首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eichler R  Lenz O  Strecker T  Garten W 《FEBS letters》2003,538(1-3):203-206
Lassa virus glycoprotein is synthesized as precursor GP-C into the lumen of the endoplasmic reticulum and cleaved posttranslationally into the N-terminal subunit GP-1 and the C-terminal subunit GP-2 by subtilase SKI-1/S1P. The N-terminal portion of the primary translation product preGP-C contains a signal peptide of unknown length. In order to demonstrate the signal peptide cleavage site, purified viral GP-1 isolated from Lassa virus particles was N-terminally sequenced as TSLYKGV, identical to amino acids 59-65 of GP-C. Mutational analysis of the amino acid residues flanking the putative cleavage site led to non-cleavable preGP-C indicating that no other signal peptide cleavage site exists. Interestingly, GP-C mutants with a non-cleavable signal peptide were not further processed by SKI-1/S1P. This observation suggests that the signal peptide cleavage is necessary for GP-C maturation and hence for Lassa virus replication.  相似文献   

2.
Lassa virus glycoprotein C (GP-C) is translated as a precursor (preGP-C) into the lumen of the endoplasmic reticulum (ER) and cotranslationally cleaved into the signal peptide and immature GP-C before GP-C is proteolytically processed into its subunits, GP-1 and GP-2, which form the mature virion spikes. The signal peptide of preGP-C comprises 58 amino acids and contains two distinct hydrophobic domains. Here, we show that each hydrophobic domain alone can insert preGP-C into the ER membrane. Furthermore, we demonstrate that the native signal peptide only uses the N-terminal hydrophobic domain for membrane insertion, exhibiting a novel type of a topology for signal peptides with an extended ER luminal part, which is essential for proteolytic processing of GP-C into GP-1 and GP-2.  相似文献   

3.

Background

Proteolytic processing of the Lassa virus envelope glycoprotein precursor GP-C by the host proprotein convertase site 1 protease (S1P) is a prerequisite for the incorporation of the subunits GP-1 and GP-2 into viral particles and, hence, essential for infectivity and virus spread. Therefore, we tested in this study the concept of using S1P as a target to block efficient virus replication.

Methodology/Principal Finding

We demonstrate that stable cell lines inducibly expressing S1P-adapted α1-antitrypsin variants inhibit the proteolytic maturation of GP-C. Introduction of the S1P recognition motifs RRIL and RRLL into the reactive center loop of α1-antitrypsin resulted in abrogation of GP-C processing by endogenous S1P to a similar level observed in S1P-deficient cells. Moreover, S1P-specific α1-antitrypsins significantly inhibited replication and spread of a replication-competent recombinant vesicular stomatitis virus expressing the Lassa virus glycoprotein GP as well as authentic Lassa virus. Inhibition of viral replication correlated with the ability of the different α1-antitrypsin variants to inhibit the processing of the Lassa virus glycoprotein precursor.

Conclusions/Significance

Our data suggest that glycoprotein cleavage by S1P is a promising target for the development of novel anti-arenaviral strategies.  相似文献   

4.
Basak A  Chrétien M  Seidah NG 《FEBS letters》2002,514(2-3):333-339
The subtilase subtilisin kexin isozyme-1 (SKI-1)/site 1 protease (S1P), has been implicated in the processing of Lassa virus glycoprotein C (GP-C) precursor into GP1 and GP2 that are responsible for viral fusion with the host cell membrane. Here, we studied in vitro the kinetics of this cleavage by hSKI-1 using an intramolecularly quenched fluorogenic (IQF) peptide, Q-GPC(251-263) [Abz-(251)Asp-Ile-Tyr-Ile-Ser-Arg-Arg-Leu-Leu/Gly-Thr-Phe-Thr(263)-3-NitroTyr-Ala-CONH(2)], containing the identified site. The measured V(max (app))/K(m (app)) was compared to those for other IQF SKI-substrates. Q-GPC(251-263) is cleaved 10-fold more efficiently than the previously known best SKI-substrate, Q-hproSKI(134-142). This study confirmed the role of SKI-1 in GP-C processing and provides a novel, rapid and efficient enzymatic assay of SKI-1.  相似文献   

