首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The minke whale is one of the most abundant species of baleen whales worldwide, yet is rarely sighted in subtropical waters. In the North Pacific, they produce a distinctive sound known as the “boing,” which can be used to acoustically localize individuals. A vessel‐based survey using both visual and passive acoustic monitoring was conducted during the spring of 2007 in a large (616,000 km2) study area encompassing the Mariana Islands. We applied line transect methods to data collected from a towed hydrophone array to estimate the abundance of calling minke whales in our study area. No minke whales were sighted, but there were hundreds of acoustic detections of boings. Computer algorithms were developed to localize calling minke whales from acoustic recordings, resulting in over 30 independent localizations, a six‐fold increase over those estimated during the survey. The two best estimates of abundance of calling minke whales were determined to be 80 and 91 animals (0.13 and 0.15 animals per 1,000 km2, respectively; CV = 34%). These are the first density and abundance estimates for calling minke whales using towed hydrophone array surveys, and the first estimates for this species in the Mariana Islands region. These are considered minimum estimates of the true number of minke whales in the study area.  相似文献   

2.
Sperm whales are present in the Canary Islands year-round, suggesting that the archipelago is an important area for this species in the North Atlantic. However, the area experiences one of the highest reported rates of sperm whale ship-strike in the world. Here we investigate if the number of sperm whales found in the archipelago can sustain the current rate of ship-strike mortality. The results of this study may also have implications for offshore areas where concentrations of sperm whales may coincide with high densities of ship traffic, but where ship-strikes may be undocumented. The absolute abundance of sperm whales in an area of 52933 km2, covering the territorial waters of the Canary Islands, was estimated from 2668 km of acoustic line-transect survey using Distance sampling analysis. Data on sperm whale diving and acoustic behaviour, obtained from bio-logging, were used to calculate g(0) = 0.92, this is less than one because of occasional extended periods when whales do not echolocate. This resulted in an absolute abundance estimate of 224 sperm whales (95% log-normal CI 120–418) within the survey area. The recruitment capability of this number of whales, some 2.5 whales per year, is likely to be exceeded by the current ship-strike mortality rate. Furthermore, we found areas of higher whale density within the archipelago, many coincident with those previously described, suggesting that these are important habitats for females and immature animals inhabiting the archipelago. Some of these areas are crossed by active shipping lanes increasing the risk of ship-strikes. Given the philopatry in female sperm whales, replacement of impacted whales might be limited. Therefore, the application of mitigation measures to reduce the ship-strike mortality rate seems essential for the conservation of sperm whales in the Canary Islands.  相似文献   

3.
There is increasing concern about the potential effects of noise pollution on marine life in the world’s oceans. For marine mammals, anthropogenic sounds may cause behavioral disruption, and this can be quantified using a risk function that relates sound exposure to a measured behavioral response. Beaked whales are a taxon of deep diving whales that may be particularly susceptible to naval sonar as the species has been associated with sonar-related mass stranding events. Here we derive the first empirical risk function for Blainville’s beaked whales (Mesoplodon densirostris) by combining in situ data from passive acoustic monitoring of animal vocalizations and navy sonar operations with precise ship tracks and sound field modeling. The hydrophone array at the Atlantic Undersea Test and Evaluation Center, Bahamas, was used to locate vocalizing groups of Blainville’s beaked whales and identify sonar transmissions before, during, and after Mid-Frequency Active (MFA) sonar operations. Sonar transmission times and source levels were combined with ship tracks using a sound propagation model to estimate the received level (RL) at each hydrophone. A generalized additive model was fitted to data to model the presence or absence of the start of foraging dives in 30-minute periods as a function of the corresponding sonar RL at the hydrophone closest to the center of each group. This model was then used to construct a risk function that can be used to estimate the probability of a behavioral change (cessation of foraging) the individual members of a Blainville’s beaked whale population might experience as a function of sonar RL. The function predicts a 0.5 probability of disturbance at a RL of 150dBrms re µPa (CI: 144 to 155) This is 15dB lower than the level used historically by the US Navy in their risk assessments but 10 dB higher than the current 140 dB step-function.  相似文献   

