首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Sedimentation Analysis of DNA from Irradiated and Unirradiated L Cells   总被引:2,自引:1,他引:1  
DNA, released from unirradiated mouse L-cells gently lysed in a thin layer of 2% sucrose on top of an alkaline sucrose gradient, was found to sediment in a narrow band with a sedimentation coefficient of about 500S. Exposure of cells to increasing doses of X-rays (89-712 rads) continuously reduced the DNA sedimentation velocity until, after about 890 rads, the DNA appeared in a narrow peak with a sedimentation coefficient of approximately 180S. As the dose given to cells was increased beyond 890 rads, the sedimentation coefficient of the DNA released continued to decrease and the sedimentation profiles now broadened in a manner consistent with the random production of single-strand breaks in the DNA. The DNA released from unirradiated cells (500S) is thought to be loosely aggregated and only partially single stranded. It is presumed that cells exposed to low doses of radiation release DNA with marked reductions in sedimentation coefficient because single-strand breaks produced in the DNA aid the alkaline denaturation process. By using the system to be described, it has been possible to demonstrate DNA repair (rejoining of X-ray-induced single-strand breaks) during postirradiation incubation of cells given doses as low as 400 rads.  相似文献   

2.
DNA damage and repair with age in individual human lymphocytes   总被引:14,自引:1,他引:13  
Previous biochemical studies on DNA repair competence and aging have been limited to techniques, such as alkaline elution or nucleoid sedimentation, involving mass cell populations. These techniques provide no information about the distribution of DNA damage and repair among individual cells and are unlikely to detect age-dependent changes affecting a minor fraction of the cell population. We have recently described a microgel electrophoretic assay (Singh et al., 1988) that measures, at the level of the individual cell, single-strand DNA breaks and alkali-sensitive sites. Here, we employ this method to analyze DNA damage and repair in lymphocytes isolated from the peripheral blood of 31 subjects (23 males and 8 females aged 25-91 years) and exposed in vitro to 200 rads of X-irradiation. While basal (pre-irradiation) levels of damage were independent of the age of the donor, an age-dependent increase in DNA damage was observed immediately following irradiation. For all subjects, the mean level of DNA damage was restored to pre-irradiation control levels within 2 h of incubation at 37 degrees C. However, a distribution analysis of DNA damage among cells within each sample indicated the presence of a few highly damaged cells (4-16%) in the 2-h sample, the occurrence of which was significantly more common among aged individuals. These data indicate an age-related decline in DNA repair competence among a small subpopulation of lymphocytes.  相似文献   

3.
The total protein mass co-isolating with the nuclear matrix or nucleoid from Chinese hamster ovary (CHO) cells was observed to increase in heated cells as a function of increasing exposure temperature between 43 degrees C and 45 degrees C or of exposure time at any temperature. The sedimentation distance of the CHO cell nucleoid in sucrose gradients increased with increasing exposure time at 45 degrees C. Both these nuclear alterations correlated in a log-linear manner with heat-induced inhibition of DNA strand break repair. A two-fold threshold increase in nuclear matrix protein mass preceded any substantial inhibition of repair of DNA single-strand breaks. When preheated cells (45 degrees C for 15 min) were incubated at 37 degrees C the nuclear matrix protein mass and nucleoid sedimentation recovered with a half-time of about 5 h, while DNA single-strand-break repair recovered with a half-time of about 2 h. When preheated cells were placed at 41 degrees C (step-down heating; SDH) a further increase was observed in the nuclear matrix protein mass and the half-time of DNA strand break repair, while nucleoid sedimentation recovered toward control values. These results implicate alterations in the protein mass of the nuclear matrix in heat-induced inhibition of repair of DNA single-strand breaks.  相似文献   