5.
Insertion of the lymphocytic choriomeningitis virus (LCMV) precursor glycoprotein C (GP-C) into the membrane of the endoplasmic reticulum is mediated by an unusual signal peptide (SP(GP-C)). It is comprised of 58 amino acid residues and contains an extended hydrophilic N-terminal region, two hydrophobic regions, and a short C-terminal region. After cleavage by signal peptidase, SP(GP-C) accumulates in cells and virus particles. In the present study, we identified the LCMV SP(GP-C) as being an essential component of the GP complex and show that the different regions of SP(GP-C) are required for distinct steps in GP maturation and virus infectivity. More specifically, we show that one hydrophobic region of SP(GP-C) is sufficient for the membrane insertion of GP-C, while both hydrophobic regions are required for the processing and cell surface expression of the GPs. The N-terminal region of SP(GP-C), on the other hand, is essential for pseudoviral infection of target cells. Furthermore, we show that unmyristoylated SP(GP-C) exposes its N-terminal region to the exoplasmic side. This SP(GP-C) can promote GP-C maturation but is defective in pseudoviral infection. Myristoylation and topology of SP(GP-C) in the membrane may thus hold the key to an understanding of the role of SP(GP-C) in GP-C complex maturation and LCMV infectivity.  相似文献   

6.
The Lassa virus glycoprotein consists of an amino-terminal and a carboxy-terminal cleavage fragment designated GP-1 and GP-2, respectively, that are derived by proteolysis from the precursor GP-C. The membrane-anchored GP-2 obtained from purified virions of the Josiah strain revealed the N-terminal tripeptide GTF(262) when analyzed by Edman degradation. Upstream of this site, GP-C contains the tetrapeptide sequence RRLL(259), which is conserved in all Lassa virus isolates published to date. Systematic mutational analysis of vector-expressed GP-C revealed that the motif R-X (L/I/V)-L(259) (where X stands for L, I, or V) is essential for cleavage of the peptide bond between leucine(259) and glycine(260). This cleavage motif is homologous to the consensus sequence recognized by a novel class of cellular endoproteases which have so far not been implicated in the processing of viral glycoproteins.  相似文献   

7.
Arenaviruses share a common strategy for glycoprotein synthesis and processing in which a mannose-rich precursor glycoprotein, termed GP-C in lymphocytic choriomeningitis virus (LCMV), is posttranslationally processed by oligosaccharide trimming and proteolytic cleavage to yield two structural glycoproteins, GP-1 and GP-2. Mapping the orientation and proteolytic cleavage site(s) in such polyproteins has traditionally required direct protein sequencing of one or more of the cleaved products. This technique requires rigorous purification of the products for sequencing and may be complicated by amino-terminal modifications which interfere with sequence analysis. We used an alternative approach in which synthetic peptides corresponding to sequences bracketing a potential protease cleavage site were used to raise antisera which define the boundaries of the cleaved products. We found that cleavage of LCMV GP-C to yield GP-1 and GP-2 occurs within a 9-amino-acid stretch of GP-C which contains a paired basic amino acid group -Arg-Arg-, corresponding to amino acids 262 to 263 in the LCMV GP-C sequence. By comparison with the predicted amino acid sequences of a second LCMV strain, LCMV-WE, as well as with the deduced amino acid sequences of the New World arenavirus Pichinde and the Old World virus Lassa, we observed similar conservation of paired basic and flanking amino acid sequences among these viruses.  相似文献   

