首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hereditary spastic paraplegia (HSP) is a motor neuron disease caused by a progressive degeneration of the motor axons of the corticospinal tract. Point mutations or exon deletions in the microtubule-severing ATPase, spastin, are responsible for approximately 40% of cases of autosomal dominant HSP. Here, we report the 3.3 ? X-ray crystal structure of a hydrolysis-deficient mutant (E442Q) of the human spastin protein AAA domain. This structure is analyzed in the context of the existing Drosophila melanogaster spastin AAA domain structure and crystal structures of other closely related proteins in order to build a more unifying framework for understanding the structural features of this group of microtubule-severing ATPases.  相似文献   

2.
In 1999, mutations in the gene encoding the microtubule severing AAA ATPase spastin were identified as a major cause of a genetic neurodegenerative condition termed hereditary spastic paraplegia (HSP). This finding stimulated intense study of the spastin protein and over the last decade, a combination of cell biological, in vivo, in vitro and structural studies have provided important mechanistic insights into the cellular functions of the protein, as well as elucidating cell biological pathways that might be involved in axonal maintenance and degeneration. Roles for spastin have emerged in shaping the endoplasmic reticulum and the abscission stage of cytokinesis, in which spastin appears to couple membrane modelling to microtubule regulation by severing.  相似文献   

3.
Mutations in human spastin (SPG4) cause an autosomal dominant form of hereditary spastic paraplegia. Sequence analysis revealed that spastin contains the AAA (ATPases associated with diverse cellular activities) domain in the C-terminal region. Recently, it was reported that spastin interacts dynamically with microtubules and displays microtubule-severing activity. A plausible Caenorhabditis elegans homologue of spastin (SPAS-1) has been identified by homology search and phylogenetic analyses. To understand the function of the spastin homologue, we characterized the spas-1 deletion mutant and analyzed spas-1 expression regulation in C. elegans. SPAS-1 was localized with cytoskeletons at the perinuclear region. We found that microtubules were intensely stained at the centrosomal region in the deletion mutant. Furthermore, overexpression of SPAS-1 caused disassembly of microtubule network in cultured cells, while ATPase-deficient SPAS-1 did not. These results indicate that C. elegans SPAS-1 plays an important role in microtubule dynamics. We also found that two kinds of products were generated from spas-1 by alternative splicing in a developmental stage-dependent manner.  相似文献   

4.
5.
The human SPG4 locus encodes the spastin gene, which is responsible for the most prevalent form of autosomal dominant hereditary spastic paraplegia (AD-HSP), a neurodegenerative disorder. Here we identify the predicted gene product CG5977 as the Drosophila homolog of the human spastin gene, with much higher sequence similarities than any other related AAA domain protein in the fly. Furthermore we report a new potential transmembrane domain in the N-terminus of the two homologous proteins. During embryogenesis, the expression pattern of Drosophila spastin becomes restricted primarily to the central nervous system, in contrast to the ubiquitous expression of the vertebrate spastin genes. Given this nervous system-specific expression, it will be important to determine if Drosophila spastin loss-of-function mutations also lead to neurodegeneration.  相似文献   

6.
Spastin is a hexameric ring AAA ATPase that severs microtubules. To see whether the ring complex funnels the energy of multiple ATP hydrolysis events to the site of mechanical action, we investigate here the cooperativity of spastin. Several lines of evidence indicate that interactions among two subunits dominate the cooperative behavior: (i) the ATPase activity shows a sigmoidal dependence on the ATP concentration; (ii) ATPγS displays a mixed-inhibition behavior for normal ATP turnover; and (iii) inactive mutant subunits inhibit the activity of spastin in a hyperbolic dependence, characteristic for two interacting species. A quantitative model based on neighbor interactions fits mutant titration experiments well, suggesting that each subunit is mainly influenced by one of its neighbors. These observations are relevant for patients suffering from SPG4-type hereditary spastic paraplegia and explain why single amino acid exchanges lead to a dominant negative phenotype. In severing assays, wild type spastin is even more sensitive toward the presence of inactive mutants than in enzymatic assays, suggesting a weak coupling of ATPase and severing activity.  相似文献   

7.
Hereditary spastic paraplegia (HSP) is characterized by weakness and spasticity of the lower limbs, owing to degeneration of corticospinal axons. The most common form is due to heterozygous mutations in the SPG4 gene, encoding spastin, a microtubule (MT)-severing protein. Here, we show that neurite growth in immortalized and primary neurons responds in pleiotropic ways to changes in spastin levels. Spastin depletion alters the development of primary hippocampal neurons leading to abnormal neuron morphology, dystrophic neurites, and axonal growth defects. By live imaging with End-Binding Protein 3-Fluorescent Green Protein (EB3-GFP), a MT plus-end tracking protein, we ascertained that the assembly rate of MTs is reduced when spastin is down-regulated. Spastin over-expression at high levels strongly suppresses neurite maintenance, while slight spastin up-regulation using an endogenous promoter enhances neurite branching and elongation. Spastin severing activity is exerted preferentially on stable acetylated and detyrosinated MTs. We further show that SPG4 nonsense or splice site mutations found in hereditary spastic paraplegia patients result in reduced spastin levels, supporting haploinsufficiency as the molecular cause of the disease. Our study reveals that SPG4 is a dosage-sensitive gene, and broadens the understanding of the role of spastin in neurite growth and MT dynamics.  相似文献   