4.
The sedimentation of DNA-nuclear protein complexes in 1.9 M salt-neutral sucrose gradients (nucleoid sedimentation) was used to examine the effects of the DNA intercalator 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) on mouse leukemia cell DNA. Mild detergent cell lysis and neutral pH make nucleoid sedimentation an extremely gentle, but sensitive, method to detect DNA scission. DNA breaks reduce the compaction of nucleoids and slow their sedimentation. Nucleoids from m-AMSA-treated cells sedimented as did those from untreated cells, indicating no detectable m-AMSA-dependent alterations in compaction despite an apparent underlying DNA break frequency of approximately 3 per 10(6) nucleotides, as measured by alkaline elution with proteinase. Mild proteinase digestion of cell lysates prior to nucleoid sedimentation unmasked some, but not all, of the underlying breaks. The frequency of DNA-protein cross-links in nucleoids from cells treated with m-AMSA was comparable to the single-strand break frequency produced by m-AMSA in whole cells. These results indicate that m-AMSA-induced DNA-protein cross-links conceal DNA breaks so as to prevent swiveling around the breaks within the nucleoids. This unique sort of DNA scission is consistent with the involvement of topoisomerases in the DNA breaks elicited by intercalators in mammalian cells.  相似文献   

5.
The radiation-sensitive mutant M10 of mouse lymphoma L5178Y cells was examined for its ability to rejoin DNA single-strand breaks induced by gamma-rays. The alkaline sucrose gradient sedimentation analysis revealed that M10 cells repaired single-strand breaks but simultaneously produced increasing amounts of small DNA fragments with time of postirradiation incubation, something which was not observed in L5178Y cells. Since small fragments did not appear in M10 cells irradiated at room temperature, DNA fragmentation may result from cold treatment during irradiation followed by incubation at 37 degrees C. This indicates that the cold susceptibility is characteristic of M10 cells and is not related to radiation sensitivity of this mutant. This conclusion is supported by the finding that no DNA degradation takes place after cold treatment with a subsequent incubation in the other radiosensitive mutant LX830 that belongs to the same complementation group as M10.  相似文献   

6.
A method has been developed for registration of sedimentation diagrams of alkaline lysates of mammalian cells based on measuring UV-absorption of fractions of linear sucrose gradient during its passage down the flow of UV-cord. DNA sedimentation in alkaline lysates of irradiated bone marrow cells of rats was analyzed. The ability of these cells to repair single-strand breaks during the postirradiation incubation in buffer at 37 degrees C was demonstrated. The proposed method could be applied for screening the compounds affecting the damage and repair of DNA in a cell.  相似文献   

7.
When a growing culture of Escherichia coli was exposed to 3 X 10(-6) M Cd2+, 85 to 95% of the cells lost their ability to form colonies on agar plates. Loss of viability was accompanied by considerable single-strand breakage in the DNA, with no detectable increase in double-strand breaks. A direct correlation appeared to exist between the number of single-strand breaks and the concentrations of Cd2+ to which the cells were exposed. Exposure of DNA in vitro to a Cd2+ concentration of 3 X 10(-6) M or higher, followed by sedimentation in alkaline sucrose gradients, demonstrated no single-strand breaks. Cadmium-exposed cells recovered viability when incubated in Cd2+-free liquid medium containing 10 mM hydroxyurea. During the early period of recovery, there was a lag in the incorporation of labeled thymidine, but cellular DNA, at least in part, appeared to be repaired.  相似文献   