8.
Crimean-Congo hemorrhagic fever (CCHF) virus is a tick-borne member of the genus Nairovirus, family Bunyaviridae. The mature virus glycoproteins, Gn and Gc (previously referred to as G2 and G1), are generated by proteolytic cleavage from precursor proteins. The amino termini of Gn and Gc are immediately preceded by tetrapeptides RRLL and RKPL, respectively, leading to the hypothesis that SKI-1 or related proteases may be involved (A. J. Sanchez, M. J. Vincent, and S. T. Nichol, J. Virol. 76:7263-7275, 2002). In vitro peptide cleavage data show that an RRLL peptide representing the Gn processing site is efficiently cleaved by SKI-1 protease, whereas an RKPL peptide representing the Gc processing site is cleaved at negligible levels. The efficient cleavage of RRLL peptide is consistent with the known recognition sequences of SKI-1, including the sequence determinants involved in the cleavage of the Lassa virus (family Arenaviridae) glycoprotein precursor. These in vitro findings were confirmed by expression of wild-type or mutant CCHF virus glycoproteins in CHO cells engineered to express functional or nonfunctional SKI-1. Gn processing was found to be dependent on functional SKI-1, whereas Gc processing was not. Gn processing occurred in the endoplasmic reticulum-cis Golgi compartments and was dependent on an R at the -4 position within the RRLL recognition motif, consistent with the known cleavage properties of SKI-1. Comparison of SKI-1 cleavage efficiency between peptides representing Lassa virus GP2 and CCHF virus Gn cleavage sites suggests that amino acids flanking the RRLL may modulate the efficiency. The apparent lack of SKI-1 cleavage at the CCHF virus Gc RKPL site indicates that related proteases, other than SKI-1, are likely to be involved in the processing at this site and identical or similar sites utilized in several New World arenaviruses.  相似文献   

9.
Porcine reproductive and respiratory syndrome virus (PRRSV) is the major pathogen in the pig industry. Variability of the antigens and persistence are the biggest challenges for successful control and elimination of the disease. GP5, the major glycoprotein of PRRSV, is considered an important target of neutralizing antibodies, which however appear only late in infection. This was attributed to the presence of a “decoy epitope” located near a hypervariable region of GP5. This region also harbors the predicted signal peptide cleavage sites and (dependent on the virus strain) a variable number of potential N-glycosylation sites. Molecular processing of GP5 has not been addressed experimentally so far: whether and where the signal peptide is cleaved and (as a consequence) whether the “decoy epitope” is present in virus particles. We show that the signal peptide of GP5 from the American type 2 reference strain VR-2332 is cleaved, both during in vitro translation in the presence of microsomes and in transfected cells. This was found to be independent of neighboring glycosylation sites and occurred in a variety of porcine cells for GP5 sequences derived from various type 2 strains. The exact signal peptide cleavage site was elucidated by mass spectrometry of virus-derived and recombinant GP5. The results revealed that the signal peptide of GP5 is cleaved at two sites. As a result, a mixture of GP5 proteins exists in virus particles, some of which still contain the “decoy epitope” sequence. Heterogeneity was also observed for the use of glycosylation sites in the hypervariable region. Lastly, GP5 mutants were engineered where one of the signal peptide cleavage sites was blocked. Wildtype GP5 exhibited exactly the same SDS-PAGE mobility as the mutant that is cleavable at site 2 only. This indicates that the overwhelming majority of all GP5 molecules does not contain the “decoy epitope”.  相似文献   

10.
York J  Romanowski V  Lu M  Nunberg JH 《Journal of virology》2004,78(19):10783-10792
Arenaviruses comprise a diverse family of rodent-borne viruses that are responsible for recurring and emerging outbreaks of viral hemorrhagic fevers worldwide. The Junín virus, a member of the New World arenaviruses, is endemic to the pampas grasslands of Argentina and is the etiologic agent of Argentine hemorrhagic fever. In this study, we have analyzed the assembly and function of the Junín virus envelope glycoproteins. The mature envelope glycoprotein complex is proteolytically processed from the GP-C precursor polypeptide and consists of three noncovalently associated subunits, G1, G2, and a stable 58-amino-acid signal peptide. This tripartite organization is found both on virions of the attenuated Candid 1 strain and in cells expressing the pathogenic MC2 strain GP-C gene. Replacement of the Junín virus GP-C signal peptide with that of human CD4 has little effect on glycoprotein assembly while abolishing the ability of the G1-G2 complex to mediate pH-dependent cell-cell fusion. In addition, we demonstrate that the Junín virus GP-C signal peptide subunit is myristoylated at its N-terminal glycine. Alanine substitution for the modified glycine residue in the GP-C signal peptide does not affect formation of the tripartite envelope glycoprotein complex but markedly reduces its membrane fusion activity. In contrast to the classical view that signal peptides act primarily in targeting nascent polypeptides to the endoplasmic reticulum, we suggest that the signal peptide of the arenavirus GP-C may serve additional functions in envelope glycoprotein structure and trafficking.  相似文献   

