首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
3.
4.
The chromosomal locations of ribosomal DNA in wheat, rye and barley have been determined by in situ hybridization using high specific activity 125I-rRNA. The 18S-5.8S-26S rRNA gene repeat units in hexaploid wheat (cv. Chinese Spring) are on chromosomes 1B, 6B and 5D. In rye (cv. Imperial) the repeat units occur at a single site on chromosome 1R(E), while in barley (cv. Clipper) they are on both the chromosomes (6 and 7) which show secondary constrictions. In wheat and rye the major 5S RNA gene sites are close to the cytological secondary constrictions where the 18S-5.8S-26S repeating units are found, but in barley the site is on a chromosome not carrying the other rDNA sequences. — Restriction enzyme and R-loop analyses showed the 18S-5.8S-26S repeating units to be approximately 9.5 kb long in wheat, 9.0 kb in rye and barley to have two repeat lengths of 9.5 kb and 10 kb. Electron microscopic and restriction enzyme data suggest that the two barley forms may not be interpersed. Digestion with EcoR1 gave similar patterns in the three species, with a single site in the 26S gene. Bam H1 digestion detected heterogeneity in the spacer regions of the two different repeats in barley, while in rye and wheat heterogeneity was shown within the 26S coding sequence by an absence of an effective Bam H1 site in some repeat units. EcoR1 and Bam H1 restriction sites have been mapped in each species. — The repeat unit of the 5S RNA genes was approximately 0.5 kb in wheat and rye and heterogeneity was evident. The analysis of the 5S RNA genes emphasizes the homoeology between chromosomes 1B of wheat and 1R of rye since both have these genes in the same position relative to the secondary constriction. In barley we did not find a dominant monomer repeat unit for the 5S genes.  相似文献   

5.
6.
7.
The ribosomal DNA repeat unit of Aspergillus nidulans has been cloned in pBR322 and a restriction map constructed. The genes coding for the 17S, 5.8S and 25S rRNAs are found in blocks separated by a 1.7 kb spacer region, with the 5.8S RNA gene lying between the genes for the two larger RNAs. The total length of the repeat unit is 7.7 kb. The 5S rRNA is not present in the repeat unit.  相似文献   

8.
9.
Five independent clones containing the natural chicken ovomucoid gene have been isolated from a chicken gene library. One of these clones, CL21, contains the complete ovomucoid gene and includes more than 3 kb of DNA sequences flanking both termini of the gene. Restriction endonuclease mapping, electron microscopy and direct DNA sequencing analyses of this clone have revealed that the ovomucoid gene is 5.6 kb long and codes for a messenger RNA of 821 nucleotides. The structural gene sequence coding Ifor the mature messenger RNA is split into at least eight segments by a minimum of seven intervening sequences of various sizes. The shortest structural gene segment is only 20 nucleotides long. All seven intervening sequences are located within the peptide coding region of the gene, and the sequences at the 5' and 3' untranslated regions of the mRNA are not interrupted by intervening sequences. The DNA sequences of the regions flanking the 5' and 3' termini of the gene have been determined. Thirty nucleotides before the start of the messenger RNA coding sequence is the heptanucleotide TATATAT, which is also present in a similar location relative to the chicken ovalbumin gene and other unique sequence eucaryotic genes. This sequence resembles that of the Pribnow box in procaryotic genes where a promoter function has been implicated. Seven nucleotides past the 3' end of the gene is the tetranucleotide TTGT, a sequence found to be present at identical locations as either TTTT or TTGT in other eucaryotic genes that have been sequenced. These conserved DNA sequences flanking eucaryotic genes may serve some regulator function in the expression of these genes.  相似文献   

10.
11.
12.
Sequence arrangement of the rDNA of Drosophila melanogaster.   总被引:41,自引:0,他引:41  
M Pellegrini  J Manning  N Davidson 《Cell》1977,10(2):213-214
The sequence arrangement of genes coding for stable rRNA species and of the interspersed spacers on long single strands of rDNA purified from total chromosomal DNA of Drosophila melanogaster has been determined by a study of the structure of rRNA:DNA hybrids which were mounted for electron microscope observation by the gene 32-ethidium bromide technique. One repeat unit contains the following sequences in the order given. First, an 18 S gene of length 2.13 +/- 0.17 kb. Second, an internal transcribed spacer (Spl) of length 1.58 +/- 0.15 kb. A short sequence coding for the 5.8S and perhaps the 2S rRNA species is located within this spacer. Third, the 28S gene with a length of 4.36 +/- 0.23 kb. About 55% of the 28S genes are unbroken or continuous (C genes). However, about 45% of the 28S genes contain an insertion of an additional segment of DNA that is not complementary to rRNA (l genes). The insertion occurs at a reproducible point 2.99 +/- 0.26 kb from the junction with Spl. The insertions are heterogeneous in length and occur in three broad size classes: 1.42 +/- 0.47, 3.97 +/- 0.55, and 6.59 +/- 0.62 kb. Fourth, an external spacer between the 28S gene and the next 18S gene which is presumably mainly nontranscribed and which has a heterogeneous length distribution with a mean length and standard deviation of 5.67 +/- 1.92 kb. Short inverted repeat stems (100-400 nucleotide pairs) occur at the base of the insertion. It is known from other studies that I genes occur only on the X chromosome. The present study shows that the I and C genes on the X chromosomes are approximately randomly assorted. The sequence arrangement on the plasmid pDm103 containing one repeat of rDNA (Glover et al., 1975) has been determined by similar methods. The I gene on this plasmid contains an inverted repeat stem. The occurrence of inverted repeat sequences flanking the insertion supports the speculation that these sequences are translocatable elements similar to procaryotic translocons.  相似文献   

