首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
2.
3.
4.
Prostate cancer (PCa) is the second leading cause of cancer‐related death in males, primarily due to its metastatic potential. The present study aims to identify the expression of microRNA‐539 (miR‐539) in PCa and further investigate its functional relevance in PCa progression both in vitro and in vivo. Initially, microarray analysis was conducted to obtain the differentially expressed gene candidates and the regulatory miRNAs, after which the possible interaction between the two was determined. Next, ectopic expression and knock‐down of the levels of miR‐539 were performed in PCa cells to identify the functional role of miR‐539 in PCa pathogenesis, followed by the measurement of E‐cadherin, vimentin, Smad4, c‐Myc, Snail1 and SLUG expression, as well as proliferation, migration and invasion of PCa cells. Finally, tumour growth was evaluated in nude mice through in vivo experiments. The results found that miR‐539 was down‐regulated and DLX1 was up‐regulated in PCa tissues and cells. miR‐539 was also found to target and negatively regulate DLX1 expression, which resulted in the inhibition of the TGF‐β/Smad4 signalling pathway. Moreover, the up‐regulation of miR‐539 or DLX1 gene silencing led to the inhibition of PCa cell proliferation, migration, invasion, EMT and tumour growth, accompanied by increased E‐cadherin expression and decreased expression of vimentin, Smad4, c‐Myc, Snail1 and SLUG. In conclusion, the overexpression of miR‐539‐mediated DLX1 inhibition could potentially impede EMT, proliferation, migration and invasion of PCa cells through the blockade of the TGF‐β/Smad4 signalling pathway, highlighting a potential miR‐539/DLX1/TGF‐β/Smad4 regulatory axis in the treatment of PCa.  相似文献   

5.
Lung cancer remains a leading cause to cancer‐related death worldwide. The anti‐cancer ability of microRNA‐144‐3p has been reported in many cancer types. This study focused on the mechanisms underlying miR‐144‐3p in inhibiting lung cancer. The expression levels of miR‐144‐3p and steroid receptor coactivator (Src) in different lung cancer cell lines and those in bronchial epithelial cells (16HBE) were compared. miR‐144‐3p mimic and siSrc were transfected into A549 cells. Under the conditions of transforming growth factor‐β1 (TGF‐β1). Small interfering transfection or TGF‐β1 treatment, cell invasive and adhesive abilities were analyzed by Transwell and cell adhesion assays. miR‐144‐3p inhibitor and siSrc were co‐transfected into A549 cells and the changes in cell invasion and adhesion were detected. The activation of Src–protein kinase B–extracellular‐regulated protein kinases (Src–Akt–Erk) pathway was determined using Western blot. The downregulated miR‐144‐3p and upregulated Src were generally detected in lung cancer cell lines and were the most significant genes in A549 cells. Both miR‐144‐3p overexpression and Src inhibition could obviously inhibit the invasion and adhesion abilities of A549 cells in the presence or absence of the effects of TGF‐β1. The inhibition of Src could block the promotive effects of miR‐144‐3p inhibitor and TGF‐β1 on cell invasion and adhesion. Furthermore, we found that miR‐144‐3p could negatively regulate the phosphorylation levels of Akt and Erk. Our data indicated the essential role of Src in the mechanisms underlying TGF‐β1‐induced cell invasion and adhesion of lung cancer, and that miR‐144‐3p could effectively suppress TGF‐β1‐induced aggressive lung cancer cells by regulating Src expression.  相似文献   

6.
Staphylococcal enterotoxin B (SEB) is a potent superantigen produced by Staphylococcus aureus that triggers a strong immune response, characterized by cytokine storm, multi‐organ failure, and often death. When inhaled, SEB can cause acute lung injury (ALI) and respiratory failure. In this study, we investigated the effect of resveratrol (RES), a phytoallexin, on SEB‐driven ALI and mortality in mice. We used a dual‐exposure model of SEB in C3H/HeJ mice, which caused 100% mortality within the first 5 days of exposure, and treatment with RES resulted in 100% survival of these mice up to 10 days post‐SEB exposure. RES reduced the inflammatory cytokines in the serum and lungs, as well as T cell infiltration into the lungs caused by SEB. Treatment with RES also caused increased production of transforming growth factor‐beta (TGF‐β) in the blood and lungs. RES altered the miRNA profile in the immune cells isolated from the lungs. Of these, miR‐193a was strongly induced by SEB and was down‐regulated by RES treatment. Furthermore, transfection studies and pathway analyses revealed that miR‐193a targeted several molecules involved in TGF‐β signalling (TGFβ2, TGFβR3) and activation of apoptotic pathways death receptor‐6 (DR6). Together, our studies suggest that RES can effectively neutralize SEB‐mediated lung injury and mortality through potential regulation of miRNA that promote anti‐inflammatory activities.  相似文献   

