首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dissociated cells (mainly neuroblasts) obtained from brain hemispheres of chick embryos adhere to a preformed layer of chick brain astroglial cells faster and to a greater extent than to a layer of chick fibroblasts. At the begining of the experiment the adhered neuroblasts are dispersed on both layers but within a short time neuroblasts on a fibroblast layer migrate, form clusters and only later on begin to differentiate; in contrast those on an astroglial layer remain dispersed and differentiate rapidly. In both cases a number of cells of each inoculum do not adhere to either cellular layer, but these cells do not differ morphologically from those which adhered. Adhesion of neuroblasts to astroglial layers and that to fibroblast layers appear to follow the kinetics of an irreversible one-step reaction in pseudo-first-order conditions only for the first 50 and 60 min respectively. The departure from linearity of the kinetics after these times does not correspond, however, to the occurrence of second-order conditions. Other possible mechanisms of adhesion which could explain the experimental data are compared with those expected for different kinetic mechanisms. A model in which cell adhesion is treated in terms of affinity between receptor and ligands is used to analyse the nature of cell-cell adhesion.  相似文献   

2.
The rapid rise in the use of mobile communications has raised concerns about health issues related to low-level microwave radiation. The head and brain are usually the most exposed targets in mobile phone users. In the brain, two types of glial cells, the astroglial and the microglial cells, are interesting in the context of biological effects from microwave exposure. These cells are widely distributed in the brain and are directly involved in the response to brain damage as well as in the development of brain cancer. The aim of the present study was to investigate whether 900 MHz radiation could affect these two different glial cell types in culture by studying markers for damage-related processes in the cells. Primary cultures enriched in astroglial cells were exposed to 900 MHz microwave radiation in a temperature-controlled exposure system at specific absorption rates (SARs) of 3 W/kg GSM modulated wave (mw) for 4, 8 and 24 h or 27 W/kg continuous wave (cw) for 24 h, and the release into the extracellular medium of the two pro-inflammatory cytokines interleukin 6 (Il6) and tumor necrosis factor-alpha (Tnfa) was analyzed. In addition, levels of the astroglial cell-specific reactive marker glial fibrillary acidic protein (Gfap), whose expression dynamics is different from that of cytokines, were measured in astroglial cultures and in astroglial cell-conditioned cell culture medium at SARs of 27 and 54 W/kg (cw) for 4 or 24 h. No significant differences could be detected for any of the parameters studied at any time and for any of the radiation characteristics. Total protein levels remained constant during the experiments. Microglial cell cultures were exposed to 900 MHz radiation at an SAR of 3 W/kg (mw) for 8 h, and I16, Tnfa, total protein and the microglial reactivity marker ED-1 (a macrophage activation antigen) were measured. No significant differences were found. The morphology of the cultured astroglial cells and microglia was studied and appeared to be unaffected by microwave irradiation. Thus this study does not provide evidence for any effect of the microwave radiation used on damage-related factors in glial cells in culture.  相似文献   

3.
Chloroquine, an antimalarial lysosomotropic base, is known for its anti-inflammatory effects and therefore used for treatment of autoimmune diseases. Given its anti-inflammatory effects, it has been under clinical trials to modify neurodegenerative processes. In this study, we examined whether chloroquine has an anti-inflammatory effect in the CNS by determining the in vitro effects of chloroquine on LPS-induced expression of cytokines by glial cells. We observed that (i) chloroquine augmented LPS-induced expression of pro-inflammatory cytokines such as lymphotoxin (LT)-beta, tumor necrosis factor (TNF)-alpha, interleukin (IL)-1alpha, IL-1beta and IL-6 in human astroglial cells, while the same treatment suppressed LPS-induced expression of cytokines in monocytic and microglial cells; (ii) chloroquine alone induced expression of pro-inflammatory cytokines in a dose- and time-dependent manner in astroglial cells; (iii) other lysosomotropic agents such as ammonium chloride and bafilomycin A1 had minimal effects on cytokine expression; and (iv) chloroquine induced the activation of nuclear factor-kappa B in astroglial cells, which is a required component of chloroquine induction of cytokines. These results suggest that chloroquine may evoke either anti- or pro-inflammatory responses in the CNS depending on the cellular context.  相似文献   

