首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A liver microsomal enzyme catalyzes the vitamin K-dependent posttranslational carboxylation of specific glutamyl residues of a limited number of plasma proteins to gamma-carboxyglutamyl residues. The intracellular precursor forms of these proteins are known to contain a homologous basic amino acid-rich propeptide region between the signal peptide region and the amino terminus of the mature protein. This region of the precursor protein has been implicated as a possible recognition site for the carboxylase enzyme. A 20-residue peptide containing the octadecapropeptide of human clotting factor X has now been shown to strongly stimulate the activity of the enzyme toward a noncovalently linked substrate. This stimulatory effect is seen at less than micromolar concentrations and is accompanied by a decrease in the Km of the glutamic acid substrate. These observations raise the possibility that the catalytic activity of other enzymes involved in protein processing may be regulated by a portion of their normal substrates.  相似文献   

2.
Precursors of vitamin K-dependent proteins are synthesized with a propeptide that is believed to target these proteins for gamma-carboxylation by the vitamin K-dependent carboxylase. In this study synthetic propeptides were used to investigate gamma-carboxylation of the prothrombin and factor X precursors in rat liver microsomes. The extent of prothrombin processing by the carboxylase was also investigated. Antisera raised against the human prothrombin and factor X propeptides only recognized precursors with the respective propeptide regions. The data demonstrate structural differences in the propeptide region of the prothrombin and the factor X carboxylase substrates which raises questions about the hypothesis of a common propeptide binding site on the carboxylase for all precursors of vitamin K-dependent proteins. The hypothesis of separate binding sites is supported by data which demonstrate differences in binding of the prothrombin and factor X precursors to membrane fragments from rough and smooth microsomes. gamma-Carboxylation of the prothrombin precursors in vitro was investigated with conformational specific antibodies raised against a portion of the Gla (gamma-carboxyglutamic acid) region extending from residue 15 to 24. The synthetic peptide used as antigen contains three of the ten potential Gla sites in prothrombin. It is shown that these antibodies do not recognize mature prothrombin but recognize the decarboxylated protein. It is also demonstrated that the epitope is Ca2(+)-dependent. The antibodies were used to assess gamma-carboxylation of the prothrombin precursor in membrane fragments from microsomal membranes. The results suggest that microsomal gamma-carboxylation does not involve Glu residues 16, 19 and 20 of the Gla region.  相似文献   

3.
The vitamin K-dependent gamma-glutamyl carboxylase catalyzes the modification of specific glutamates in a number of proteins required for blood coagulation and associated with bone and calcium homeostasis. All known vitamin K-dependent proteins possess a conserved eighteen-amino acid propeptide sequence that is the primary binding site for the carboxylase. We compared the relative affinities of synthetic propeptides of nine human vitamin K-dependent proteins by determining the inhibition constants (Ki) toward a factor IX propeptide/gamma-carboxyglutamic acid domain substrate. The Ki values for six of the propeptides (factor X, matrix Gla protein, factor VII, factor IX, PRGP1, and protein S) were between 2-35 nM, with the factor X propeptide having the tightest affinity. In contrast, the inhibition constants for the propeptides of prothrombin and protein C are approximately 100-fold weaker than the factor X propeptide. The propeptide of bone Gla protein demonstrates severely impaired carboxylase binding with an inhibition constant of at least 200,000-fold weaker than the factor X propeptide. This study demonstrates that the affinities of the propeptides of the vitamin K-dependent proteins vary over a considerable range; this may have important physiological consequences in the levels of vitamin K-dependent proteins and the biochemical mechanism by which these substrates are modified by the carboxylase.  相似文献   