11.
Lassa virus is an enveloped, bi-segmented RNA virus and the most prevalent and fatal of all Old World arenaviruses. Virus entry into the host cell is mediated by a tripartite surface spike complex, which is composed of two viral glycoprotein subunits, GP1 and GP2, and the stable signal peptide. Of these, GP1 binds to cellular receptors and GP2 catalyzes fusion between the viral envelope and the host cell membrane during endocytosis. The molecular structure of the spike and conformational rearrangements induced by low pH, prior to fusion, remain poorly understood. Here, we analyzed the three-dimensional ultrastructure of Lassa virus using electron cryotomography. Sub-tomogram averaging yielded a structure of the glycoprotein spike at 14-Å resolution. The spikes are trimeric, cover the virion envelope, and connect to the underlying matrix. Structural changes to the spike, following acidification, support a viral entry mechanism dependent on binding to the lysosome-resident receptor LAMP1 and further dissociation of the membrane-distal GP1 subunits.  相似文献   

12.
Lassa virus (LASV), an arenavirus endemic to West Africa, causes Lassa fever—a lethal hemorrhagic fever. Entry of LASV into the host cell is mediated by the glycoprotein complex (GPC), which is the only protein located on the viral surface and comprises three subunits: glycoprotein 1 (GP1), glycoprotein 2 (GP2), and a stable signal peptide (SSP). The LASV GPC is a class one viral fusion protein, akin to those found in viruses such as human immunodeficiency virus (HIV), influenza, Ebola virus (EBOV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). These viruses are enveloped and utilize membrane fusion to deliver their genetic material to the host cell. Like other class one fusion proteins, LASV-mediated membrane fusion occurs through an orchestrated sequence of conformational changes in its GPC. The receptor-binding subunit, GP1, first engages with a host cell receptor then undergoes a unique receptor switch upon delivery to the late endosome. The acidic pH and change in receptor result in the dissociation of GP1, exposing the fusion subunit, GP2, such that fusion can occur. These events ultimately lead to the formation of a fusion pore so that the LASV genetic material is released into the host cell. Interestingly, the mature GPC retains its SSP as a third subunit—a feature that is unique to arenaviruses. Additionally, the fusion domain contains two separate fusion peptides, instead of a standard singular fusion peptide. Here, we give a comprehensive review of the LASV GPC components and their unusual features.  相似文献   

13.
The maturation of Borna disease virus (BDV) glycoprotein GP was studied in regard to intracellular compartmentalization, compartmentalization signal-domains, proteolytic processing, and packaging into virus particles. Our data show that BDV-GP is (i) predominantly located in the endoplasmic reticulum (ER), (ii) partially exists in the ER already as cleaved subunits GP-N and GP-C, (iii) is directed to the ER/cis-Golgi region by its transmembrane and/or cytoplasmic domains in CD8-BDV-GP hybrid constructs and (iv) is incorporated in the virus particles as authentic BDV glycoprotein exclusively in the cleaved form decorated with N-glycans of the complex type. Downregulation of BDV-glycoproteins on the cell surface, their limited proteolytic processing, and protection of antigenic epitopes on the viral glycoproteins by host-identical N-glycans are different strategies for persistent virus infections.  相似文献   

14.
Generation of infectious arenavirus-like particles requires the virus RING finger Z protein and surface glycoprotein precursor (GPC) and the correct processing of GPC into GP1, GP2, and a stable signal peptide (SSP). Z is the driving force of arenavirus budding, whereas the GP complex (GPc), consisting of hetero-oligomers of SSP, GP1, and GP2, forms the viral envelope spikes that mediate receptor recognition and cell entry. Based on the roles played by Z and GP in the arenavirus life cycle, we hypothesized that Z and the GPc should interact in a manner required for virion formation. Here, using confocal microscopy and coimmunoprecipitation assays, we provide evidence for subcellular colocalization and biochemical interaction, respectively, of Z and the GPc. Our results from mutation-function analysis reveal that Z myristoylation, but not the Z late (L) or RING domain, is required for Z-GPc interaction. Moreover, Z interacted directly with SSP in the absence of other components of the GPc. We obtained similar results with Z and GPC from the prototypical arenavirus lymphocytic choriomeningitis virus and the hemorrhagic fever arenavirus Lassa fever virus.  相似文献   