4.
Zhu D  Li R  Liu G  Hua W 《Life sciences》1999,65(15):PL221-PL231
The effect of nimodipine on nitric oxide synthase (NOS) activities in brains in transient focal cerebral ischemia rats, in cultured mouse neurons and astroglial cells and bovine brain capillary endothelial cells (BCECs) was investigated. The administration of nimodipine (3 mg.kg(-1), p.o., twice a day, for 3 days) before middle cerebral artery (MCA) occlusion significantly reduced infarct size, decreased nitrite/nitrate (NOx) content and inhibited Ca2+-independent NOS activity in the infarct area. Nimodipine inhibited the Ca2+-independent NOS activity induced by lipopolysaccharide (LPS) + tumor necrosis factor alpha (TNF alpha) in mouse astroglial cells with an IC50 value of 0.036+/-0.003 mM and Ca2+-dependent NOS activity in mouse neurons with an IC50 value of 0.047+/-0.003 mM, but did not affect Ca2+-dependent NOS activity in BCECs. The inhibition of Ca2+-independent NOS activity by nimodipine in astroglial cells was competitive with respect to L-arginine. Nimodipine also inhibited the induction of Ca2+-independent NOS activity in vitro. These results suggest that nimodipine in addition to its cerebral vasodilating effect may protect brain from ischemic neuronal damage through modifying NOS activity.  相似文献   

5.
BACKGROUND: Desmoplastic infantile ganglioglioma (DIG) is a rare WHO Grade I tumor of infancy that is characterized by large volume, superficial location, invariable supratentoriality, fronto-parietal lobe predilection and morphologically, by an admixture of astroglial and neuroepithelial elements in a desmoplastic milieu. With over 50 cases described, the histologic and radiographic spectrum of DIG has been well-characterized. The superficial location of DIGs may render them greatly amenable to preoperative assessment utilizing aspiration cytology; however, the cytologic features of this rare tumor have only been reported once previously. CASE PRESENTATION: We present herein cytomorphologic findings from the intraoperative aspiration of a typical case of DIG diagnosed in a 1-year-old male. As evaluated on a single liquid-based preparation, the specimen showed low cellularity and was comprised predominantly of a population of dispersed (occasionally clustered) large neuronal cells with eccentrically located hyperchromatic nuclei (which were occasionally binucleated) and abundant unipolar cytoplasm. Rare smaller astroglial cells were intermixed. Despite the tumor's characteristic desmoplastic histologic appearance, no stromal fragments were identified on the aspiration material. CONCLUSIONS: A differential diagnosis is presented and analyzed in detail and it is concluded that when these large neuronal cells are encountered in an aspirate of a brain mass in a child, a combination of clinical, radiologic and immunohistochemical parameters can eliminate most of the differential possibilities.  相似文献   

6.
Initial development of astroglial phenotype has been studied in vitro in an amphibian embryo (Pleurodeles waltI), to document the differentiation potentialities acquired by neural precursor cells isolated at the early neurula stage. In particular, we sought to determine whether interactions between neuroepithelial cells and the inducing tissue, the chordamesoderm, are required beyond this stage to specify precursor cells along glial lineages. Glial cell differentiation was documented by examining the appearance of glial fibrillary acidic protein (GFAp), a specific marker of astroglial lineages. Cells expressing GFAp-immunoreactivity differentiated rapidly, after 48 hours of culture, from cultivated neural plate cells, irrespective of the presence or absence of the inducing tissue. The widespread expression of Pleurodeles GFAp protein in neural plate cultures, in which CNS precursor cells develop alone in a simple saline medium, showed that prolonged contact with chordamesodermal cells was not necessary for the emergence of the astroglial phenotype. In addition, the initial development of astroglial phenotype has been defined in vivo. The first detectable GFAp-immunoreactivity was visualized in the neural tube of stage-24 embryos, a stage corresponding to 2-3 days in culture, defining radial glial cell end-feet. Thus, dissociation and culture of neural precursor cells did not appear to modify the onset of astroglial differentiation. At stage 32, GFAp-immunoreactivity was observed over the entire length of radial glial fibers and was also evidenced in mitotic cells located in the ventricular zone, suggesting that radial glial cells were not all post-mitotic.  相似文献   