13.
14.
15.
16.
The organization of the ribosomal DNA repeating unit from Saccharomyces cerevisiae has been analyzed. A cloned ribosomal DNA repeating unit has been mapped with the restriction enzymes Xma 1, Kpn 1, HindIII, Xba 1, Bgl I + II, and EcoRI. The locations of the sequences which code for 5 S, 5.8 S, 18 S, and 25 S ribosomal RNAs have been determined by hybridization of the purified RNA species with restriction endonuclease generated fragments of the repeating unit. The position of the 5.8 S ribosomal DNA sequences within the repeat was also established by sequencing the DNA which codes for 83 nucleotides at the 5' end of 5.8 S ribosomal RNA. The polarity of the 35 S ribosomal RNA precursor has been established by a combination of hybridization analysis and DNA sequence determination and is 5'-18 S, 5.8 S, 25 S-3'.  相似文献   

17.
A DNA fragment of about 2000 base pairs carrying the gene for tRNA(1) (Ile) has been cloned from a total Eco RI endonuclease digest of Escherichia coli DNA. Sequence analyses revealed that about the first 850 base pairs from one end of the fragment contain a nucleotide sequence corresponding to that in the 3'-end of 16S rRNA. The gene for tRNA(Ile) follows the 16S rRNA gene and both genes flank a spacer sequence of 68 base pairs. The spacer region contains a repeating, a hair pin and a symmetrical structure when the sequence is viewed in the single stranded form. A notable hair pin structure is also observed in the region adjacent to the 3'-end of the tRNA(1) (Ile) gene. In addition, about 850 base pairs from the other end of the DNA fragment have been found to contain the nucleotide sequence of the 5'-end of 23S rRNA. The presence of the genes for tRNA(1) (Ile), 16S and 23S rRNA and the hybridization to tRNA(1) (Ala) suggest that this cloned DNA is part of one of the E. coli rRNA operons carrying these two tRNA genes as a spacer.Images  相似文献   

18.
There are six small ribosomal RNAs in trypanosome ribosomes. sRNA3 and sRNA5 of Trypanosoma brucei brucei have been partially sequenced. Sequence homologies indicate that sRNA3 is 5.8S RNA and sRNA5 is 5S RNA of T. b. brucei. The regions specifying these two, and the remaining four small RNAs, have been identified within clones of rRNA genes and in the genome. Five of the small RNAs, 1, 2, 3, 4 and 6, hybridise exclusively within the major rRNA gene repeat. A map of the regions specifying these small RNAs is presented. sRNA3 (5.8S RNA) hybridises to a region corresponding to the transcribed spacer of other eukaryotes. sRNA1 hybridises to a region between sequences specifying the two large subunit RNA molecules of 2.3 kb and 1.8 kb. Sequences specifying sRNAs 2 and 4 are present near the sequence specifying sRNA1, while sRNA6 appears to be specified 3' to the sequence specifying the 1.8-kb RNA sequence. In addition regions of secondary hybridisation for small RNAs 2, 3, 4 and 6 have also been identified. Though sRNA5 (5S RNA) hybridises within the major rRNA repeat, a separate 5S RNA gene repeat with unit size of 760 bp is also present. It is 10 to 20 times more abundant than the major rRNA gene repeat.  相似文献   

19.
20.
Organization of ribosomal RNA gene repeats of the mouse.   总被引:7,自引:3,他引:4       下载免费PDF全文
The organization of the ribosomal RNA (rRNA) genes of the mouse was determined by Southern blot hybridization using cloned rDNA fragments as probes, which could encompass the entire spacer region between two rRNA gene regions. The rRNA genes are organized into tandem repeats of nearly uniform length of about 44 kb. The heterogeneity detected in the nontranscribed spacer appears to be caused by its sequence rather than its length difference. At least three kinds of repetitive sequences are present in the non-transcribed spacer region; two of them are located 13 kb upstream from the 5'-end of 18S RNA gene and the other located 1 to 4 kb downstream from the 3'-end of 28S RNA gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号