15.
York J  Nunberg JH 《Journal of virology》2006,80(15):7775-7780
The envelope glycoprotein of the arenaviruses (GP-C) is unusual in that the mature complex retains the cleaved, 58-amino-acid signal peptide. Association of this stable signal peptide (SSP) has been shown to be essential for intracellular trafficking and proteolytic maturation of the GP-C complex. We identify here a specific and previously unrecognized role of SSP in pH-dependent membrane fusion. Amino acid substitutions that alter the positive charge at lysine K33 in SSP affect the ability of GP-C to mediate cell-cell fusion and the threshold pH at which membrane fusion is triggered. Based on the presumed location of K33 at or near the luminal domain of SSP, we postulate that SSP interacts with the membrane-proximal or transmembrane regions of the G2 fusion protein. This unique organization of the GP-C complex may suggest novel strategies for intervention in arenavirus infection.  相似文献   

16.
Mammarenaviruses, including lethal pathogens such as Lassa virus and Junín virus, can cause severe hemorrhagic fever in humans. Entry is a key step for virus infection, which starts with binding of the envelope glycoprotein(GP) to receptors on target cells and subsequent fusion of the virus with target cell membranes. The GP precursor is synthesized as a polypeptide, and maturation occurs by two cleavage events, yielding a tripartite GP complex(GPC) formed by a stable signal peptide(SSP), GP1 and GP2. The unique retained SSP interacts with GP2 and plays essential roles in virion maturation and infectivity. GP1 is responsible for binding to the cell receptor, and GP2 is a class I fusion protein. The native structure of the tripartite GPC is unknown.GPC is critical for the receptor binding, membrane fusion and neutralization antibody recognition.Elucidating the molecular mechanisms underlining the structure–function relationship of the three subunits is the key for understanding their function and can facilitate novel avenues for combating virus infections. This review summarizes the basic aspects and recent research of the structure–function relationship of the three subunits. We discuss the structural basis of the receptor-binding domain in GP1, the interaction between SSP and GP2 and its role in virion maturation and membrane fusion, as well as the mechanism by which glycosylation stabilizes the GPC structure and facilitates immune evasion. Understanding the molecular mechanisms involved in these aspects will contribute to the development of novel vaccines and treatment strategies against mammarenaviruses infection.  相似文献   

17.
The arenavirus Lassa virus causes Lassa fever, a viral hemorrhagic fever that is endemic in the countries of Nigeria, Sierra Leone, Liberia, and Guinea and perhaps elsewhere in West Africa. To determine the degree of genetic diversity among Lassa virus strains, partial nucleoprotein (NP) gene sequences were obtained from 54 strains and analyzed. Phylogenetic analyses showed that Lassa viruses comprise four lineages, three of which are found in Nigeria and the fourth in Guinea, Liberia, and Sierra Leone. Overall strain variation in the partial NP gene sequence was found to be as high as 27% at the nucleotide level and 15% at the amino acid level. Genetic distance among Lassa strains was found to correlate with geographic distance rather than time, and no evidence of a "molecular clock" was found. A method for amplifying and cloning full-length arenavirus S RNAs was developed and used to obtain the complete NP and glycoprotein gene (GP1 and GP2) sequences for two representative Nigerian strains of Lassa virus. Comparison of full-length gene sequences for four Lassa virus strains representing the four lineages showed that the NP gene (up to 23.8% nucleotide difference and 12.0% amino acid difference) is more variable than the glycoprotein genes. Although the evolutionary order of descent within Lassa virus strains was not completely resolved, the phylogenetic analyses of full-length NP, GP1, and GP2 gene sequences suggested that Nigerian strains of Lassa virus were ancestral to strains from Guinea, Liberia, and Sierra Leone. Compared to the New World arenaviruses, Lassa and the other Old World arenaviruses have either undergone a shorter period of diverisification or are evolving at a slower rate. This study represents the first large-scale examination of Lassa virus genetic variation.  相似文献   