7.
Granulocyte (G)-CSF and granulocyte-macrophage (GM)-CSF enhance phagocyte survival and function and are produced by fibroblasts and endothelial cells after induction by inflammatory mediators such as IL-1. Our ability to detect G-CSF and GM-CSF activity in the conditioned medium of the human astroglial tumor cell line, U87MG, and molecularly clone the cDNA for G-CSF from a U87MG cDNA library raised the possibility that astroglial cells are capable of G-CSF and GM-CSF production within the central nervous system; if so, the production of these CSF by astroglial cells may be inducible by IL-1. We examined the effects of IL-1 alpha and IL-1 beta on the production of G-CSF and GM-CSF by U87MG and U373MG, another astroglial tumor cell line that does not constitutively produce CSF. We demonstrate that both U87MG and U373MG can be induced to produce G-CSF and GM-CSF by exposure to IL-1 alpha and IL-1 beta. This response, measured by accumulation of increased CSF mRNA, is rapid, sensitive and due to the enhanced stability of CSF message following IL-1 exposure. The implications of these findings to the immunopathogenesis of central nervous system infections are discussed.  相似文献   

8.
9.
Dissociated neuronal cells from rat embryonic hemispheres were cultivated on astroglial layers. The increase in ganglioside content of the cocultures was more rapid than that of neuronal cultures seeded on polylysine surfaces for the first 24 h, and the extent of the increase was greater 7 days after inoculation, probably because of interaction between the preformed astroglial layers and the neuronal cells in vitro. The promoted expression of the a-pathway gangliosides, GM1 and GD1a, was recognized by TLC and the increase in GM1 was immunologically ascertained. The incorporation of 3H-labeled N-acetyl-D-mannosamine into GD3 and b-series gangliosides was elevated for the first 24 h. However, cocultures in which there was no contact between neuronal cells and the astroglial sheet showed no appreciable increase in incorporation. Thus, cell surface changes were induced at the membrane glycolipid level in the neuronal cells by contact with astroglial layers. The synthesis and expression of neuronal gangliosides are discussed in relation to the onset of neuron--glia interaction.  相似文献   

10.
Astrocytes maintain a unique association with the central nervous system microvasculature and are thought to play a role in neural microvessel formation and differentiation. We investigated the influence of astroglial cells on neural microvascular endothelial differentiation in vitro. Using an astroglial-endothelial coculture system, rat brain astrocytes and C6 cells of astroglial lineage are shown to induce bovine retinal microvascular endothelial (BRE) cells to form capillary-like structures. Light microscopic evidence for endothelial reorganization began within 48 hours and was complete 72-96 hours following the addition of BRE cells to 1-day-old astroglial cultures. The extent of BRE reorganization was quantitated by computer-assisted analysis and shown to be dependent upon the density of both the BRE and C6 cells within the cocultures. Coculture conditions in which BRE cells were separated from C6 cells by porous membranes failed to generate this endothelial cell change. Likewise, C6-conditioned media and C6-endothelial coculture conditioned media did not induce BRE cell reorganization. Extracellular laminin within the C6-endothelial cocultures, identified by indirect immunofluorescence, was concentrated at the endothelial-astroglial interface of capillary-like structures consistent with incipient basement membrane formation. Astroglial cells accumulated adjacent to capillary-like structures suggesting the presence of bidirectional influences between the reorganized endothelial cells and astroglia. This is the first demonstration of astroglial induction of angiogenesis in vitro and these findings support a functional role for perivascular astrocytes in the vascularization of neural tissue such as retina and brain.  相似文献   

11.
We examined the effect of expression of glial fibrillary acidic protein (GFAP) on the tumor growth of astrocytoma in vivo. When rat astrocytoma C6 cells were injected subcutaneously in athymic mice, the cells produced tumors that grew rapidly. The tumor growth of C6 cells transfected with GFAP cDNA was significantly reduced compared to that of control NeoC6 cells transfected only with the neomycin resistant gene. After implantation of C6 cells transfected with mutated GFAP cDNA at the phosphorylation sites, the tumor growth was suppressed similar to that of the wild GFAP transfectants. To determine whether the cell growth suppression by GFAP is specific for astroglial cells, we assessed the effect of GFAP on the cell growth of an L cell of fibroblast origin in vitro. By GFAP cDNA transfection, L cells showed morphological changes, but the cell growth was not reduced. These results suggest that GFAP is a critical regulator of the tumor growth of astrocytoma.  相似文献   