4.
The vitamin K-dependent blood-clotting proteins contain a gamma-carboxylation recognition site in the propeptide, between the signal peptide and the mature protein, that directs gamma-carboxylation of specific glutamic acid residues. To develop a better substrate for the in vitro assay of the vitamin K-dependent gamma-carboxylase and to understand the substrate recognition requirements of the carboxylase, we prepared synthetic peptides based upon the structure of human proprothrombin. These peptides were employed as substrates for in vitro carboxylation using a partially purified form of the bovine liver carboxylase. A 28-residue peptide (HVFLAPQQARSLLQRVRRANTFLEEVRK), based on residues -18 to +10 in proprothrombin, includes the complete propeptide and the first 10 residues of acarboxyprothrombin. Carboxylation of this peptide is characterized by a Km of 3.6 microM. In contrast, FLEEL is carboxylated with a Km of about 2200 microM. A 10-residue peptide (ANTFLEEVRK), based on residues +1 to +10 in prothrombin, and a 20-residue peptide (ARSLLQRVRRANTFLEEVRK), based on residues -10 to +10 in proprothrombin, are also poor substrates for the carboxylase. Replacement of phenylalanine with alanine at residue 3 (equivalent to position -16 in proprothrombin) in the 28-residue peptide significantly alters the Km to 200 microM. A synthetic propeptide (HVFLAPQQARSLLQRVRRY), homologous to residues -18 to -1 in proprothrombin, inhibited carboxylation of the 28-residue peptide substrate with a Ki of 3.5 microM, but modestly stimulated the carboxylation of the 5- and 10-residue peptide substrates. These results indicate that an intact carboxylation recognition site is required for efficient in vitro carboxylation and that this site includes critical residues in region -18 to -11 of proprothrombin. The carboxylation recognition site in the propeptide binds directly to the carboxylase or to a closely associated protein.  相似文献   

5.
The cone snail is the only invertebrate system in which the vitamin K-dependent carboxylase (or gamma-carboxylase) and its product gamma-carboxyglutamic acid (Gla) have been identified. It remains the sole source of structural information of invertebrate gamma-carboxylase substrates. Four novel Gla-containing peptides were purified from the venom of Conus textile and characterized using biochemical methods and mass spectrometry. The peptides Gla(1)-TxVI, Gla(2)-TxVI/A, Gla(2)-TxVI/B and Gla(3)-TxVI each have six Cys residues and belong to the O-superfamily of conotoxins. All four conopeptides contain 4-trans-hydroxyproline and the unusual amino acid 6-l-bromotryptophan. Gla(2)-TxVI/A and Gla(2)-TxVI/B are isoforms with an amidated C-terminus that differ at positions +1 and +13. Three isoforms of Gla(3)-TxVI were observed that differ at position +7: Gla(3)-TxVI, Glu7-Gla(3)-TxVI and Asp7-Gla(3)-TxVI. The cDNAs encoding the precursors of the four peptides were cloned. The predicted signal sequences (amino acids -46 to -27) were nearly identical and highly hydrophobic. The predicted propeptide region (-20 to -1) that contains the gamma-carboxylation recognition site (gamma-CRS) is very similar in Gla(2)-TxVI/A, Gla(2)-TxVI/B and Gla(3)-TxVI, but is more divergent for Gla(1)-TxVI. Kinetic studies utilizing the Conusgamma-carboxylase and synthetic peptide substrates localized the gamma-CRS of Gla(1)-TxVI to the region -14 to -1 of the polypeptide precursor: the Km was reduced from 1.8 mm for Gla (1)-TxVI lacking a propeptide to 24 microm when a 14-residue propeptide was attached to the substrate. Similarly, addition of an 18-residue propeptide to Gla(2)-TxVI/B reduced the Km value tenfold.  相似文献   

6.
The γ-glutamyl carboxylase utilizes four substrates to catalyze carboxylation of certain glutamic acid residues in vitamin K-dependent proteins. How the enzyme brings the substrates together to promote catalysis is an important question in understanding the structure and function of this enzyme. The propeptide is the primary binding site of the vitamin K-dependent proteins to carboxylase. It is also an effector of carboxylase activity. We tested the hypothesis that binding of substrates causes changes to the carboxylase and in turn to the substrate-enzyme interactions. In addition we investigated how the sequences of the propeptides affected the substrate-enzyme interaction. To study these questions we employed fluorescently labeled propeptides to measure affinity for the carboxylase. We also measured the ability of several propeptides to increase carboxylase catalytic activity. Finally we determined the effect of substrates: vitamin K hydroquinone, the pentapeptide FLEEL, and NaHCO3, on the stability of the propeptide-carboxylase complexes. We found a wide variation in the propeptide affinities for carboxylase. In contrast, the propeptides tested had similar effects on carboxylase catalytic activity. FLEEL and vitamin K hydroquinone both stabilized the propeptide-carboxylase complex. The two together had a greater effect than either alone. We conclude that the effect of propeptide and substrates on carboxylase controls the order of substrate binding in such a way as to ensure efficient, specific carboxylation.  相似文献   

