首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
M Matsui  Y Kinuyama  M Hakozaki 《Steroids》1974,24(4):557-573
A mixture of testosterone-4-14C and testosterone-1,2-3H-17-glucosiduronate was intraperitoneally administered into male and female rats with bile fistulas. Biliary metabolites were separated and purififd by a combination of column chromatography, enzymic hydrolysis or solvolysis of the conjugate fractions and identification of the liberated aglycones. The injected steroids were extensively metabolized and excreted predominantly in the blue. 5β-Androstane-3α, 17β-diol was found principally in monoglucosiduronate fraction and was produced preferentially from the injected conjugate in both sexes. Very marked sex differences from the injected conjugate in both sexes. Very marked sex differences were observed in the following metabolites: Androsterone was present only in the female as monoglucosidironate, which was preferentially derived from testosterone. 5α-Androstane-3α,17β-diol was identified in both monoglucosiduronate and diconjugate fractions of the female, which was formed significanrly more from the conjugate than testosterone. These findings provide evidence that testosterone glucosiduronate could be converted directly into 5α-steroids as well as 5β-ones invivo. In marked contrast, the major portion of testosterone was metabolized to polar steroids in the male.  相似文献   

2.
In the male rat pituitary, 5alpha-androstane-3beta, 17beta-diol (3beta-diol) is extensively metabolized into polar steroids. They were identified as 5alpha-androstane-3beta, 6alpha-17beta-triol (6alpha-triol) and 5alpha-androstane-3beta, 7alpha, 17beta-triol (7alpha-triol). 6-alpha-Triol represents 53% and 7alpha-Triol 28% of the total 3beta-diol metabolites. The remaining percentage is related to 6beta and 7beta isomers. The biological role of triols is still unknown.  相似文献   

3.
Rat ventral prostate and liver were investigated for the binding in vitro to particulate fractions and for the metabolism of 5 alpha-androstane-3 beta, 17 beta-diol. Comparative investigations were carried out on the metabolism of 5 alpha-androstane-3 alpha, 17 beta-diol. Preparations of the liver were investigated in order to establish the organ specificity of the method. In the prostate, the bulk of the metabolites of 5 alpha-androstane-3 beta, 17 beta-diol was present as steroids of high polarity. Of the less polar metabolites, 17 beta-hydroxy-5 alpha-androstan-3-one, 3 beta-hydroxy-5 alpha-androstan, 17-one and 5 alpha-androstane-3 alpha, 17 beta-diol were detectable. The binding of a 5 alpha-androstane-3 beta, 17 beta-diol to mitochondria and microsomes was unspecific. In the liver, among the less polar metabolites, 3 beta-hydroxy-5 alpha-androstan-17-one was the main metabolite, and the binding was unspecific. The main metabolite in the prostate homogenate of 5 alpha-androstane-3 alpha, 17 beta-diol was 17 beta-hydroxy-5 alpha-androstan-3-one. The portion of highly polar steroids was very low. The portion of unmetabolized hormone was distributed almost equally among the different cell preparations except the nuclei, in which 17 beta-hydroxy-5 alpha-androstan-3-one was higher and 5 alpha-androstane-3 alpha, 17 beta-diol was lower than in the remaining cell fractions.  相似文献   

4.
Testosterone-1,2-3H was injected intravenously into a male dog with a bile fistula and bile and urine collected. The radioactivity was excreted preponderantly in bile (52% of the injected dose) in 6 hours; only 12% appeared in the urine. Methods to study the biliary metabolites of testosterone in this and other animals were developed. Satisfactory conjugate patterns were obtained by fractionation on DEAE-Sephadex A-25 columns using two different elution systems. In addition to an unchanged fraction, six different monoglucuronide fractions were separated. No other conjugates were isolated. Lipidex 5000 column chromatography, TLC and paper chromatography were used for the isolation and purification of aglycone metabolites, which were further identified by co-crystallization methods. The biliary metabolites of testosterone were epiandrosterone (3beta-hydroxy-5alpha-androstan-17-one), etiocholanlone (3alpha-hydroxy-5beta-androstan-17-one), 5alpha-androstan-3beta, 17beta-diol, 5beta-androstan-3alpha, 17beta-diol and 5beta-androstan-3beta,17beta-diol.  相似文献   

