen and pixels with the same color values were regarded as potential habitat patches for the fish (PHPs). PHPs were 3D patch reefs (>0.5 m in height). Total areas (TA) and total perimeters (TP) of PHPs were measured in nine quadrats in the digitized aerial photograph. Host abundance and anemonefish abundance in a quadrat showed stronger correlations with the product of TA and TP of PHPs than TA alone. A site with numerous large 3D patch reefs (≥0.75 m2 in situ) can be a better habitat for the fish than other sites consisting of several huge 3D patch reefs of the same total area. The methodology applied here may be useful for assessing the quality of habitats for small resident animals in shallow subtidal reefs.  相似文献   

15.
The disastrous effects of the intense 1982–83 El Niño-SouthernOscillation (ENSO) bring new insight into the long-term developmentof eastern Pacific coral reefs. The 1988–83 ENSO sea surfacewarming event caused extensive reef coral bleaching (loss ofsymbiotic zooxanthellae), resulting in up to 70–95% coralmortality on reefs in Costa Rica, Panama, Colombia and Ecuador.In the Galapagos Islands (Ecuador), most coral reefs experienced>95% coral mortality. Also, several coral species experiencedextreme reductions in population size, and local and regionalextinctions. The El Niño event spawned secondary disturbances,such as increased predation and bioerosion, that continue toimpact reef-building corals. The death of Pocillopora colonieswith their crustacean guards eliminated coral barriers now allowingthe corallivore Acanthaster planci access to formerly protectedcoral prey. Sea urchins and other organisms eroded disturbedcorals at rates that exceed carbonate production, potentiallyresulting in the elimination of existing reef buildups. In otherreefbuilding regions following extensive, catastrophic coralmortality, rapid recovery often occurs through the growth ofsurviving corals, recruitment of new corals from nearby sourcepopulations, and survival of consolidated reef surfaces. Inthe eastern Pacific, however, the return of upwelling conditionsand the survival of coral predators and bioeroders hamper coralreef recovery by reducing recruitment success and eroding coralreef substrates. Thus, coral reef growth that occurs betweendisturbance events is not conserved. Repeated El Niñodisturbances, which have occurred throughout the recent geologichistory of the eastern Pacific, prevent coral communities fromincreasing in diversity and limit the development and persistenceof significant reef features. The poor development of easternPacific coral reefs throughout Holocene and perhaps much ofPleistocene time may result from recurrent thermal disturbancesof the intensity of the 1982–83 El Niño event.  相似文献   

16.
Numbers and biomass of piscivorous fish and their predation on other fish may often be high in undisturbed coral reef communities. The effects of such predation have sometimes been studied by removal of piscivores (either experimentally or by fishermen). Such perturbations have usually involved removal of large, highly vulnerable, mobile piscivores that are often actively sought in fisheries. The effects of fishing on smaller, demersal, semi-resident piscivores have been little studied. We studied such effects on the fish communities of patch reefs at Midway atoll by experimentally removing major resident, demersal, piscivorous fishes. First, four control reefs and four experimental reefs were selected, their dimensions and habitats mapped, and their visible fish communities censused repeatedly over 1 year. Census of all control and experimental reefs was continued for the following 39 months, during which known piscivores were collected repeatedly by hand spearing. Records were kept of catch and effort to calculate CPUE as an index of predator density. Spearfishing on the experimental reefs removed 2504 piscivorous fish from 12 families and 43 taxa (mostly species). The species richness of the catch did not show an overall change over the duration of the experiment. Spearman rank correlation analysis showed some unexpected positive correlations for density in numbers and biomass of major fished piscivorous groups (especially lizardfish) over the experiment. Only two relatively minor fished piscivorous taxa declined in abundance over the experiment, while the overall abundance of piscivores increased. Visual censuses of fish on the experimental reefs also failed to show reduction of total piscivores over the full experimental period. No significant trend in the abundance of lizardfish censused over the full period was apparent on any of the control reefs. The high resilience of piscivores on these experimental reefs to relatively intense fishing pressure could result from their protracted recruitment seasons, high immigration rates, cryptic habits, or naturally high abundances. A major factor was the high immigration rates of lizardfish, replacing lizardfish and other less mobile piscivores removed from the reefs by spearing. On the fished reefs, the removed lizardfish population replaced itself >20 times during the experiment; other piscivorous taxa replaced themselves only 5 times.  相似文献   