8.
The X-ray resistance of logarithmic phase cells of Escherichia coli K-12 is enhanced threefold by growth in rich medium versus minimal medium (N. J. Sargentini, W. P. Diver, and K. C. Smith, Radiat. Res. 93, 364-380, 1983). In this work, X-ray-induced DNA strand breaks were assayed by sedimentation in alkaline and neutral sucrose gradients to correlate the enhanced survival of rich-medium-grown cells with an enhanced capacity for DNA repair. While rich-medium-grown cells showed no enhanced capacity for repairing DNA single-strand breaks in buffer, i.e., fast, polA-dependent repair, they did show an enhanced capacity to repair both single-strand and double-strand breaks in growth medium, i.e., slow, recA-dependent repair. This enhanced capacity for DNA repair in rich-medium-grown cells was inhibited by rifampicin post-treatment, indicating the requirement for de novo RNA synthesis. Kinetic studies indicated that the repair of DNA double-strand breaks was a complex process. Relative to the sedimentation rate in neutral sucrose gradients of nonirradiated DNA, the sedimentation rate of X-irradiated DNA first changed from slow to very fast. Based on alkaline sucrose gradient sedimentation studies, all the strand breaks had been repaired during the formation of the very fast sedimenting DNA. With continued incubation, the sedimentation rate of the DNA on neutral sucrose gradients decreased to the normal rate.  相似文献   

9.
Summary Unscheduled DNA synthesis (UDS) suggested a higher DNA repair capacity of X-irradiated rat thymic (T) cells when compared to splenic (S) cells (Tempel 1980). In the present investigations, damage and repair of DNA supercoiling was measured in T- and S-cells following X-irradiation in vitro by using the nucleoid sedimentation technique and a simplified low-shearing viscometric test. - X-irradiation resulted in a dose (0.6–19.2 Gy) - dependent reduction in sedimentation and viscosity of nucleoids. Within a post-irradiation period of 30–45 min after a challenge dose of 19.2 Gy, DNA repair was accompanied by an increase in nucleoid sedimentation and viscosity in T-cells by about 60 and 300, in S-cells by almost 40 and 100%, resp. The increase in nucleoid viscosity within a 30 min repair period could be reduced in a concentration-dependent manner by DNA polymerase - inhibitors and proteinase K. - The higher DNA repair capacity of T-cells as reflected by UDS is confirmed therefore by the nucleoid characteristics. Apart from this suggestion, measuring nucleoid viscosity may be considered as a sensitive, simple and rapid device to detect radiation-induced DNA supercoiling phenomena.  相似文献   

10.
Using the in vitro human diploid fibroblast model, we tested theories of aging which hypothesize that either accumulation of DNA damage or decreased DNA repair capacity is causally related to cellular senescence. Between population doubling level (PDL) 32 and 71, fetal lung-derived normal diploid human fibroblasts (IMR 90) were assayed for both DNA single-strand breaks (SSBs, spontaneous and induced by 6 Gy) and DNA double-strand breaks (DSBs, spontaneous and induced by 100 Gy). After gamma-irradiation cells were kept on ice unless undergoing repair incubation at 37 degrees C for 7.5-120 min or 18-24 h. To assay DNA strand breaks we used the filter elution technique in conjunction with a fluorometric determination of DNA which is not biased in favor of proliferating aging cells as are radioactive labelling methods. We found no change with in vitro age in the accumulation of spontaneous SSBs or DSBs, nor in the kinetics or completeness of DNA strand rejoining after gamma-irradiation. Cells at varying PDLs rejoined approx. 90% of SSBs and DSBs after 60 min repair incubation and 100% after 18-24 h repair incubation. We conclude that aging and senescence as measured by proliferative lifespan in IMR 90 cells are neither accompanied nor caused by accumulation of DNA strand breaks or by diminished capacity to rejoin gamma-radiation-induced SSBs or DSBs in DNA.  相似文献   

11.
The effect of antitumor antibiotic neocarzinostatin on DNA replication in HeLa cells was studied by pulse-labeling of DNA with [3H]thymidine and sedimentation analysis of the DNA with alkaline sucrose gradients. The drug, which produced DNA damage, primarily inhibited the replicon initiation in the cells at low doses (less than or equal to 0.1 microgram/ml), and at high doses (greater than or equal to 0.5 microgram/ml) inhibited the DNA chain elongation. An analysis of the number of single-strand breaks of parental DNA, induced by neocarzinostatin, indicated that inhibition of the initiation occurred with introduction of single-strand breaks of less than 1.5 . 10(4)/cell, while inhibition of the elongation occurred with introduction of single-strand breaks of more than 7.5 . 10(4)/cell. Assuming that the relative molecular mass of DNA/HeLa cell was about 10(13) Da, the target size of DNA for inhibition of replicon initiation was calculated to be about 10(9) Da, such being close to an average size of loop DNA in the cell and for inhibition of chain elongation, 1-2 . 10(8) Da which was of the same order of magnitude as the size of replicons. Recovery of inhibited DNA replication by neocarzinostatin occurred during post-incubation of the cells and seemed to correlate with the degree of rejoining of the single-strand breaks of parental DNA. Caffeine and theophylline enhanced the recovery of the inhibited replicon initiation, but did not aid in the repair of the breaks in parental DNA.  相似文献   