5.
J C Coffey  T E Harvey  W L Carr 《Steroids》1979,33(2):223-232
Tritiated 4-androstene-3,17-dione and testosterone were incubated with submaxillary gland homogenates of male and female rats. The metabolism was predominately reductive. In 15 and 180 min incubations submaxillary tissue converted 4-androstene-3,17-dione chiefly to androsterone. Less testosterone, 17 beta-hydroxy-5 alpha-androstan-3-one, 5 alpha-androstane-3,17-dione, 5 alpha-androstane-3 alpha, 17 beta-diol, and 4-androstene-3 alpha, 17 beta-diol were also identified. Testosterone was converted to the same products plus 4-androstene-3,17-dione. 5 alpha-Androstane-3 alpha, 17 beta-diol was the major testosterone metabolite. Qualitatively the metabolism by male and female submaxillary gland was similar.  相似文献   

6.
A mixture of 3H-testosteron (T) and 14C-4-androstene-3, 17-dione (A) was injected intravenously into 2 (I and II) rhesus monkeys (Macaca mulatta). A third monkey (III) was injected with 3H-T only. Urine and bile samples were collected at intervals for 6 hours following the injection. The excretion, conjugation and aglycone metabolites of the steroids injected were studied using these samples. Of the injected dose, animal I (male) excreted 32% 3H and 23% 14C in the bile and 30% 3H and 21% 14C in the urine in 6 hours. Animal II (female), however, had a comparatively higher biliary excretion (66% 3H, 40% 14 C), but a urinary excretion (18% 3H, 13% 14C) comparable to that of animals I and III. The averages in the bile of the 3 animals were: unconjugated compounds 3%, glucosiduronates 78%, sulfates 9%, sulfoglucosiduronates 5% and disulfates 3%; and in urine, 5% unconjugated, 92% glucosiduronates and 3% sulfates. The aglycones obtained following hydrolysis were separated gy chromatography on Lipidex 5000, further purified by thin layer and paper chromatography and identified by co-crystallization. The major matabolites from 3H-T were androsterone and 5beta-androstane-3alpha,17beta-diol, whereas that from 14C-A was androsterone. Other metabolites identified were: etiocholanolone (3beta-hydroxy-5-beta-androstan-17-one); T, epitestosterone (epi-T), (17alpha-hydroxy-4-androsten-3-one); epiandrosterone (3-beta-hydroxy-5alpha-androstan-17-one) and 5alpha-androstane-3alpha, 17beta-diol. The results indicate that while androgen metabolism in the rhesus monkey is similar to that of the baboon and human in conjugate and metabolite formation, the rate of excretion was significantly different, resembline more closely that of the baboon than the human.  相似文献   

7.
Alveolar macrophages obtained by bronchoalveolar lavage of lungs of male and female guinea pigs were incubated with tritium-labelled androstenedione to evaluate the steroid metabolizing enzymes in these cells. The radiolabeled metabolites were isolated and thereafter characterized as testosterone, 5 alpha-androstanedione, 5 alpha-dihydrotestosterone, androsterone, isoandrosterone, 5 alpha-androstane-3 alpha, 17 beta-diol and 5 alpha-androstane-3 beta, 17 beta-diol. Thus, the following androstenedione metabolizing enzymes are present in guinea-pig alveolar macrophages: 17 beta-hydroxysteroid dehydrogenase, 5 alpha-reductase, 3 beta-hydroxysteroid dehydrogenase and 3 alpha-hydroxysteroid dehydrogenase. The predominant androstenedione metabolizing enzyme activity present in alveolar macrophages was 17 beta-hydroxysteroid dehydrogenase. The rate of testosterone formation increased with incubation time up to 4 h, and with macrophage number up to 1.6 X 10(7) cells per ml. Androstenedione metabolism was similar in alveolar macrophages obtained both from male and female guinea pigs. These results suggest that alveolar macrophages may be a site of peripheral transformation of blood-borne androstenedione to biologically potent androgens in vivo and, therefore, these cells may contribute to the plasma levels of testosterone in the guinea pig.  相似文献   