7.
The rat liver microsomal vitamin K-dependent carboxylase catalyzes the carboxylation of glutamyl to gamma-carboxyglutamyl residues in the presence of reduced vitamin K, O2 and CO2. The specificity of the enzyme for the vitamin substrate has been probed by the synthesis of a number of menaquinone-2 (2-methyl-3-geranyl-1,4-naphthoquinone) derivatives. The 2-des-methyl and 2-ethyl-MK-2 derivatives had very low activity as substrates. The 6- or 7-methyl-MK-2 derivatives and (6,7)-chloro-MK-2 were relatively high Vmax substrates with Km values increased over that seen for K-2. The 5- or 8-methyl-MK-2 derivatives were low Vmax substrates but also demonstrated low Km values. Although these observations suggested that 5-methyl-MK-2 might be a competitive inhibitor of the carboxylation reaction, it was not an effective inhibitor of either phylloquinone or 6-methyl-MK-2-dependent carboxylation.  相似文献   

8.
The properties of the microsomal vitamin K-dependent carboxylase from the livers of the adult ox and dicoumarol-treated calf were investigated. The enzymes from both sources utilized glutamic residues of synthetic peptides as substrates and could be solubilized with Triton X-100 similarly to the enzyme from vitamin K-deficient rat liver. Under the optimal assay conditions, the microsomes from calf liver had peptide carboxylase activity comparable with that of the rat liver microsomes and 6.5-fold that of adult ox liver microsomes. The apparent Km for reduced vitamin K and the ionic strength optima of the calf and adult ox enzyme clearly differ from those of the rat enzyme. Pyridoxal phosphate activated the adult ox carboxylase only slightly, whereas the calf enzyme was activated by pyridoxal phosphate as effectively as was the enzyme from the vitamin K-deficient rat. Mn2+ activated the adult ox enzyme 9-fold and calf enzyme 22-fold under optimal conditions (no KCl). Three other divalent metal cations (Ca2+, Ba2+, and Mg2+) activated the adult ox and calf enzymes to about half the extent caused by Mn2+, KCl inhibited this activation. The vitamin K-dependent carboxylase from the dicoumarol-treated calf is apparently more tightly bound to the microsomal membrane than is the adult ox enzyme. In many other respects (pH optimum), temperature optimum, Km values for peptide substrate, substrate specificity, inhibitor effects), the properties of the adult ox and calf enzymes resemble closely those of the rat enzyme.  相似文献   

9.
Rat liver microsomes contain a triton X-100 solubilizable vitamin K-dependent carboxylase activity that converts specific glutamyl residues of precursor proteins to γ-carboxyglutamyl residues. This activity has been studied utilizing synthetic peptides as substrates for the enzyme. When compared to the carboxylation of the endogenous microsomal precursors, the peptide carboxylase activity is more sensitive to the action of various inhibitors, and requires a higher concentration of vitamin K for maximal activity. The apparent Km for the peptide Phe-Leu-Glu-Glu-Leu was found to be 4 mM. Substrate specificity depends on residues adjacent to the carboxylated Glu residues and macromolecular recognition sites.  相似文献   

10.
The vitamin K-dependent (VKD) carboxylase converts clusters of Glu residues to gamma-carboxylated Glu residues (Glas) in VKD proteins, which is required for their activity. VKD precursors are targeted to the carboxylase by their carboxylase recognition site, which in most cases is a propeptide. We have identified a second tethering site for carboxylase and VKD proteins that is required for carboxylase activity, called the vitamin K-dependent protein site of interaction (VKS). Several VKD proteins specifically bound an immobilized peptide comprising amino acids 343-355 of the human carboxylase (CVYKRSRGKSGQK) but not a scrambled peptide containing the same residues in a different order. Association with the 343-355 peptide was independent of propeptide binding, because the VKD proteins lacked the propeptide and because the 343-355 peptide did not disrupt association of a propeptide factor IX-carboxylase complex. Analysis with peptides that overlapped amino acids 343-355 indicated that the 343-345 CVY residues were necessary but not sufficient for prothrombin binding. Ionic interactions were also suggested because peptide-VKD protein binding could be disrupted by changes in ionic strength or pH. Mutagenesis of Cys(343) to Ser and Tyr(345) to Phe resulted in 7-11-fold decreases in vitamin K epoxidation and peptide (EEL) substrate and carboxylase carboxylation, and kinetic analysis showed 5-6-fold increases in K(m) values for the Glu substrate. These results suggest that Cys(343) and Tyr(345) are near the catalytic center and affect the active site conformation required for correct positioning of the Glu substrate. The 343-355 VKS peptide had a higher affinity for carboxylated prothrombin (K(d) = 5 microm) than uncarboxylated prothrombin (K(d) = 60 microm), and the basic VKS region may also facilitate exiting of the Gla product from the catalytic center by ionic attraction. Tethering of VKD proteins to the carboxylase via the propeptide-binding site and the VKS region has important implications for the mechanism of VKD protein carboxylation, and a model is proposed for how the carboxylase VKS region may be required for efficient and processive VKD protein carboxylation.  相似文献   