18.
Signal peptide cleavage and N-glycosylation of proteins are co-translational processes, but little is known about their interplay if they compete for adjacent sites. Here we report two unique findings for processing of glycoprotein 3 of equine arteritis virus. Glycoprotein 3 (Gp3) contains an N-terminal signal peptide, which is not removed, although bioinformatics predicts cleavage with high probability. There is an overlapping sequon, NNTT, adjacent to the signal peptide that we show to be glycosylated at both asparagines. Exchanging the overlapping sequon and blocking glycosylation allows signal peptide cleavage, indicating that carbohydrate attachment inhibits processing of a potentially cleavable signal peptide. Bioinformatics analyses suggest that a similar processing scheme may exist for some cellular proteins. Membrane fractionation and secretion experiments revealed that the signal peptide of Gp3 does not act as a membrane anchor, indicating that it is completely translocated into the lumen of the endoplasmic reticulum. Membrane attachment is caused by the hydrophobic C terminus of Gp3, which, however, does not span the membrane but rather attaches the protein peripherally to endoplasmic reticulum membranes.  相似文献   

19.
A crucial step in the life cycle of arenaviruses is the biosynthesis of the mature fusion-active viral envelope glycoprotein (GP) that is essential for virus-host cell attachment and entry. The maturation of the arenavirus GP precursor (GPC) critically depends on proteolytic processing by the cellular proprotein convertase (PC) subtilisin kexin isozyme-1 (SKI-1)/site-1 protease (S1P). Here we undertook a molecular characterization of the SKI-1/S1P processing of the GPCs of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and the pathogenic Lassa virus (LASV). Previous studies showed that the GPC of LASV undergoes processing in the endoplasmic reticulum (ER)/cis-Golgi compartment, whereas the LCMV GPC is cleaved in a late Golgi compartment. Herein we confirm these findings and provide evidence that the SKI-1/S1P recognition site RRLL, present in the SKI-1/S1P prodomain and LASV GPC, but not in the LCMV GPC, is crucial for the processing of the LASV GPC in the ER/cis-Golgi compartment. Our structure-function analysis revealed that the cleavage of arenavirus GPCs, but not cellular substrates, critically depends on the autoprocessing of SKI-1/S1P, suggesting differences in the processing of cellular and viral substrates. Deletion mutagenesis showed that the transmembrane and intracellular domains of SKI-1/S1P are dispensable for arenavirus GPC processing. The expression of a soluble form of the protease in SKI-I/S1P-deficient cells resulted in the efficient processing of arenavirus GPCs and rescued productive virus infection. However, exogenous soluble SKI-1/S1P was unable to process LCMV and LASV GPCs displayed at the surface of SKI-I/S1P-deficient cells, indicating that GPC processing occurs in an intracellular compartment. In sum, our study reveals important differences in the SKI-1/S1P processing of viral and cellular substrates.  相似文献   

20.
Arenaviruses merit interest as clinically important human pathogens and include several causative agents, chiefly Lassa virus (LASV), of hemorrhagic fever disease in humans. There are no licensed LASV vaccines, and current antiarenavirus therapy is limited to the use of ribavirin, which is only partially effective and is associated with significant side effects. The arenavirus glycoprotein (GP) precursor GPC is processed by the cellular site 1 protease (S1P) to generate the peripheral virion attachment protein GP1 and the fusion-active transmembrane protein GP2, which is critical for production of infectious progeny and virus propagation. Therefore, S1P-mediated processing of arenavirus GPC is a promising target for therapeutic intervention. To this end, we have evaluated the antiarenaviral activity of PF-429242, a recently described small-molecule inhibitor of S1P. PF-429242 efficiently prevented the processing of GPC from the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and LASV, which correlated with the compound's potent antiviral activity against LCMV and LASV in cultured cells. In contrast, a recombinant LCMV expressing a GPC whose processing into GP1 and GP2 was mediated by furin, instead of S1P, was highly resistant to PF-429242 treatment. PF-429242 did not affect virus RNA replication or budding but had a modest effect on virus cell entry, indicating that the antiarenaviral activity of PF-429242 was mostly related to its ability to inhibit S1P-mediated processing of arenavirus GPC. Our findings support the feasibility of using small-molecule inhibitors of S1P-mediated processing of arenavirus GPC as a novel antiviral strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号