8.
1. Cell-free homogenates of male and female pyloric caeca, body wall, testis and ovary were incubated with radiolabeled 3H-androstenedione. 2. Pyloric caeca had highest rates of androstenedione conversion. The predominant metabolites in the pyloric caeca were testosterone, 5 alpha-androstane-3 beta, 17 beta-diol and 5 beta-androstane-3 beta, 17 beta-diol. 3. In body wall, testicular and ovarian homogenates, androstenedione was converted primarily to testosterone and also to 5 alpha-androstanedione and epiandrosterone. 4. Qualitative and quantitative differences in androgen metabolism in somatic and germinal tissues may be related to tissue-specific regulation of cellular metabolism.  相似文献   

9.
5 alpha-Dihydrotestosterone (DHT) metabolism into 5 alpha-androstane-3 alpha, 17 beta-diol (alpha-diol) and 5 alpha-androstane-3 beta, 17 beta-diol (beta-diol) was studied in monolayer cultures of distinct cell populations from prepubertal male rats pituitaries. Cells were characterized through immunocytochemistry with the various antihormone antisera. Centrifugal elutriation was used to prepare a gonadotrope-enriched population "G" and a gonadotrope-depleted population "L", containing most lactotropes and somatotropes. Using centrifugation on Percoll gradient, two sub-populations, P1 and P2, were prepared by further fractionation of the "L" population. Cells were incubated for 48 h with [3H]DHT (1 microM, sp. act. 0.9 Ci/mmol) and metabolites extracted from the whole cell and medium. DHT was metabolized to about the same extent (30-40%) in all cell fractions. Compared with unfractionated population, the conversion of DHT into alpha-diol increased significantly in the P1 fraction, consisting of lactotropes, somatotropes and highly depleted in gonadotropes. This increase was lower in the somatotrope-enriched P2 fraction in which the amount of lactotropes was similar to P1 but that of gonadotropes slightly higher. In contrast, the conversion of DHT into alpha-diol decreased significantly in the "G" population compared with total or "L" fractions, whereas androstanedione formation, low in every population, increased significantly. The increase in alpha-diol formation could be related either to the decrease of gonadotropes or to a role of non-immunoreactive cells. As the beta-diol formation was constant in all cell types, the beta-diol/alpha-diol amount increased significantly in gonadotropes. Then, beta-diol and DHT could be both active steroids in gonadotrope regulation inasmuch as specific binding sites were identified for these two steroids. It can be concluded that DHT action at the pituitary level is subject to complex control mechanisms involving a specific balance of its metabolites in each particular cell type.  相似文献   

10.
The epididymis of adult rats metabolizes 3H 5alpha-androstane-3alpah,17beta-diol (3alpha-diol) by experiments in vitro. After incubation of tissue slices at 37 degrees C for 2 hours, 2% of the radioactivity was found in the water-soluble fraction whereas 98% was found to be ether soluble (free steroids). Further investigation of the free steroids showed the following to be present: 3alpha-diol 39.9%, DHT (17beta-hydroxy-5alpha-androstan-3-one) 33.7%, androsterone (3alpha-hydroxy-5alpha-androstan-17-one) 9.2%, 3beta-diol (5alpha-androstane-3beta,17beta-diol) 2.6%, 5alpha-A-dione (5alpha-androstan-3,17-dione) 1.1%, delta 16-3alpha-ol (5alpha-androst-16-en-3alpha-ol) 1.0%, delta16-3beta-ol (5alpha-androst-16-en-3beta-ol) 2.6%, delta 16-3-one (5alpha-androst-16-en-3-one) 2.9%, and polar compounds 3.3%. When segments of the epididymis (caput and cauda) were incubated in the same way, qualitatively similar metabolites were formed but a greater amount of 3alpha-diol was metabolized by the cauda epididymis. This increase was mainly accounted for by an increased formation of delta 16 compounds (14.3% in cauda, 4.3% in caput). This is most probably due to the presence of larger numbers of mature spermatozoa, which, as we have previously shown, form delta16 steroids from 3alpha-diol and DHT (5).  相似文献   