7.
8.
MicroRNAs (miRNAs) have been confirmed to participate in liver fibrosis progression and activation of hepatic stellate cells (HSCs). In this study, the role of miR‐193a/b‐3p in concanavalin A (ConA)‐induced liver fibrosis in mice was evaluated. According to the results, the expression of miR‐193a/b‐3p was down‐regulated in liver tissues after exposure to ConA. Lentivirus‐mediated overexpression of miR‐193a/b‐3p reduced ConA‐induced liver injury as demonstrated by decreasing ALT and AST levels. Moreover, ConA‐induced liver fibrosis was restrained by the up‐regulation of miR‐193a/b‐3 through inhibiting collagen deposition, decreasing desmin and proliferating cell nuclear antigen (PCNA) expression and lessening the content of hydroxyproline, transforming growth factor‐β1 (TGF‐β1) and activin A in liver tissues. Furthermore, miR‐193a/b‐3p mimics suppressed the proliferation of human HSCs LX‐2 via inducing the apoptosis of LX‐2 cells and lowering the levels of cell cycle‐related proteins Cyclin D1, Cyclin E1, p‐Rb and CAPRIN1. Finally, TGF‐β1 and activin A‐mediated activation of LX‐2 cells was reversed by miR‐193a/b‐3p mimics via repressing COL1A1 and α‐SMA expression, and restraining the activation of TGF‐β/Smad2/3 signalling pathway. CAPRIN1 and TGF‐β2 were demonstrated to be the direct target genes of miR‐193a/b‐3p. We conclude that miR‐193a/b‐3p overexpression attenuates liver fibrosis through suppressing the proliferation and activation of HSCs. Our data suggest that miR‐193a‐3p and miR‐193b‐3p may be new therapeutic targets for liver fibrosis.  相似文献   

9.
10.
Herein, we hypothesized that pro‐osteogenic MicroRNAs (miRs) could play functional roles in the calcification of the aortic valve and aimed to explore the functional role of miR‐29b in the osteoblastic differentiation of human aortic valve interstitial cells (hAVICs) and the underlying molecular mechanism. Osteoblastic differentiation of hAVICs isolated from human calcific aortic valve leaflets obtained intraoperatively was induced with an osteogenic medium. Alizarin red S staining was used to evaluate calcium deposition. The protein levels of osteogenic markers and other proteins were evaluated using western blotting and/or immunofluorescence while qRT‐PCR was applied for miR and mRNA determination. Bioinformatics and luciferase reporter assay were used to identify the possible interaction between miR‐29b and TGF‐β3. Calcium deposition and the number of calcification nodules were pointedly and progressively increased in hAVICs during osteogenic differentiation. The levels of osteogenic and calcification markers were equally increased, thus confirming the mineralization of hAVICs. The expression of miR‐29b was significantly increased during osteoblastic differentiation. Furthermore, the osteoblastic differentiation of hAVICs was significantly inhibited by the miR‐29b inhibition. TGF‐β3 was markedly downregulated while Smad3, Runx2, wnt3, and β‐catenin were significantly upregulated during osteogenic induction at both the mRNA and protein levels. These effects were systematically induced by miR‐29b overexpression while the inhibition of miR‐29b showed the inverse trends. Moreover, TGF‐β3 was a direct target of miR‐29b. Inhibition of miR‐29b hinders valvular calcification through the upregulation of the TGF‐β3 via inhibition of wnt/β‐catenin and RUNX2/Smad3 signaling pathways.  相似文献   