11.
Synthetic peptides including the gamma-carboxylation recognition site and acidic amino acids were compared as substrates for vitamin K-dependent gamma-carboxylation by bovine liver carboxylase. The 28-residue proPT28 (proprothrombin -18 to +10) and proFIX28 (pro-Factor IX -18 to +10) were carboxylated with a Km of 3 microM. The Vmax of proPT28 was 2-3 times greater than that of proFIX28. An analog of proFIX28 that contained the prothrombin propeptide had a Vmax 2-3-fold greater than an analog of proPT28 that contained the Factor IX propeptide. proFIX28/RS-1, based upon Factor IX Cambridge, proFIX28/RQ-4, based upon Factor IX Oxford 3, and proFIX28 had equivalent Km and Vmax values. Analogs of proPT28 containing Ala6-Glu7 or Glu6-Ala7 were carboxylated at equivalent rates. A peptide containing Asp6-Asp7 was carboxylated at a rate of about 1% of that of Glu carboxylation. Carboxylation of peptides containing Asp6-Glu7 and Glu6-Asp7 yielded results identical with peptides containing Ala6-Glu7 and Glu6-Ala7. Carboxymethylcysteine was not carboxylated when substituted for Glu6 in a peptide containing Asp7. These results indicate that the prothrombin propeptide is more efficient in the carboxylation process than is the Factor IX propeptide, but that both propeptides direct carboxylation; the gamma-carboxylation recognition site does not include residues -4 and -1; aspartic acid and carboxymethylcysteine are poor substrates for the carboxylase, but aspartic acid does not inhibit the carboxylation of adjacent glutamic acids.  相似文献   

12.
Stanley TB  Humphries J  High KA  Stafford DW 《Biochemistry》1999,38(47):15681-15687
The binding of the gamma-glutamyl carboxylase to its protein substrates is mediated by a conserved 18 amino acid propeptide sequence found in all vitamin K-dependent proteins. We recently found that the apparent affinities of the naturally occurring propeptides for the carboxylase vary over a 100-fold range and that the propeptide of bone Gla protein has severely impaired affinity for the carboxylase [Stanley, T. B., et al. (1999) J. Biol. Chem. 274, 16940-16944 (1)]. Here we report a consensus propeptide sequence that binds tighter (K(i) = 0.43 nM) to the carboxylase than any known propeptide sequence. Comparing the factor IX propeptide to the propeptides of protein C, bone Gla protein, and prothrombin, the weakest binding propeptides, allowed us to predict which residues might be responsible for these substrates' relatively weak binding to the carboxylase. We then made propeptides with the predicted amino acid changes and determined their binding affinities. The reduced binding affinity of these propeptides relative to that of FIX is due to residues -15 in protein C, -10 and -6 in bone Gla protein, and -9 in prothrombin. A role for the -9 position was not previously recognized but is further shown by our identification of a new, naturally occurring mutation at this position in factor IX which causes a warfarin-sensitive hemophilia B phenotype. In addition, we find that propeptides with mutations found in warfarin-sensitive patients have reduced affinity for the carboxylase, suggesting a physiological relevance of propeptide binding affinity.  相似文献   

13.
Activity of the rat liver microsomal vitamin K-dependent carboxylase has been studied at various concentrations of detergent. The activity which could be solubilized by 0.25% Triton X-100 was low but could be greatly increased if vitamin K-deficient rats were given vitamin K a few minutes before they were killed. At higher concentrations of Triton, more activity was solubilized and this effect was not seen. In vitro carboxylation of endogenous microsomal proteins was decreased by 80-90% if vitamin K was administered 1 min before rats were killed, but the amount of assayable prothrombin precursor was decreased by only 20%. Decarboxylated vitamin K-dependent rat plasma proteins were not substrates for the carboxylase and did not influence peptide carboxylase activity significantly. Purified microsomal prothrombin precursors did, however, stimulate carboxylation of peptide substrate and were used as a substrate for the carboxylase in a preparation from precursor depleted vitamin K-deficient rats.  相似文献   