4.
We estimate the abundance of sperm whales in a 7.8 million km2 study area in the eastern temperate North Pacific using data from a ship-based acoustic and visual line-transect survey in spring 1997. Sperm whales were detected acoustically using a hydrophone array towed at 15 km/h and 100 m depth. The hydrophone array was towed for 14,500 km, and locations were estimated acoustically for 45 distinct sperm whale groups. Whales producing slow clicks (>2-s period) were detected at greater distance (up to 37 km), and the estimation of effective strip widths was stratified based on initial click period. Visual survey effort (using 25° binoculars and naked eyes) covered 8,100 km in Beaufort sea states 0–5 and resulted in only eight sightings. The effective strip width for visual detections was estimated from previous surveys conducted using the same methods and similar vessels in the eastern Pacific. Estimated sperm whale abundance in the study area was not significantly different between acoustic (32,100, CV = 0.36) and visual (26,300, CV = 0.81) detection methods. Acoustic techniques substantially increased the number of sperm whales detected on this line-transect survey by increasing the range of detection and allowing nighttime surveys; however, visual observations were necessary for estimating group size.  相似文献   

5.
In most areas, estimating the presence and distribution of cryptic marine mammal species, such as beaked whales, is extremely difficult using traditional observational techniques such as ship-based visual line transect surveys. Because acoustic methods permit detection of animals underwater, at night, and in poor weather conditions, passive acoustic observation has been used increasingly often over the last decade to study marine mammal distribution, abundance, and movements, as well as for mitigation of potentially harmful anthropogenic effects. However, there is demand for new, cost-effective tools that allow scientists to monitor areas of interest autonomously with high temporal and spatial resolution in near-real time. Here we describe an autonomous underwater vehicle--a glider--equipped with an acoustic sensor and onboard data processing capabilities to passively scan an area for marine mammals in near-real time. The glider was tested extensively off the west coast of the Island of Hawai'i, USA. The instrument covered approximately 390 km during three weeks at sea and collected a total of 194 h of acoustic data. Detections of beaked whales were successfully reported to shore in near-real time. Manual analysis of the recorded data revealed a high number of vocalizations of delphinids and sperm whales. Furthermore, the glider collected vocalizations of unknown origin very similar to those made by known species of beaked whales. The instrument developed here can be used to cost-effectively screen areas of interest for marine mammals for several months at a time. The near-real-time detection and reporting capabilities of the glider can help to protect marine mammals during potentially harmful anthropogenic activities such as seismic exploration for sub-sea fossil fuels or naval sonar exercises. Furthermore, the glider is capable of under-ice operation, allowing investigation of otherwise inaccessible polar environments that are critical habitats for many endangered marine mammal species.  相似文献   

6.
7.
Some beaked whale species are susceptible to the detrimental effects of anthropogenic noise. Most studies have concentrated on the effects of military sonar, but other forms of acoustic disturbance (e.g. shipping noise) may disrupt behavior. An experiment involving the exposure of target whale groups to intense vessel-generated noise tested how these exposures influenced the foraging behavior of Blainville's beaked whales (Mesoplodon densirostris) in the Tongue of the Ocean (Bahamas). A military array of bottom-mounted hydrophones was used to measure the response based upon changes in the spatial and temporal pattern of vocalizations. The archived acoustic data were used to compute metrics of the echolocation-based foraging behavior for 16 targeted groups, 10 groups further away on the range, and 26 non-exposed groups. The duration of foraging bouts was not significantly affected by the exposure. Changes in the hydrophone over which the group was most frequently detected occurred as the animals moved around within a foraging bout, and their number was significantly less the closer the whales were to the sound source. Non-exposed groups also had significantly more changes in the primary hydrophone than exposed groups irrespective of distance. Our results suggested that broadband ship noise caused a significant change in beaked whale behavior up to at least 5.2 kilometers away from the vessel. The observed change could potentially correspond to a restriction in the movement of groups, a period of more directional travel, a reduction in the number of individuals clicking within the group, or a response to changes in prey movement.  相似文献   