11.
In view of the uterine action of androgens we have investigated in vitro the metabolism of [4-14C]-testosterone in uterine tissue of ovariectomized rats. After purification of the extracts on Amberlite XAD-2 the metabolites have been isolated by gel. Five metabolites were isolated and identified during these incubation studies: 4-androstene 3,17-dione, 17beta-hydroxy-5alpha-androstan-3-one, 5 alpha-androstane-3alpha17beta-diol, 4-androstene-3 beta, 17beta-diol and 4-androstene-3alpha, 17beta-diol. Furthermore, two polar C19O3-metabolites and one isopolar to 5 alpha-androstane-3, 17-dione have also been detected. The metabolites were characterized by radioactive gas chromatogrphy, and determination of the relative specific activity in the eluates of Sephadex column chromatography. The identification of allylic alcohols was complemented by their oxidation to 4-androstene-3,17-dione. The present data show that activity of 17beta,3alpha- and 3beta-hydroxysteroid-oxidoreductase and 5alpha-ring-reductase are involved in the metabolism of testosterone in vitro in the rat uterus. The very low 5 alpha-reductase activity under the experimental conditions used in this work explains the formation of allylalcohols as the principal metabolites of testosterone in the rat uterus.  相似文献   

12.
Dispersed pituitary cells from 42-day old male rats were separated using centrifugal elutriation. Based on LH and PRL cellular contents, fractionated cells were pooled into two fractions: "Lactotrope++ population" and "gonadotrope++ population". Estradiol and 5 alpha-androstane-3 beta, 17 beta-diol binding was measured in these fractions. Results revealed that: (1) The steroid receptors are not destroyed by cell dispersion and elutriation. (2) The estradiol receptor content is higher in gonadotrope++ cells than in lactotrope++ cells. (3) The number of binding sites for the two steroids changes in the different fractions: whereas it is exactly similar in "lactotrope++ population", it is much higher for estradiol than for 5 alpha-androstane-3 beta, 17 beta-diol in "gonadotrope++ population". These results suggest two different species--or conformations--of receptor binding sites for estradiol in the male rat pituitary; the first one could link both steroids, the second one would be specific for estradiol.  相似文献   

13.
The urinary levels of seven steroids, 5 alpha-androstane-3 alpha,17 beta-diol, 5 beta-androstane-3 alpha,17 beta-diol, androsterone, etiocholanolone, tetrahydrocortisone, tetrahydrocortisol and allotetrahydrocortisol were measured in both normal (n = 18) and hirsute (n = 24) women. The results confirmed 5 alpha-androstane-3 alpha,17 beta-diol as the most significant steroid with respect to discrimination between hirsute and normal subjects. Investigation of the inter-steroid relationships, using multivariate techniques established that the mode of steroid metabolism was different between the two groups. Whereas in normal women the strong correlation amongst all the androgen metabolites inferred a predominant hepatic route to 5 alpha-androstane-3 alpha,17 beta-diol formation, the same analogy was not applicable to the hirsute subjects. Excellent agreement was found for the predicted vs actual excretion of 5 alpha-androstane-3 alpha,17 beta-diol in normal women, based on a regression model involving the six other steroids as independent variables. When the same model was used for estimation of 5 alpha-androstane-3 alpha,17 beta-diol levels in thirteen hirsute subjects, misclassified as "normal", 50% gave values which were considerably less than actually measured. It is suggested that this discrepancy, with respect to these hirsute subjects is a reflection of extrahepatic production of 5 alpha-androstane-3 alpha,17 beta-diol due to increased 5 alpha-reductase activity.  相似文献   

14.
The concentrations of testosterone, 5 alpha-dihydrotestosterone, 5 alpha-androstan-3 alpha, 17 beta-diol, 5 alpha-androstane-3 beta, 17 beta-diol, estradiol-17 beta and testosterone-glucosiduronate were measured in the plasma of the testicular vein and artery simultaneously with the estimation in peripheral venous and arterial plasma 60 min after an infusion of 3000 micrograms dihydrotestosterone (DHT) or estradiol (E2), respectively, in patients undergoing orchiectomy for prostatic cancer. The results were as follows; following infusion of DHT or E2, both steroids were completely metabolized by the testes. After DHT the testicular secretion of E2 was significantly reduced. In peripheral plasma 3 alpha-diol concentration was increased. Following E2 a transient elevation of testosterone in the spermatic vein was observed, whereas a slight decrease of DHT and an increase especially of 3 beta-diol levels occurred. It is assumed that DHT as well as E2 plays a role as intratesticular regulator of steroid synthesis and metabolism.  相似文献   