12.
The extremely gentle lysis and unfolding procedures that have been developed for the isolation of nucleoid deoxyribonucleic acid (DNA; K. M. Ulmer et al., J. Bacteriol. 138:475-485, 1979) yield undamaged, replicating genomes, thus permitting direct measurement of the formation and repair of DNA double-strand breaks at biologically significant doses of ionizing radiation. Repair of ionizing radiation damage to folded chromosomes of Escherichia coli K-12 strain AB2497 was observed within 2 to 3 h of post-irradiation incubation in growth medium. Such behavior was not observed after post-irradiation incubation in growth medium of a recA13 strain (strain AB2487). A model based on recombinational repair is proposed to explain the formation of 2,200 to 2,300S material during early stages of incubation and to explain subsequent changes in the gradient profiles. Association of unrepaired DNA with the plasma membrane is proposed to explain the formation of a peak of rapidly sedimenting material (greater than 3,100S) during the later stages of repair. Direct evidence of repair of double-strand breaks during post-irradiation incubation in growth medium was obtained from gradient profiles of DNA from ribonuclease-digested chromosomes. The sedimentation coefficient of broken molecules was restored to the value of unirradiated DNA after 2 to 3 h of incubation, and the fraction of the DNA repaired in this fashion was equal to the fraction of cells that survived at the same dose. An average of 2.7 double-strand breaks per genome per lethal event was observed, suggesting that one to two double-strand breaks per genome are repairable in E. coli K-12 strain AB2497.  相似文献   

13.
Chromatin has been isolated from cultured Chinese-hamster lung fibroblasts as an expanded aqueous gel. The DNA in isolated chromatin has been examined by sedimentation on alkaline sucrose gradients. The average molecular weight of the DNA has been determined to be 50 million. gamma-irradiation of isolated chromatin degrades the DNA to lower molecular weight. The yield of single-strand breaks in the DNA is 0.02 single-strand breaks per krad-10(6) dalton, calculated from a dose-range of &--400 krad and covering a DNA molecular weight range of 2 X 10(7)-1.4 X 10(5). There is a considerable difference in the efficiency of the formation of single-strand breaks in DNA irradiated as isolated chromatin compared with chromatin irradiated in whole cells before isolation. For isolated chromatin, values of 6 dV per break have been calculated compared with about 80 eV per break for chromatin irradiated in whole cells, which suggest a large contribution from indirect action by aqueous radicals in isolated chromatin.  相似文献   

14.
A study was made of sedimentation properties of the nucleoid (chromatin) of HeLa cells with radio- and thermostable mode of DNA synthesis induced by 5-fluorodeoxyuridine (FUdR). After the incubation of HeLa cells with FUdR (10(-6) M, 6 h or 24 h) the rate of nucleoid sedimentation was shown to rise by 40 and 25%, respectively. Maximum relaxation of the nucleoid was observed under 5 mg/ml ethidium bromide concentration in sucrose gradients. After the incubation with FUdR the nucleoid relaxes to a lesser extent, and after irradiation its response to ethidium bromide in various concentrations was similar to that of intact nucleoid, and by this property the "FUdR nucleoid" differs essentially from the irradiated "normal nucleoid". A model of chromatin structure of cells exposed to FUdR is proposed, based on the transformation of large domains in small ones, for the explanation of radioresistant DNA synthesis.  相似文献   