8.
Beaked whales produce frequency-modulated echolocation pulses that appear to be species-specific, allowing passive acoustic monitoring to play a role in understanding spatio-temporal patterns. The Cross Seamount beaked whale is known only from its unique echolocation signal (BWC) with no confirmed species identification. This beaked whale spans the Pacific Ocean from the Mariana Archipelago to Baja California, Mexico, south to the equator, but only as far north as latitude 29°N. Within these warm waters, 92% of BWC detections occurred at night, 6% during crepuscular periods, and only 2% during daylight hours. Detections of BWC signals on drifting recorders with a vertical hydrophone array at 150 m depth demonstrated that foraging often occurred shallow in the water column (<150 m). No other species of beaked whale to date has been documented foraging in waters this shallow. Given their nocturnal, shallow foraging dives, this species appears to prefer prey that may be available in the water column only during those hours. The foraging behavior of Cross Seamount beaked whales appears to be unique among all beaked whales, and these findings contribute additional ecological and acoustic information which can help guide future efforts to identify this cryptic whale.  相似文献   

9.
Understanding the seasonal movements and distribution patterns of migratory species over ocean basin scales is vital for appropriate conservation and management measures. However, assessing populations over remote regions is challenging, particularly if they are rare. Blue whales (Balaenoptera musculus spp) are an endangered species found in the Southern and Indian Oceans. Here two recognized subspecies of blue whales and, based on passive acoustic monitoring, four “acoustic populations” occur. Three of these are pygmy blue whale (B.m. brevicauda) populations while the fourth is the Antarctic blue whale (B.m. intermedia). Past whaling catches have dramatically reduced their numbers but recent acoustic recordings show that these oceans are still important habitat for blue whales. Presently little is known about the seasonal movements and degree of overlap of these four populations, particularly in the central Indian Ocean. We examined the geographic and seasonal occurrence of different blue whale acoustic populations using one year of passive acoustic recording from three sites located at different latitudes in the Indian Ocean. The vocalizations of the different blue whale subspecies and acoustic populations were recorded seasonally in different regions. For some call types and locations, there was spatial and temporal overlap, particularly between Antarctic and different pygmy blue whale acoustic populations. Except on the southernmost hydrophone, all three pygmy blue whale acoustic populations were found at different sites or during different seasons, which further suggests that these populations are generally geographically distinct. This unusual blue whale diversity in sub-Antarctic and sub-tropical waters indicates the importance of the area for blue whales in these former whaling grounds.  相似文献   

10.
Collecting enough data to obtain reasonable abundance estimates of whales is often difficult, particularly when studying rare species. Passive acoustics can be used to detect whale sounds and are increasingly used to estimate whale abundance. Much of the existing effort centres on the use of acoustics to estimate abundance directly, e.g. analysing detections in a distance sampling framework. Here, we focus on acoustics as a tool incorporated within mark-recapture surveys. In this context, acoustic tools are used to detect and track whales, which are then photographed or biopsied to provide data for mark-recapture analyses. The purpose of incorporating acoustics is to increase the encounter rate beyond using visual searching only. While this general approach is not new, its utility is rarely quantified. This paper predicts the “acoustically-assisted” encounter rate using a discrete-time individual-based simulation of whales and survey vessel. We validate the simulation framework using existing data from studies of sperm whales. We then use the framework to predict potential encounter rates in a study of Antarctic blue whales. We also investigate the effects of a number of the key parameters on encounter rate. Mean encounter rates from the simulation of sperm whales matched well with empirical data. Variance of encounter rate, however, was underestimated. The simulation of Antarctic blue whales found that passive acoustics should provide a 1.7–3.0 fold increase in encounter rate over visual-only methods. Encounter rate was most sensitive to acoustic detection range, followed by vocalisation rate. During survey planning and design, some indication of the relationship between expected sample size and effort is paramount; this simulation framework can be used to predict encounter rates and establish this relationship. For a case in point, the simulation framework indicates unequivocally that real-time acoustic tracking should be considered for quantifying the abundance of Antarctic blue whales via mark-recapture methods.  相似文献   