17.
The sea urchin Tripneustes ventricosus is a common, yet relatively poorly known, grazer of seagrass beds and coral reefs throughout the Caribbean. We compared the size and abundance of urchins between adjacent seagrass and coral reef habitats (where macroalgae are the dominant primary producers). We also conducted a laboratory experiment comparing the growth rate of juvenile urchins fed a diet of either macroalgae or seagrass. Reef urchins had significantly larger test diameter than those in the seagrass on some sampling dates. This size difference may be at least partially explained by diet, because laboratory-reared urchins fed macroalgae grew significantly faster than those fed seagrass. The seagrass population, however, was stable over time, whereas the reef population exhibited strong fluctuations in abundance. Overall, our study indicates that both the seagrass and coral reef habitats are capable of supporting healthy, reproductive populations of T. ventricosus. Each, however, appears to offer a distinct advantage: faster growth on the reef and greater population stability in the seagrass.  相似文献   

18.
Urchins are the last abundant grazers of macroalgae on most Caribbean reefs following the historical overexploitation of herbivorous fishes. The long‐spined urchin Diadema antillarum was particularly effective at controlling macroalgae and facilitating coral dominance on Caribbean reefs until its ecological extinction from a catastrophic disease epidemic in the early 1980s. Despite their important role in the structure and functioning of Caribbean reef ecosystems, the natural dynamics of Caribbean reef urchin communities are poorly known due to the paucity of ecological survey data prior to large‐scale human disturbances and the Diadema dieoff. To help resolve the baseline abundances and ecological roles of common urchin taxa, we track changes in urchin abundance and composition over the past 3000 yr from analysis of subfossil urchin spines preserved in reef matrix cores collected in Caribbean Panama. Echinometra consistently dominated the subfossil spine assemblage, while Diadema was consistently rare in the subfossil record in this region. Rather than increasing during a period of heightened human exploitation of their fish competitors and predators, Diadema began declining over a millennium ago. Convergent cross mapping (CCM) causality analyses reveal that Diadema abundance is causally related to coral community composition. Diadema is negatively affected by Acropora cervicornis dominance, likely due to the tight association between this coral and the threespot damselfish, an effective Diadema competitor. Conversely, Diadema positively affects the abundance of the coral Madracis mirabilis, possibly via its control of macroalgae. Causal relationships were not detected among abundances of individual urchin taxa, indicating that inter‐specific echinoid competition is not a factor limiting Diadema recovery. Our detailed record of prehistorical and historical urchin community dynamics suggests that the failure of Diadema to recover over 30 yr after its mass mortality event may be due in part to the prey release of damselfish following the long‐term overfishing of piscivorous fishes.  相似文献   

19.
 In recent years, marine scientists have become increasingly alarmed over the decline of live coral cover throughout the Caribbean and tropical western Atlantic region. The Holocene and Pleistocene fossil record of coral reefs from this region potentially provides a wealth of long-term ecologic information with which to assess the historical record of changes in shallow water coral reef communities. Before fossil data can be applied to the modern reef system, critical problems involving fossil preservation must be addressed. Moreover, it must be demonstrated that the classic reef coral zonation patterns described in the early days of coral reef ecology, and upon which “healthy” versus “unhealthy” reefs are determined, are themselves representative of reefs that existed prior to any human influence. To address these issues, we have conducted systematic censuses of life and death assemblages on modern “healthy” patch reefs in the Florida reef tract that conform to the classic Caribbean model of reef coral zonation, and a patch reef in the Bahamas that is currently undergoing a transition in coral dominance that is part of a greater Caribbean-wide phenomenon. Results were compared to censuses of ancient reef assemblages preserved in Pleistocene limestones in close proximity to each modern reef. We have determined that the Pleistocene fossil record of coral reefs may be used to calibrate an ecological baseline with which to compare modern reef assemblages, and suggest that the current and rapid decline of Acropora cervicornis observed on a Bahamian patch reef may be a unique event that contrasts with the long-term persistence of this taxon during Pleistocene and Holocene time. Accepted: 19 May 1998  相似文献   

20.
Mesophotic coral reef ecosystems remain largely unexplored with only limited information available on taxonomic composition, abundance and distribution. Yet, mesophotic reefs may serve as potential refugia for shallow-water species and thus understanding biodiversity, ecology and connectivity of deep reef communities is integral for resource management and conservation. The Caribbean coral, Montastraea cavernosa, is considered a depth generalist and is commonly found at mesophotic depths. We surveyed abundance and size-frequency of M. cavernosa populations at six shallow (10m) and six upper mesophotic (45m) sites in Bermuda and found population structure was depth dependent. The mean surface area of colonies at mesophotic sites was significantly smaller than at shallow sites, suggesting that growth rates and maximum colony surface area are limited on mesophotic reefs. Colony density was significantly higher at mesophotic sites, however, resulting in equal contributions to overall percent cover. Size-frequency distributions between shallow and mesophotic sites were also significantly different with populations at mesophotic reefs skewed towards smaller individuals. Overall, the results of this study provide valuable baseline data on population structure, which indicate that the mesophotic reefs of Bermuda support an established population of M. cavernosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号