15.
DNA damage and repair provoked by ethidium azide (EA) photoaffinity labeling in mouse leukemia cells was studied by measuring sedimentation properties of nucleoids in neutral sucrose gradients, and it was found that the strand opening step was faster than that which followed damage of cells by ultraviolet (UV) light. The two insults were compared at levels of damage which gave the same overall rates of repair synthesis in intact cells and which required the same length of time to complete repair, as judged by the restoration of supercoiling of the isolated nucleoids. In the case of UV, single-strand breaks in DNA were detectable at 30 min, maximum at 2 h, and the superhelical properties restored at 21 h. With photoaffinity labeling, single-strand breaks were prominent immediately, even when photolabeling of cells was done on ice, but restoration of DNA supercoiling still required 21 h. Photolabeling of isolated nucleoids or isolated viral DNA with EA failed to introduce DNA strand breaks. However, it was discovered that photoaffinity labeling of DNA with EA resulted in alkali labile sites shown by single strand breaks produced on alkaline sucrose sedimentation or by alkali exposure followed by sedimentation on neutral formamide gradients. These results suggest that the drug attachment sites should be identifiable by the location of such single strand breaks.  相似文献   

16.
The relationship between molecular and cellular repair from potentially lethal damage (PLD) induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was investigated in exponentially growing V79 Chinese hamster cells. We compared the repair processes by an alkaline sucrose sedimentation analysis and a colony formation assay. MNNG-treated cells were exposed to the conditioned medium (CM) from density-inhibited plateau-phase V79 cell cultures, as a post-treatment for the induction of PLD repair. When MNNG-treated cells were postincubated in CM, cell survival continuously increased for 18 h, and during this period, DNA replication was substantially suppressed. CM did not inhibit the rejoining of the single-strand breaks of parental DNA. Rather, parental DNA fragments sedimented more rapidly when postincubated in CM than in fresh medium. These data indicate that cellular recovery from MNNG-induced PLD increases in proportion to the resealing of MNNG-induced single-strand breaks of DNA during the suppression of DNA replication, suggesting that excision repair is involved in the PLD repair process.  相似文献   

17.
Yeast cells deficient in DNA ligase were also deficient in their capacity to rejoin single-strand scissions in prelabeled nuclear DNA. After high-dose-rate gamma irradiation (10 and 25 krads), cdc9-9 mutant cells failed to rejoin single-strand scissions at the restrictive temperature of 37 degrees C. In contrast, parental (CDC9) cells (incubated with mutant cells both during and after irradiation) exhibited rapid medium-independent DNA rejoining after 10 min of post-irradiation incubation and slower rates of rejoining after longer incubation. Parental cells were also more resistant than mutant cells to killing by gamma irradiation. Approximately 2.5 +/- 0.07 and 5.7 +/- 0.6 single-strand breaks per 10(8) daltons were detected in DNAs from either CDC9 or cdc9-9 cells converted to spheroplasts immediately after 10 and 25 krads of irradiation, respectively. At the permissive temperature of 23 degrees C, the cdc9-9 cells contained 2 to 3 times the number of DNA single-strand breaks as parental cells after 10 min to 4 h of incubation after 10 krads of irradiation, and two- to eightfold more breaks after 10 min to 2.5 h of incubation after 25 krads of irradiation. Rejoining of single-strand scissions was faster in medium. After only 10 min in buffered growth medium and after 10 krads of irradiation, the number of DNA single-strand breaks was reduced to 0.32 +/- 0.3 (at 23 degrees C) or 0.21 +/- 0.05 (at 37 degrees C) per 10(8) daltons in parental cells, but remained at 2.1 +/- 0.06 (at 23 degrees C) or 2.3 +/- 0.07 (at 37 degrees C) per 10(8) daltons in mutant cells. After 10 or 25 krads of irradiation plus 1 h of incubation in medium at 37 degrees C, only DNA from CDC9 cells was rejoined to the size of DNA from unirradiated cells, whereas at 23 degrees C, DNAs in both strains were completely rejoined.  相似文献   