14.
The vitamin K-dependent gamma-glutamyl carboxylase catalyzes the posttranslational modification of select glutamate residues of its vitamin K-dependent substrates to gamma-carboxyglutamate. In this report, we describe a new fluorescence assay that is sensitive and specific for the propeptide binding site of active carboxylase. We employed the assay to make three important observations: (1) A tight binding fluorescein-labeled consensus propeptide can be used to quantify the active fraction of the enzyme. (2) The off-rate for a fluorescein-labeled factor IX propeptide was 3000-fold slower than the rate of carboxylation, a difference that may explain how carboxylase can carry out multiple carboxylations of a substrate during the same binding event. (3) We show evidence that substrate binding to the active site modifies the propeptide binding site of carboxylase. The significant (9-fold) differences in off-rates for the propeptide in the presence and absence of its co-substrates may represent a release mechanism for macromolecular substrates from the enzyme. Additionally, sedimentation velocity and equilibrium experiments indicate a monomeric association of enzyme with propeptide. Furthermore, the carboxylase preparation is monodisperse in the buffer used for our studies.  相似文献   

15.
The vitamin K-dependent gamma-glutamyl carboxylase binds an 18-amino acid sequence usually attached as a propeptide to its substrates. Price and Williamson (Protein Sci. (1993) 2, 1997-1998) noticed that residues 495-513 of the carboxylase shares similarity with the propeptide. They suggested that this internal propeptide could bind intramolecularly to the propeptide binding site of carboxylase, thereby preventing carboxylation of substrates lacking a propeptide recognition sequence. To test Price's hypothesis, we created nine mutant enzyme species that have single or double mutations within this putative internal propeptide. The apparent K(d) values of these mutant enzymes for human factor IX propeptide varied from 0.5- to 287-fold when compared with that of wild type enzyme. These results are consistent with the internal propeptide hypothesis but could also be explained by these residues participating in propeptide binding site per se. To distinguish between the two alternative hypotheses, we measured the dissociation rates of propeptides from each of the mutant enzymes. Changes in an internal propeptide should not affect the dissociation rates, but changes to a propeptide binding site may affect the dissociation rate. We found that dissociation rates varied in a manner consistent with the apparent K(d) values measured above. Furthermore, kinetic studies using propeptide-containing substrates demonstrated a correlation between the affinity for propeptide and V(max). Taken together, our results indicated that these mutations affected the propeptide binding site rather than a competitive inhibitory internal propeptide sequence. These results agree with our previous observations, indicating that residues in this region are involved in propeptide binding.  相似文献   

16.
Vitamin-K-dependent plasma proteins contain a highly conserved propeptide sequence located between the classical hydrophobic leader sequence and the N-terminus of the mature protein. This acts as a recognition sequence for the vitamin-K-dependent carboxylase which catalyses the conversion of specific glutamate residues to gamma-carboxyglutamate (Gla) residues in the adjacent Gla domain. Protein engineering of the 18 residue propeptide from human factor IX has highlighted the importance of residues -16Phe and -10Ala with respect to carboxylase recognition. In addition, studies of haemophilia B patients have shown that C-terminal propeptide residues -4Arg and -1Arg are required for proteolysis of the propeptide from the mature protein. To extend these previous studies we have introduced two novel mutations into the propeptide of human factor IX at positions -17(Val----Asp) and -6(Leu----AsP), and studied the effect of these changes on gamma-carboxylation and proteolytic processing. Both mutations reduce the expression of a calcium-dependent epitope in the Gla domain; however, only -6Leu----Asp shows reduced binding to barium sulphate. In addition, this latter mutation prevents proteolytic processing of the propeptide. These data support the current hypothesis that the propeptide contains two recognition elements: one for carboxylase recognition located towards the N-terminus, and one for propeptidase recognition located near the C-terminus.  相似文献   