15.
17alpha-Methyltestosterone-4-(14)C was fed to two dogs in an experiment to determine tissue localization and metabolic disposition of this hypocholesterolemic steroid. No accumulation of the drug was found in any tissue, although a small amount of radioactivity was detected in the liver and the ileal mucosa of one animal. Most of the administered radio-activity was excreted in urine and feces. The urinary metabolites consisted largely of highly polar compounds which appeared resistant to glucuronidase treatment or solvolysis procedures. Analysis of the fecal metabolites showed the presence of unchanged methyltestosterone, of four isomeric methylandrostanediols, and of labeled unidentified polar compounds. Of the four identified methylandrostane-diols, the predominating fecal diols were 17alpha-methyl-5alpha-androstane-3beta,17beta-diol (45-62%) and 17alpha-methyl-5-androstane-3alpha,17-diol (12-28%); 17alpha-methyl-5alpha-androstane-3alpha,-17-diol and the 5beta:3beta isomer were found in very small amounts only.  相似文献   

16.
The concentrations of testosterone and its tissular metabolites were determined in testicular and epididymal tissue obtained from eleven male subjects (aged 65-85 years) after orchiectomy for prostatic cancer. The steroids were measured in different tissular compartments, i.e. testis, caput, corpus and cauda epididymis. The values (mean +/- SD; ng/g wet weight) were: Testosterone 724.0 +/- 286.0, 32.08 +/- 2.56, 41.45 +/- 1.77 and 32.24 +/- 2.14; 5 alpha-dihydrotestosterone 6.95 +/- 1.99, 9.76 +/- 2.33, 16.87 +/- 0.21 and 15.79 +/- 2.67; 5 alpha-androstane-3 alpha, 17 beta-diol 6.07 +/- 2.33, 2.17 +/- 0.24, 1.93 +/- 0.02 and 1.17 +/- 0.20; 5 alpha-androstane-3 beta, 17 beta-diol 56.66 +/- 20.97, 3.55 +/- 0.19, 2.21 +/- 0.27 and 3.34 +/- 0.32; estradiol-17 beta 5.36 +/- 3.0, 1.08 +/- 0.014, 1.44 +/- 0.038 and 1.47 +/- 0.03, respectively. Incubation of human testicular tissue with [3H]androst-5-ene-3 beta, 17 beta-diol or [3H]dihydrotestosterone showed that both androstane-diols were exclusively formed from dihydrotestosterone. Since high concentrations of 5 alpha-androstane-3 beta, 17 beta-diol are found in testicular tissue it is suggested that this steroid may be an index of seminiferous tubular function.  相似文献   

17.
Serum sulphates of 5-androstene-3 beta,17 beta-diol (5-ADIOL-S), 5 alpha-androstane-3 alpha,17 beta-diol (3 alpha-DIOL-S) and dehydroepiandrosterone (DHEA-S), as well as 5 alpha-androstane-3 alpha,17 beta-diol glucuronide (3 alpha-DIOL-G) and unconjugated androstenedione (AD) and testosterone (T), sex hormone binding globulin (SHBG), free androgen index (FAI) and 17 alpha-hydroxyprogester-one (17OHP) were measured by specific radioimmunoassays (RIA) in 14 women with late-onset 21-hydroxylase deficiency (LOCAH), and in normal women (n = 73). The diagnosis of LOCAH was made on the finding of a (17OHP) response level greater than 30 nmol/l following ACTH stimulation, and/or an elevation of urinary metabolites of 17OHP. Mean values for serum concentrations of all steroids measured and the free androgen index (100 X T nmol/l divided by SHBG nmol/l) were significantly elevated, and SHBG levels depressed in patients with LOCAH. These studies show that in LOCAH, in addition to the unconjugated steroids AD and T, the sulphoconjugated steroids DHEA-S, 5-ADIOL-S and 3 alpha-DIOL-S are increased, as is the glucuronide conjugate 3 alpha-DIOL-G and the index of bioavailable testosterone (FAI), and that mean SHBG levels are depressed. These data suggest that as well as AD, 5-ADIOL-S and DHEA-S may act as pro-hormones for more potent steroids (T and 5 alpha-dihydrotestosterone) in peripheral tissues, while 3 alpha-DIOL-S and 3 alpha-DIOL-G may both reflect peripheral androgen metabolism in patients with LOCAH.  相似文献   