11.
12.
Much has been learned from the large scale deployment of acoustic tags on aquatic species and associated networks of riverine and marine receivers. While effective in the linear environment of river systems, marine systems limit the ability to provide spatial information on fish movements and distributions due to a combination of costs, logistics, and lack of off-shore technology. At the same time, each year millions of dollars worth of tags are being released into the aquatic environment with extended battery/transmission life, yet detections are limited to coastal arrays. Here we explore new methods of tracking acoustically tagged species in the marine environment. A new miniaturized acoustic receiver, the Vemco Mobile Transceiver (VMT) can be carried by large marine organisms. In combination with satellite and archival tag technology, VMTs were deployed on northern elephant seals to monitor acoustic tags encountered during their migrations across the Northeast Pacific. Early results include acoustic detections of tagged great white sharks, salmon sharks, Chinook salmon, steelhead, lingcod, green sturgeon and other elephant seals. We also propose several alternative directions for future effort: 1) analyzing the growing number of passive acoustic survey recordings made from hydrophone arrays for acoustic tag detections, 2) working with acoustic technology providers to develop hull-mounted receiver systems for the thousands of ocean going vessels around the world and 3) integrating acoustic receiver technology into the thousands of moored and drifting oceanographic buoy arrays.  相似文献   

13.
Density estimation for marine mammal species is performed primarily using visual distance sampling or capture‐recapture. Minke whales in Hawaiian waters are very difficult to sight; however, they produce a distinctive “boing” call, making them ideal candidates for passive acoustic density estimation. We used an array of 14 bottom‐mounted hydrophones, distributed over a 60 × 30 km area off Kauai, Hawaii, to estimate density during 12 d of recordings in early 2006. We converted the number of acoustic cues (i.e., boings) detected using signal processing software into a cue density by accounting for the false positive rate and probability of detection. The former was estimated by manual validation, the latter by applying spatially explicit capture‐recapture (SECR) methods to a subset of data where we had determined which hydrophones detected each call. Estimated boing density was 130 boings per hour per 10,000 km2 (95% CI 104–163). Little is known about the population's acoustic behavior, so conversion from boing to animal density is difficult. As a demonstration of the method, we used a tentative boing rate of 6.04 boings per hour, from a single animal tracked in 2009, to give an estimate of 21.5 boing‐calling minke whales per 10,000 km2.  相似文献   

14.
Reliable estimation of the size or density of wild animal populations is very important for effective wildlife management, conservation and ecology. Currently, the most widely used methods for obtaining such estimates involve either sighting animals from transect lines or some form of capture‐recapture on marked or uniquely identifiable individuals. However, many species are difficult to sight, and cannot be easily marked or recaptured. Some of these species produce readily identifiable sounds, providing an opportunity to use passive acoustic data to estimate animal density. In addition, even for species for which other visually based methods are feasible, passive acoustic methods offer the potential for greater detection ranges in some environments (e.g. underwater or in dense forest), and hence potentially better precision. Automated data collection means that surveys can take place at times and in places where it would be too expensive or dangerous to send human observers. Here, we present an overview of animal density estimation using passive acoustic data, a relatively new and fast‐developing field. We review the types of data and methodological approaches currently available to researchers and we provide a framework for acoustics‐based density estimation, illustrated with examples from real‐world case studies. We mention moving sensor platforms (e.g. towed acoustics), but then focus on methods involving sensors at fixed locations, particularly hydrophones to survey marine mammals, as acoustic‐based density estimation research to date has been concentrated in this area. Primary among these are methods based on distance sampling and spatially explicit capture‐recapture. The methods are also applicable to other aquatic and terrestrial sound‐producing taxa. We conclude that, despite being in its infancy, density estimation based on passive acoustic data likely will become an important method for surveying a number of diverse taxa, such as sea mammals, fish, birds, amphibians, and insects, especially in situations where inferences are required over long periods of time. There is considerable work ahead, with several potentially fruitful research areas, including the development of (i) hardware and software for data acquisition, (ii) efficient, calibrated, automated detection and classification systems, and (iii) statistical approaches optimized for this application. Further, survey design will need to be developed, and research is needed on the acoustic behaviour of target species. Fundamental research on vocalization rates and group sizes, and the relation between these and other factors such as season or behaviour state, is critical. Evaluation of the methods under known density scenarios will be important for empirically validating the approaches presented here.  相似文献   