11.
The effect of wnt/β‐catenin signalling in the response to acute myocardial infarction (AMI) remains controversial. The membrane receptor adaptor protein Disabled‐2 (Dab2) is a tumour suppressor protein and has a critical role in stem cell specification. We recently demonstrated that down‐regulation of Dab2 regulates cardiac protein expression and wnt/β‐catenin activity in mesenchymal stem cells (MSC) in response to transforming growth factor‐β1 (TGF‐β1). Although Dab2 expression has been shown to have effects in stem cells and tumour suppression, the molecular mechanisms regulating this expression are still undefined. We identified putative binding sites for miR‐145 in the 3′‐UTR of Dab2. In MSC in culture, we observed that TGF‐β1 treatment led to rapid and sustained up‐regulation of pri–miR‐145. Through gain and loss of function studies we demonstrate that miR‐145 up‐regulation was required for the down‐regulation of Dab2 and increased β‐catenin activity in response to TGF‐β1. To begin to define how Dab2 might regulate wnt/β‐catenin in the heart following AMI, we quantified myocardial Dab2 as a function of time after left anterior descending ligation. There was no significant Dab2 expression in sham‐operated myocardium. Following AMI, Dab2 levels were rapidly up‐regulated in cardiac myocytes in the infarct border zone. The increase in cardiac myocyte Dab2 expression correlated with the rapid and sustained down‐regulation of myocardial pri–miR‐145 expression following AMI. Our data demonstrate a novel and critical role for miR‐145 expression as a regulator of Dab2 expression and β‐catenin activity in response to TGF‐β1 and hypoxia.  相似文献   

12.
Long‐term peritoneal dialysis (PD) can lead to the induction of mesothelial/epithelial‐mesenchymal transition (MMT/EMT) and fibrosis; these effects eventually result in ultrafiltration failure and the discontinuation of PD. MicroRNA‐302c (miR‐302c) is believed to be involved in regulating tumour cell growth and metastasis by suppressing MMT, but the effect of miR‐302c on MMT in the context of PD is unknown. MiR‐302c levels were measured in mesothelial cells isolated from the PD effluents of continuous ambulatory peritoneal dialysis patients. After miR‐302c overexpression using lentivirus, human peritoneal mesothelial cell line (HMrSV5) and PD mouse peritoneum were treated with TGF‐β1 or high glucose peritoneal dialysate respectively. MiR‐302c expression level and MMT‐related factors alteration were observed. In addition, fibrosis of PD mouse peritoneum was alleviated by miR‐302c overexpression. Furthermore, the expression of connective tissue growth factor (CTGF) was negatively related by miR‐302c, and LV‐miR‐302c reversed the up‐regulation of CTGF induced by TGF‐β1. These data suggest that there is a novel TGF‐β1/miR‐302c/CTGF pathway that plays a significant role in the process of MMT and fibrosis during PD. MiR‐302c might be a potential biomarker for peritoneal fibrosis and a novel therapeutic target for protection against peritoneal fibrosis in PD patients.  相似文献   

13.
VEGF (vascular endothelial growth factor) is a potent proangiogenic cytokine, and vascular change is one of the characteristic features of airway remodelling. Since the glucocorticoids have shown antifibrosis properties, we sought to investigate whether budesonide, a widely used glucocorticoid in clinical practice, could attenuate TGF‐β1 (transforming growth factor‐β1)‐induced VEGF production by HFL‐1 (human lung fibroblasts). HFL‐1 fibroblasts were treated with various concentrations of budesonide (10?11 M, 10?9 M and 10?7 M) in the absence or presence of TGF‐β1. Postculture media were collected for ELISA of VEGF at the indicated times. The cell lysates were subjected to Western blotting analysis to test TGF‐β1/Smad and MAP (mitogen‐activated protein) kinase signalling activation, respectively. The results suggested that budesonide pretreatment reduced the significant increase of VEGF release induced by TGF‐β1 in HFL‐1 fibroblasts in a dose‐dependent manner, and suppressed the increase of phospho‐Smad3 and phosphor‐ERK (extracellular signal‐regulated kinase) protein levels. In conclusion, budesonide may reduce TGF‐β1‐induced VEGF production in the lung, probably through the Smad/ERK signalling pathway and, thus, may provide new sight into the molecular mechanism underlying glucocorticoid therapy for airway inflammatory diseases.  相似文献   