18.
Induction and repair of double- and single-strand DNA breaks have been measured after decays of 125I and 3H incorporated into the DNA and after external irradiation with 4 MeV electrons. For the decay experiments, cells of wild type Escherichia coli K-12 were superinfected with bacteriophage lambda DNA labelled with 5'-(125I)iodo-2'-deoxyuridine or with (methyl-3H)thymidine and frozen in liquid nitrogen. Aliquots were thawed at intervals and lysed at neutral pH, and the phage DNA was assayed for double- and single-strand breakage by neutral sucrose gradient centrifugation. The gradients used allowed measurements of both kinds of breaks in the same gradient. Decays of 125I induced 0.39 single-strand breaks per double-strand break. No repair of either break type could be detected. Each 3H disintegration caused 0.20 single-strand breaks and very few double-strand breaks. The single-strand breaks were rapidly rejoined after the cells were thawed. For irradiation with 4 MeV electrons, cells of wild type E. coli K-12 were superinfected with phage lambda and suspended in growth medium. Irradiation induced 42 single-strand breaks per double-strand break. The rates of break induction were 6.75 x 10(-14) (double-strand breaks) and 2.82 x 10(-12) (single-strand breaks) per rad and per dalton. The single-strand breaks were rapidly repaired upon incubation whereas the double-strand breaks seemed to remain unrepaired. It is concluded that double-strand breaks in superinfecting bacteriophage lambda DNA are repaired to a very small extent, if at all.  相似文献   

19.
Analysis of sedimentation profiles in alkaline sucrose gradients showed that, through a metabolic process, formaldehyde (FA) produced single-strand breaks in DNA of exponential phase cells of haploid wild-type Saccharomyces cerevisiae. The production of this type of lesion was dose-dependent. Strains defective in excision-repair of pyrimidine dimers induced by ultraviolet (UV) irradiation showed a reduced capacity to undergo single-stand breaks after treatment with FA. This indicates that the repair pathways of damage induced by UV and FA share a common step. Post-treatment incubation of wild-type cells in growth medium indicate a lag in cell division during which a slow recovery of DNA with a normal size was observed.  相似文献   

20.
Daunorubicin, an anticancer drug, induces primarily mammary adenocarcinoma in Sprague-Dawley rats. We investigated daunorubicin-induced DNA lesions in enzymatically isolated mammary epithelial cells and hepatocytes from 7-8-week-old female Sprague-Dawley rats. Differences were observed in the type and quantity of DNA lesions in mammary epithelial cells and hepatocytes as determined by alkaline elution analysis. DNA single-strand breaks and proteinase-K-sensitive cross-linking lesions were observed in mammary epithelial cells. Hepatocytes appeared to have significantly lower relative frequencies of single-strand breaks than mammary epithelial cells when treated with daunorubicin (1.5-10.0 micrograms/10(6) cells). Hepatocytes displayed two types of cross-link. One form was sensitive to proteinase-K digestion, whereas the other form was insensitive. The metabolism of daunorubicin to the aglycone metabolites was substantially lower in mammary cells than in hepatocytes. However, the total uptake of the drug was similar in these two cell types. A metabolite, 7-deoxydaunorubicinol aglycone, was unable to induce single-strand breaks or cross-linking lesions in mammary epithelial cells. Both cell types exhibited a similar ability to repair radiation-induced single-strand breaks of DNA. However, the mammary cells may be less able to repair daunorubicin-mediated DNA damage. These results revealed that mammary epithelial cells are less able to metabolize the active mutagen/carcinogen, daunorubicin, than are hepatocytes. This, coupled with the observations of greater apparent DNA damage in mammary cells, may be of primary importance in the drug-induced carcinogenicity in the rat mammary tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号