8.
Mechanisms coordinating endosomal degradation and recycling are poorly understood, as are the cellular roles of microtubule (MT) severing. We show that cells lacking the MT-severing protein spastin had increased tubulation of and defective receptor sorting through endosomal tubular recycling compartments. Spastin required the ability to sever MTs and to interact with ESCRT-III (a complex controlling cargo degradation) proteins to regulate endosomal tubulation. Cells lacking IST1 (increased sodium tolerance 1), an endosomal sorting complex required for transport (ESCRT) component to which spastin binds, also had increased endosomal tubulation. Our results suggest that inclusion of IST1 into the ESCRT complex allows recruitment of spastin to promote fission of recycling tubules from the endosome. Thus, we reveal a novel cellular role for MT severing and identify a mechanism by which endosomal recycling can be coordinated with the degradative machinery. Spastin is mutated in the axonopathy hereditary spastic paraplegia. Zebrafish spinal motor axons depleted of spastin or IST1 also had abnormal endosomal tubulation, so we propose this phenotype is important for axonal degeneration.  相似文献   

9.
Mutations in the human spastin gene (SPG4) cause the most prevalent form of autosomal dominant hereditary spastic paraplegia (HSP), a neurodegenerative disorder characterised by progressive weakness and spasticity of the lower limbs. We address the question of intracellular localisation of spastin. Using polyclonal antibodies against N-terminal spastin sequences, we find that the native protein is localised in both the perinuclear cytoplasm and the nucleus. To identify structural motifs within the protein that can explain entry into the nucleus, we developed a reporter system to test nuclear localisation sequence (NLS)-functionality based on four in-frame fused copies of green fluorescent protein. Using this novel tool we demonstrate that spastin carries two NLSs located in exons 1 and 6. Both are independently functional in mediating nuclear entry.  相似文献   

10.
Zhang C  Li D  Ma Y  Yan J  Yang B  Li P  Yu A  Lu C  Ma X 《Journal of cellular biochemistry》2012,113(7):2296-2307
Hereditary spastic paraplegia (HSP) is a neurodegenerative disorder characterized by retrograde axonal degeneration that primarily affects long spinal neurons. The gene encoding spastin has a well-established association with HSP, and protrudin is a known binding partner of spastin. Here, we demonstrate that the N-terminal domain of protrudin mediates the interaction with spastin, which is responsible for neurite outgrowth. We show that spastin promotes protrudin-dependent neurite outgrowth in PC12 cells. To further confirm these physiological functions in vivo, we microinjected zebrafish embryos with various protrudin/spastin mRNA and morpholinos. The results suggest that the spinal cord motor neuron axon outgrowth of zebrafish is regulated by the interaction between spastin and protrudin. In addition, the putative HSP-associated protrudinG191V mutation was shown to alter the subcellular distribution and impair the yolk sac extension of zebrafish, but without significant defects in neurite outgrowth both in PC12 cells and zebrafish. Taken together, our findings indicate that protrudin interacts with spastin and induces axon formation through its N-terminal domain. Moreover, protrudin and spastin may work together to play an indispensable role in motor axon outgrowth.  相似文献   

11.
12.
Molecular basis of inherited spastic paraplegias   总被引:7,自引:0,他引:7  
Recently, paraplegin and spastin have been found to be mutated in two autosomal forms of hereditary spastic paraplegia. Both proteins harbour a common ATPase domain that expresses a chaperone function. Paraplegin is a nuclear-encoded mitochondrial metalloprotease, while the exact role and subcellular localisation of spastin are still unclear.  相似文献   

13.

Background  

Mutations in SPG4 cause the most common form of autosomal dominant hereditary spastic paraplegia, a neurodegenerative disease characterized by weakness and spasticity of the lower limbs due to degeneration of the corticospinal tract. SPG4 encodes spastin, a microtubule-severing ATPase belonging to the AAA family. Two isoforms of spastin, 68 and 60 kDa, respectively, are variably abundant in tissues, show different subcellular localizations and interact with distinct molecules. The isoforms arise through alternative initiation of translation from two AUG codons in exon 1; however, it is unclear how regulation of their expression may be achieved.  相似文献   