17.
Vitamin K-dependent carboxylase activity has been demonstrated in the crude microsomal fraction of the intima of bovine aortae. The procedure for the isolation of vessel wall carboxylase is a slight modification of the general preparation procedure for tissue microsomes. The highest activity of the non-hepatic enzyme was observed at 25 degrees C and hardly any NADH-dependent vitamin K reductase could be demonstrated. The optimal reaction conditions for both vessel wall as well as liver carboxylase were similar: 0.1 M-NaCl/0.05 M-Tris/HCl, pH 7.4, containing 8 mM-dithiothreitol, 0.4% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulphonic acid (CHAPS), 0.4 mM-vitamin K hydroquinone and 2 M-(NH4)2SO4. Warfarin inhibits the hepatic and non-hepatic carboxylase/reductase enzyme complex more or less to a similar degree. We have measured the apparent Km values for the following substrates: Phe-Leu-Glu-Glu-Leu ('FLEEL'), decarboxylated osteocalcin, decarboxylated fragment 13-29 from descarboxyprothrombin and decarboxylated sperm 4-carboxyglutamic acid-containing (Gla-)protein. The results obtained demonstrated that liver and vessel wall carboxylase may be regarded as isoenzymes with different substrate specificities. The newly discovered enzyme is the first vitamin K-dependent carboxylase which shows an absolute substrate specificity: FLEEL and decarboxylated osteocalcin were good substrates for vessel wall carboxylase, but decarboxylated fragment 13-29 and decarboxylated sperm Gla-protein were not carboxylated at all.  相似文献   

18.
Patients with mutation L394R in gamma-glutamyl carboxylase have a severe bleeding disorder because of decreased biological activities of all vitamin K-dependent coagulation proteins. Vitamin K administration partially corrects this deficiency. To characterize L394R, we purified recombinant mutant L394R and wild-type carboxylase expressed in baculovirus-infected insect cells. By kinetic studies, we analyzed the catalytic activity of mutant L394R and its binding to factor IX's propeptide and vitamin KH(2). Mutant L394R differs from its wild-type counterpart as follows: 1) 110-fold higher K(i) for Boc-mEEV, an active site-specific, competitive inhibitor of FLEEL; 2) 30-fold lower V(max)/K(m) toward the substrate FLEEL in the presence of the propeptide; 3) severely reduced activity toward FLEEL carboxylation in the absence of the propeptide; 4) 7-fold decreased affinity for the propeptide; 5) 9-fold higher K(m) for FIXproGla, a substrate containing the propeptide and the Gla domain of human factor IX; and 6) 5-fold higher K(m) for vitamin KH(2). The primary defect in mutant L394R appears to be in its glutamate-binding site. To a lesser degree, the propeptide and KH(2) binding properties are altered in the L394R mutant. Compared with its wild-type counterpart, the L394R mutant shows an augmented activation of FLEEL carboxylation by the propeptide.  相似文献   

19.
The marine snail Conus is the sole invertebrate wherein both the vitamin K-dependent carboxylase and its product, gamma-carboxyglutamic acid, have been identified. To examine its biosynthesis of gamma-carboxyglutamic acid, we studied the carboxylase from Conus venom ducts. The carboxylase cDNA from Conus textile has an ORF that encodes a 811-amino-acid protein which exhibits sequence similarity to the vertebrate carboxylases, with 41% identity and approximately 60% sequence similarity to the bovine carboxylase. Expression of this cDNA in COS cells or insect cells yielded vitamin K-dependent carboxylase activity and vitamin K-dependent epoxidase activity. The recombinant carboxylase has a molecular mass of approximately 130 kDa. The recombinant Conus carboxylase carboxylated Phe-Leu-Glu-Glu-Leu and the 28-residue peptides based on residues -18 to +10 of human proprothrombin and proFactor IX with Km values of 420 micro m, 1.7 micro m and 6 micro m, respectively; the Km for vitamin K is 52 micro m. The Km values for peptides based on the sequence of the conotoxin epsilon-TxIX and two precursor analogs containing 12 or 29 amino acids of the propeptide region are 565 micro m, 75 micro m and 74 micro m, respectively. The recombinant Conus carboxylase, in the absence of endogenous substrates, is stimulated up to fivefold by vertebrate propeptides but not by Conus propeptides. These results suggest two propeptide-binding sites in the carboxylase, one that binds the Conus and vertebrate propeptides and is required for substrate binding, and the other that binds only the vertebrate propeptide and is required for enzyme stimulation. The marked functional and structural similarities between the Conus carboxylase and vertebrate vitamin K-dependent gamma-carboxylases argue for conservation of a vitamin K-dependent carboxylase across animal species and the importance of gamma-carboxyglutamic acid synthesis in diverse biological systems.  相似文献   

20.
A study of the oxygen requirements of the rat liver microsomal vitamin K-dependent carboxylase and vitamin K 2,3-epoxidase indicated that both enzymes had a Km for O2 in the range 60-80 microM. This value was not influenced by vitamin concentration, alterations in carboxylase substrate, Mn2+, or dithiothreitol, and is consistent with the hypothesis that both activities are catalyzed by the same enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号