14.
Epithelial‐to‐mesenchymal transition (EMT) plays a significant role in tubulointerstitial fibrosis, which is a hallmark of diabetic nephropathy. Thus, identifying the mechanisms of EMT activation could be meaningful. In this study, loss of miR‐30c accompanied with increased EMT was observed in renal tubules of db/db mice and cultured HK2 cells exposed to high glucose. To further explore the roles of miR‐30c in EMT and tubulointerstitial fibrosis, recombinant adeno‐associated viral vector was applied to manipulate the expression of miR‐30c. In vivo study showed that overexpression of miR‐30c suppressed EMT, attenuated renal tubulointerstitial fibrosis and reduced proteinuria, serum creatinine, and BUN levels. In addition, Snail1 was identified as a direct target of miR‐30c by Ago2 co‐immunoprecipitation, luciferase reporter, and Western blot assays. Downregulating Snail1 by siRNA reduced high glucose‐induced EMT in HK2 cells, and miR‐30c mimicked the effects. Moreover, miR‐30c inhibited Snail1‐TGF‐β1 axis in tubular epithelial cells undergoing EMT and thereby impeded the release of TGF‐β1; oppositely, knockdown of miR‐30c enhanced the secretion of TGF‐β1 from epitheliums and significantly promoted proliferation of fibroblasts and fibrogenesis of myofibroblasts, aggravated tubulointerstitial fibrosis, and dysfunction of diabetic nephropathy. These results suggest a protective role of miR‐30c against diabetic nephropathy by suppressing EMT via inhibiting Snail1‐TGF‐β1 pathway.  相似文献   

15.
Krüppel‐like factor 4 (KLF4) was closely associated with epithelial‐mesenchymal transition and stemness in colorectal cancer stem cells (CSCs)‐enriched spheroid cells. Nonetheless, the underlying molecular mechanism is unclear. This study showed that KLF4 overexpression was accompanied with stemness and mesenchymal features in Lgr5+CD44+EpCAM+ colorectal CSCs. KLF4 knockdown suppressed stemness, mesenchymal features and activation of the TGF‐β1 pathway, whereas enforced KLF4 overexpression activated TGF‐β1, phosphorylation of Smad 2/3 and Snail expression, and restored stemness and mesenchymal phenotypes. Furthermore, TGF‐β1 pathway inhibition invalidated KLF4‐facilitated stemness and mesenchymal features without affecting KLF4 expression. The data from the current study are the first to demonstrate that KLF4 maintains stemness and mesenchymal properties through the TGF‐β1/Smad/Snail pathway in Lgr5+CD44+EpCAM+ colorectal CSCs.  相似文献   

16.
17.
18.
19.
20.
Myocardial fibrosis after myocardial infarction (MI) is a leading cause of heart diseases. MI activates cardiac fibroblasts (CFs) and promotes CF to myofibroblast transformation (CMT). This study aimed to investigate the role of miR‐21 in the regulation of CMT and myocardial fibrosis. Primary rat CFs were isolated from young SD rats and treated with TGF‐β1, miR‐21 sponge or Jagged1 siRNA. Cell proliferation, invasion and adhesion were detected. MI model was established in male SD rats using LAD ligation method and infected with recombinant adenovirus. The heart function and morphology was evaluated by ultrasonic and histological analysis. We found that TGF‐β1 induced the up‐regulation of miR‐21 and down‐regulation of Jagged1 in rat CFs. Luciferase assay showed that miR‐21 targeted 3′‐UTR of Jagged1 in rat CFs. miR‐21 sponge inhibited the transformation of rat CFs into myofibroblasts, and abolished the inhibition of Jagged1 mRNA and protein expression by TGF‐β1. Furthermore, these effects of miR‐21 sponge on rat CFS were reversed by siRNA mediated knockdown of Jagged1. In vivo, heart dysfunction and myocardial fibrosis in MI model rats were partly improved by miR‐21 sponge but were aggravated by Jagged1 knockdown. Taken together, these results suggest that miR‐21 promotes cardiac fibroblast‐to‐myofibroblast transformation and myocardial fibrosis by targeting Jagged1. miR‐21 and Jagged1 are potential therapeutic targets for myocardial fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号