14.
15.
Hereditary spastic paraplegias (HSPs) are neurodegenerative diseases caused by mutations in more than 20 genes, which lead to progressive spasticity and weakness of the lower limbs. The most frequently mutated gene causing autosomal dominant HSP is SPG4, which encodes spastin, a protein that belongs to the family of ATPases associated with various cellular activities (AAAs). A number of studies have suggested that spastin regulates microtubule dynamics. We have studied the ATPase activity of recombinant human spastin and examined the effect of taxol-stabilized microtubules on this activity. We used spastin translated from the second ATG and provide evidence that this is the physiologically relevant form. We showed that microtubules enhance the ATPase activity of the protein, a property also described for katanin, an AAA of the same spastin subgroup. Furthermore, we demonstrated that human spastin has a microtubule-destabilizing activity and can bundle microtubules in vitro, providing new insights into the molecular pathogenesis of HSP.  相似文献   

16.
17.
Hereditary spastic paraplegias (HSPs), a group of neurodegenerative disorders characterized by lower-extremity spasticity and weakness, are most commonly caused by mutations in the spastin gene, which encodes a AAA+ ATPase related to the microtubule-severing protein katanin. A Drosophila homolog of spastin (D-spastin) was identified recently, and D-spastin RNAi-treated or genetic null flies show neurological defects, and protein overexpression decreases the density of cellular microtubules. Elucidating spastin's function and disease mechanism will require a more detailed understanding of its structure and biochemical mechanism. Here, we have investigated the effects of D-spastin, individual D-spastin domains, and D-spastin proteins bearing disease mutations on microtubules in cellular and in vitro assays. We show that D-spastin, like katanin, displays ATPase activity and uses energy from ATP hydrolysis to sever and disassemble microtubules; disease mutations abolish or partially interfere with these activities.  相似文献   

18.
Most cases of autosomal-dominant hereditary spastic paraplegia are linked to mutations in SPG4 encoding spastin, a protein involved in microtubule dynamics and membrane trafficking. In pyramidal neurons of the motor cortex and in immortalized motor neurons, spastin is localized to the synaptic terminals and growth cones. However, in other neurons and in proliferating cells spastin is prevalently nuclear. The mechanisms that determine targeting of spastin to the nucleus or the cytoplasm are unknown. We show here that the SPG4 mRNA is able to direct synthesis of two spastin isoforms, 68 and 60 kDa, respectively, through usage of two different translational start sites. Both isoforms are imported into the nucleus, but the 68-kDa isoform contains two nuclear export signals that efficiently drive export to the cytoplasm. Nuclear export is leptomycin-B sensitive. The cytoplasmic 68-kDa spastin isoform is more abundant in the brain and the spinal cord than in other tissues. Our data indicate that spastin function is modulated through usage of alternative translational start sites and active nuclear import and export, and open new perspectives for the pathogenesis of hereditary spastic paraplegia.  相似文献   

19.
AAA+ proteases are essential players in cellular pathways of protein degradation. Elucidating their conformational behavior is key for understanding their reaction mechanism and, importantly, for elaborating our understanding of mutation-induced protease deficiencies. Here, we study the structural dynamics of the Thermotoga maritima AAA+ hexameric ring metalloprotease FtsH (TmFtsH). Using a single-molecule Förster resonance energy transfer approach to monitor ATPase and protease inter-domain conformational changes in real time, we show that TmFtsH—even in the absence of nucleotide—is a highly dynamic protease undergoing sequential transitions between five states on the second timescale. Addition of ATP does not influence the number of states or change the timescale of domain motions but affects the state occupancy distribution leading to an inter-domain compaction. These findings suggest that thermal energy, but not chemical energy, provides the major driving force for conformational switching, while ATP, through a state reequilibration, introduces directionality into this process. The TmFtsH A359V mutation, a homolog of the human pathogenic A510V mutation of paraplegin (SPG7) causing hereditary spastic paraplegia, does not affect the dynamic behavior of the protease but impairs the ATP-coupled domain compaction and, thus, may account for protease malfunctioning and pathogenesis in hereditary spastic paraplegia.  相似文献   

20.
Spastin, the most commonly mutated protein in the autosomal dominant form of hereditary spastic paraplegia (AD-HSP) has been suggested to be involved in vesicular cargo trafficking; however, a comprehensive function of spastin has not yet been elucidated. To characterize the molecular function of spastin, we used the yeast two-hybrid approach to identify new interacting partners of spastin. Here, we report ZFYVE27, a novel member of the FYVE-finger family of proteins, as a specific spastin-binding protein, and we validate the interaction by both in vivo coimmunoprecipitation and colocalization experiments in mammalian cells. More importantly, we report a German family with AD-HSP in which ZFYVE27 (SPG33) is mutated; furthermore, we demonstrate that the mutated ZFYVE27 protein shows an aberrant intracellular pattern in its tubular structure and that its interaction with spastin is severely affected. We postulate that this specific mutation in ZFYVE27 affects neuronal intracellular trafficking in the corticospinal tract, which is consistent with the pathology of HSP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号