18.
B J Danzo  B C Eller 《Steroids》1984,44(5):435-445
We examined the influences of steroids present in the epididymis on androgen metabolism by epididymal tissue and on the binding of androgen metabolites to the epididymal androgen receptor in castrated adult rabbit epididymides under in vitro conditions. The conversion of [3H]testosterone to [3H]17 beta-hydroxy-5 alpha-androstan-3-one (5 alpha-DHT) and to [3H]5 alpha-androstane-3 alpha (beta), 17 beta-diol was inhibited by unlabeled steroids in the following manner progesterone greater than testosterone greater than estradiol. Unlabeled 5 alpha-DHT did not inhibit [3H]testosterone metabolism indicating that product inhibition is not an important regulatory event. The antiandrogen cyproterone acetate did not inhibit the formation of 5 alpha-reduced metabolites of [3H]testosterone. All of the compounds used inhibited androgen binding to the classically defined cytoplasmic and nuclear androgen receptor.  相似文献   

19.
Minces of the testes of bank voles, born and reared in a long (18L:6D) photoperiod until weaning (18-22 days of age) and subjected thereafter to a short (6L:18D, Group S) or a long (18L:6D, Group L) photoperiod for 6-9 weeks, were incubated with [4-14C]17 alpha-hydroxyprogesterone in the presence of cofactors (NADP/NADPH, 1.3 mmol/1) for 1 h at 37 degrees C. The radioactive metabolites were characterized and identified by thin-layer chromatography with derivative formation and chromatography to constant specific activity and isotope ratio. In Group L virtually all of the substrate was utilized and it was readily converted to androgens (48% of the radioactivity recovered) such as androstenedione and testosterone. The only pregnane metabolite identified was 17 alpha-hydroxy,20 alpha-dihydroxyprogesterone (43.3%). In Group S there was a decreased production of 17 alpha-hydroxy,20 alpha-dihydroprogesterone and androgens (25.4% and 10.4% respectively) and a substantial portion of the substrate was not metabolized (38.8%). The main androgen metabolites identified, androst-4-ene-3 beta,17 beta-diol and 5 alpha-androstane-3,17-dione are hormonally quite inert steroids. No androstenedione or testosterone was found. The results indicate that exposure to short photoperiod induces a decrease in the testicular C17-C20 lyase and 20 alpha-hydroxysteroid dehydrogenase.  相似文献   

20.
Among the subcellular fractions of chicken liver homogenates, the microsomal and cytosol fractions were most active in metabolism of testosterone with mutually different enzymological features. On the other hand, the nuclear and mitochondrial fractions had far lower activity of metabolizing the steroid. Metabolism by the cytosol fraction: the following steroids were identified as the metabolites of testosterone. 5 beta-Dihydrotestosterone (17 beta-hydroxy-5 beta-androstan-3-one), 5 beta-androstane-3 alpha,17 beta-diol and its 3 beta-epimer, 3 alpha-hydroxy-5 beta-androstan-17-one and its 3 beta-epimer and 5 beta-androstanedione. Metabolism by the microsomal fraction: from testosterone under aerobic condition, androstenedione was obtained as the major metabolite, besides the minor polar metabolites, production of which diminished when incubated in the atmosphere of carbon monoxide. From the results, testosterone was accepted to be firstly converted by the cytosol fraction into 5 beta-dihydrotestosterone which was then reduced to 5 beta-androstane-3 alpha,17 beta-diol and its 3 beta-epimer. These diols were further converted partially to 3 alpha -and 3 beta-hydroxy-5 beta-androstan-17-ones. These pathways were supported by the results of our incubation study with 5 beta-dihydrotestosterone and 5 beta-androstanedione as substrates. By the microsomes, testosterone was aerobically and anaerobically transformed to androstenedione as the major metabolite. Throughout our incubation experiments, no 5 alpha-reduction of a delta 4-3-oxo-steroid was detected in the chicken liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号