15.
Evaluating changes in the collective behavior of a population can be an indirect method for inferring organismal responses to changing environmental conditions. Apex predators, such as the sperm whale (Physeter macrocephalus), can provide valuable insights into the ecosystem processes of the deep sea, where little direct observation can be made. Sperm whales are often difficult to observe at sea, as they inhabit deep, offshore waters and spend most of their lives beneath the surface. However, sperm whales are extremely amenable to passive acoustic monitoring, as their vocalizations are well-studied, highly distinguishable, produced regularly, and can be detected at relatively long ranges (>10 km). Sperm whales produce distinct clicks in two behavioral contexts (social interaction or foraging/prey capture); thus, we can use acoustic detection of these vocalizations to infer patterns of large-scale, collective behavior, which is similar to studying calling frogs or insects indicating their reproductive phenology. We recorded behaviorally-specific sperm whale vocalizations at three sites in the Northern Gulf of Mexico in July 2010 and 2011. We used these recordings to construct population-level time budgets, an empirical collective metric of behavior, based on the ratio of hours in a day with social clicks to the hours in a day with foraging clicks, and represented this as an “acoustic activity index.” Our index showed significant differences in the proportions of social and foraging behavior across the range of sperm whales in the Northern Gulf of Mexico, and the proportion of social activity increased by more than a factor of two from 2010 to 2011. These differences support previous evidence of differential habitat use by sperm whales in the Gulf of Mexico, and suggest possible changes in environmental conditions between years. Thus, the acoustic activity index may provide a powerful way to evaluate changes in behavior and link them to changing ecological conditions. This novel application of bioacoustics to constructing time budgets and creating a behaviorally-based index at the population scale can serve as an indicator of ecological change, and greatly enhance our ability to understand the behavior and ecology of many acoustically active species.  相似文献   

16.
The Indian Ocean is an area in which a rich suite of cetacean fauna, including at least two subspecies of blue whale, is found; yet little information beyond stranding data and short‐term surveys for this species is available. Pygmy blue whale (Balaenoptera musculus spp.) call data are presented that provide novel information on the seasonal and geographic distribution of these animals. Acoustic data were recorded from January 2002 to December 2003 by hydrophones at three stations of the International Monitoring System, including two near the subequatorial Diego Garcia Atoll and a third southwest of Cape Leeuwin, Australia. Automated spectrogram correlation methods were used to scan for call types attributed to pygmy blue whales. Sri Lanka calls were the most common and were detected year‐round off Diego Garcia. Madagascar calls were only recorded on the northern Diego Garcia hydrophone during May and July, whereas Australia calls were only recorded at Cape Leeuwin, between December and June. Differences in geographic and seasonal patterns of these three distinct call types suggest that they may represent separate acoustic populations of pygmy blue whales and that these “acoustic populations” should be considered when assessing conservation needs of blue whales in the Indian Ocean.  相似文献   

17.
Toothed whales rely on sound to echolocate prey and communicate with conspecifics, but little is known about how extreme pressure affects pneumatic sound production in deep-diving species with a limited air supply. The short-finned pilot whale (Globicephala macrorhynchus) is a highly social species among the deep-diving toothed whales, in which individuals socialize at the surface but leave their social group in pursuit of prey at depths of up to 1000 m. To investigate if these animals communicate acoustically at depth and test whether hydrostatic pressure affects communication signals, acoustic DTAGs logging sound, depth and orientation were attached to 12 pilot whales. Tagged whales produced tonal calls during deep foraging dives at depths of up to 800 m. Mean call output and duration decreased with depth despite the increased distance to conspecifics at the surface. This shows that the energy content of calls is lower at depths where lungs are collapsed and where the air volume available for sound generation is limited by ambient pressure. Frequency content was unaffected, providing a possible cue for group or species identification of diving whales. Social calls may be important to maintain social ties for foraging animals, but may be impacted adversely by vessel noise.  相似文献   