12.
Labelling index, S-phase duration and cell-cycle time of proliferating brain cells from 6-day-old chick embryos in culture were investigated autoradiographically after labelling with [3H]- and/or [14C]-thymidine. The dissociated cells were cultured in the absence or in the presence of brain extract from 8-day-old chick embryos. Cultures contained essentially two cell types, which could be easily distinguished by the size of their nuclei: small nuclei identified as belonging to precursor cells of neurons and large nuclei corresponding to astroglial cells. The labelling index of astroglial cells (16.4%) was about 2 times higher than that of the neuronal cells (9.9%). Under the influence of brain extract the labelling index of neuroblasts was nearly doubled while that of the astroglial cells remained nearly unchanged. From double-labelling experiments with [3H]- and [14C]-thymidine, the same S-phase duration of about 7 hr was found for both cell types cultured with or without brain extract. A cell-cycle duration of 39 hr for neuronal and of 29 hr for astroglial cells was found. The cycle times remained constant under the influence of brain extract. From the measured data mentioned above, a growth fraction of 50% (neuroblasts) and 68% (astroglial cells) was calculated in control cultures without brain extract. After addition of brain extract, the growth fraction increased for both cell types (neuroblasts: 92%; astroglial cells: 80%). The results demonstrate that more cells proliferate in the presence of brain extract, but the durations of the S-phase and the cell cycle remain unchanged.  相似文献   

13.
Previous in vivo and in vitro analyses have shown that both necrosis and apoptosis are involved in neuronal cell death induced by energy impairment caused by mitochondrial dysfunction. However, little is known about the key factors that determine whether the cells undergo necrosis or apoptosis. In the present study, we analyzed neuronal cell death induced by 3-nitropropionic acid (3-NP), an irreversible inhibitor of mitochondrial complex II, in a primary culture system of rat cortical neurons. The neurons were maintained for a week in coculture with astroglial cells, and then they were treated with 3-NP in the presence or absence of astroglial cells. As judged from morphological (Hoechst 33258 staining) and biochemical (DNA fragmentation and caspase activation) analyses, the cortical neurons appeared to die through an apoptotic process after 3-NP treatment in the presence of astroglial cells. However, caspase inhibitors did not suppress the 3-NP-induced cell death, suggesting the involvement of a caspase-independent pathway of 3-NP-induced neuronal cell death in the presence of astroglial cells. On the other hand, 3-NP induced necrotic cell death within 1 day in the absence of astroglial cells, following a rapid decrease in intracellular ATP level. These changes were attenuated by the presence of astroglial cells or the addition of astroglial conditioned medium. These results suggest that astroglial trophic support influences the alteration of the intracellular energy state in 3-NP-treated neurons and consequently determines the type of neuronal cell death, apoptosis or necrosis.  相似文献   

14.
A role for gangliosides in astroglial cell differentiation in vitro   总被引:3,自引:1,他引:2       下载免费PDF全文
Rat cerebral astroglial cells in culture display specific morphological and biochemical behaviors in response to exogenously added gangliosides. To examine a potential function for endogenous gangliosides in the processes of astroglial cell differentiation, we have used the B subunit of cholera toxin as a ganglioside-specific probe. The B subunit, which is multivalent and binds specifically to GM1 ganglioside on the cell surface, induced a classical star-shaped (stellate) morphology in the astroglial cells and inhibited DNA synthesis in a dose-dependent manner. The morphological response was massive and complete within 2 h, with an ED50 of 0.8 nM, and appeared to depend on the direct interaction of the B subunit with GM1 on the cell surface. A B subunit-evoked inhibition of DNA synthesis and cell division (ED50 = 0.2 nM) was observed when the cells were stimulated with defined mitogens, such as epidermal growth factor and basic fibroblast growth factor. Maximal inhibition approached 80% within 24 h. The effects of the B subunit were unrelated to increases in cAMP. These observations, taken together with previous studies, demonstrate that both endogenously occurring plasma membrane gangliosides and exogenously supplied gangliosides can influence the differentiative state (as judged by morphological and growth behaviors) of astroglial cells in vitro.  相似文献   

15.
BACKGROUND: Desmoplastic medulloblastoma is a rare subtype of medulloblastoma with astroglial differentiation. The cytomorphologic features in intraoperative imprint smears from 2 cases of desmoplastic medulloblastoma are described. CASE REPORTS: A 22-year-old man and 27-year-old woman with a cerebellar tumor underwent craniotomy and tumor resection. The imprint cytologic smears contained cellular zones and nodular hypocellular areas containing astroglial and oligodendrogliallike elements. The cytology was misinterpreted as glial tumors, while the final histologic diagnosis in both cases were desmoplastic medulloblastoma. CONCLUSION: Desmoplastic medulloblastoma shows distinctive cytology in intraoperative smears. However, the occurrence of this rare type in adults and the presence of astroglial elements in imprint smears may cause a cytologic misinterpretation as gliomas.  相似文献   