18.
In recent years, an increasing number of surveys have definitively confirmed the seasonal presence of fin whales (Balaenoptera physalus) in highly productive regions of the Mediterranean Sea. Despite this, very little is yet known about the routes that the species seasonally follows within the Mediterranean basin and, particularly, in the Ionian area. The present study assesses for the first time fin whale acoustic presence offshore Eastern Sicily (Ionian Sea), throughout the processing of about 10 months of continuous acoustic monitoring. The recording of fin whale vocalizations was made possible by the cabled deep-sea multidisciplinary observatory, “NEMO-SN1”, deployed 25 km off the Catania harbor at a depth of about 2,100 meters. NEMO-SN1 is an operational node of the European Multidisciplinary Seafloor and water-column Observatory (EMSO) Research Infrastructure. The observatory was equipped with a low-frequency hydrophone (bandwidth: 0.05 Hz–1 kHz, sampling rate: 2 kHz) which continuously acquired data from July 2012 to May 2013. About 7,200 hours of acoustic data were analyzed by means of spectrogram display. Calls with the typical structure and patterns associated to the Mediterranean fin whale population were identified and monitored in the area for the first time. Furthermore, a background noise analysis within the fin whale communication frequency band (17.9–22.5 Hz) was conducted to investigate possible detection-masking effects. The study confirms the hypothesis that fin whales are present in the Ionian Sea throughout all seasons, with peaks in call detection rate during spring and summer months. The analysis also demonstrates that calls were more frequently detected in low background noise conditions. Further analysis will be performed to understand whether observed levels of noise limit the acoustic detection of the fin whales vocalizations, or whether the animals vocalize less in the presence of high background noise.  相似文献   

19.
Groups of female and immature sperm whales live at low latitudes and show a stereotypical diving and foraging behavior with dives lasting about 45 min to depths of between 400 and 1200 m. In comparison, physically mature male sperm whales migrate to high latitudes where little is known about their foraging behavior and ecology. Here we use acoustic recording tags to study the diving and acoustic behavior of male sperm whales foraging off northern Norway. Sixty-five hours of tag data provide detailed information about the movements and sound repertoire of four male sperm whales performing 83 dives lasting between 6 and 60 min. Dives ranged in depth between 14 and 1860 m, with a median depth of 175 m, and 92% of the surfacings lasted less than 15 min. The four whales clicked for an average 91% (SD = 10) of the dive duration, where the first usual click was produced at depths ranging between 4 and 218 m and the last usual click at depths ranging between 1 and 1114 m. Echolocation buzzes, which are used as an indication of prey capture attempts, were emitted at depths between 17 and 1860 m, during both the descent and ascent phase of deep dives. The foraging behavior varied markedly with depth, with the timing and duration of prey capture attempts during shallow dives suggesting that the whales target more sparsely distributed prey. In contrast, deep dives involve frequent prey capture attempts and seem to target more dense food layers. The evidence of exploitation of different food layers, including epipelagic prey, is consistent with the hypothesis that male sperm whales may migrate to high latitudes to access a productive, multi-layered foraging habitat.  相似文献   

20.
We propose an approximate maximum likelihood method for estimating animal density and abundance from binary passive acoustic transects, when both the probability of detection and the range of detection are unknown. The transect survey is purposely designed so that successive data points are dependent, and this dependence is exploited to simultaneously estimate density, range of detection, and probability of detection. The data are assumed to follow a homogeneous Poisson process in space, and a second-order Markov approximation to the likelihood is used. Simulations show that this method has small bias under the assumptions used to derive the likelihood, although it performs better when the probability of detection is close to 1. The effects of violations of these assumptions are also investigated, and the approach is found to be sensitive to spatial trends in density and clustering. The method is illustrated using real acoustic data from a survey of sperm and humpback whales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号