16.
Rat astroglial cells respond to fetal calf serum (FCS) and gangliosides, including GM1, by undergoing proliferation. Here, we show that addition of FCS but not GM1 causes an increase in Na+, K+-pump activity, as measured by ouabain-sensitive 86Rb+ influx. The increase of Na+, K+-pump activity by FCS was due to increased Na+ influx (measured with 22Na+). This increased Na+ influx was sensitive to amiloride, an inhibitor of Na+/H+ exchange. Amiloride also blocked the FCS-stimulated incorporation of [3H]thymidine into DNA. Two defined polypeptide growth factors, epidermal growth factor and fibroblast growth factor were also able to elicit an amiloride-sensitive Na+ influx and an ouabain-sensitive K+ uptake in these astroglial cells, in the presence of FCS or insulin. Thus, GM1 differs from serum and growth factors in the mechanisms by which these agents stimulate the proliferation of the astroglial cells used here.  相似文献   

17.
Three monoclonal antibodies (MAbs) specifically recognizing rat astrocyte cell surface proteins have been characterized and their antigen binding specificities determined. One of these MAbs has been employed to isolate a distinct subpopulation of astroglial cells using immunoaffinity chromatography.

MAbs to rat astroglial cell surface proteins, generated by fusion of mouse Sp2/O-Ag 14 myeloma cells and spleen cells from Balb/C mice immunized with purified astroglial cells, were screened for their cell binding specificities using ELISA and indirect immunofluorescence assay. The antigen binding specificity of three of these clones, which displayed specific binding to astrocytes, was determined by radioiodination of whole astrocytes and precipitation of the iodinated surface proteins by the MAbs. Immunoaffinity chromatography, using IgG from one of the clones coupled to CNBr activated Sepharose 6MB, demonstrated the potential usefulness of such MAbs in isolating a specific subpopulation of astroglial cells.  相似文献   


18.
19.
Abstract: Pyruvate carboxylase (EC 6.4.1.1; PC) catalyzes the formation of oxaloacetate by energy-dependent fixation of CO2 to pyruvate. The aim of the present work was to generate antibodies against PC and use them to localize PC in the cells of astroglia-rich and neuron-rich primary cultures derived from the brains of rats and mice. Mouse monoclonal antibodies raised against the enzyme were shown to be monospecific as indicated by immunoblotting. The staining of the cells for PC appeared in grains. These represent mitochondria, as PC is known as a mitochondrial enzyme. Immunocytochemical examination of astroglia-rich primary cultures of rat or mouse brain cells revealed a colocalization of PC with the astroglial marker glial fibrillary acidic protein (GFAP) in many cells. However, there were GFAP-positive cells showing no specific staining for PC, and vice versa. Also, in neuron-rich primary cultures PC was found only in the ∼10% GFAP-expressing astroglial cells contaminating the neuron-rich primary culture, whereas it was absent from the neurons identified by antibodies against neuron-specific enolase. These results suggest that PC is predominantly an astroglial enzyme and that astroglial cells play an important role in the intermediary and the energy metabolism of the brain.  相似文献   

20.
We have measured the free amino acid content of three distinct astroglial cell clones derived from permanent lines obtained after "spontaneous immortalization" of 8-day postnatal mouse cerebellar cultures; these clones show characteristics similar to the Golgi Bergmann glia cells, the fibrous astrocytes, and the velate protoplasmic astrocytes, i.e., the three main types of cerebellar astrocytes. The relative concentrations of amino acids that are thought to act as neurotransmitters were compared in confluent cultures of the different astroglial clones. The most striking result was a high concentration of glycine (20% of free amino acids), even in astroglial cells cultured in a glycine-free medium, a finding suggesting that glycine is synthesized by the astroglial clones. Furthermore, no gamma-aminobutyric acid (GABA) was detected. In contrast, a "neuron-like" clone derived from the same cerebellar culture contained GABA, whereas its glycine content was much lower than that of the astroglial clones. The present results, together with our previous finding of glycine synthesis in an astrocytic clone derived from 14-day postnatal mouse cerebella transformed by simian virus 40, indicate that a high glycine content may be characteristic of many cerebellar astroglial types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号