首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Tyrosine phosphorylation of focal adhesion kinase (FAK) creates a high-affinity binding site for the src homology 2 domain of the Src family of tyrosine kinases. Assembly of a complex between FAK and Src kinases may serve to regulate the subcellular localization and the enzymatic activity of members of the Src family of kinases. We show that simultaneous overexpression of FAK and pp60(c-src) or p59(fyn) results in the enhancement of the tyrosine phosphorylation of a limited number of cellular substrates, including paxillin. Under these conditions, tyrosine phosphorylation of paxillin is largely cell adhesion dependent. FAK mutants defective for Src binding or focal adhesion targeting fail to cooperate with pp60(c-src) or p59(fyn) to induce paxillin phosphorylation, whereas catalytically defective FAK mutants can direct paxillin phosphorylation. The negative regulatory site of pp60(c-src) is hypophosphorylated when in complex with FAK, and coexpression with FAK leads to a redistribution of pp60(c-src) from a diffuse cellular location to focal adhesions. A FAK mutant defective for Src binding does not effectively induce the translocation of pp60(c-src) to focal adhesions. These results suggest that association with FAK can alter the localization of Src kinases and that FAK functions to direct phosphorylation of cellular substrates by recruitment of Src kinases.  相似文献   

2.
The v-Src oncoprotein is translocated to integrin-linked focal adhesions, where its tyrosine kinase activity induces adhesion disruption and cell transformation. We previously demonstrated that the intracellular targeting of Src is dependent on the actin cytoskeleton, under the control of the Rho family of small G proteins. However, the assembly of v-Src into focal adhesions does not require its catalytic activity or myristylation-dependent membrane association. Here, we report that the SH3 domain is essential for the assembly of focal adhesions containing the oncoprotein by mediating a switch from a microtubule-dependent, perinuclear localization to actin-associated focal adhesions; furthermore, v-Src translocation to focal adhesions requires myosin activity, at least under normal conditions when the actin cytoskeleton is being dynamically regulated. Although the SH3 domain of v-Src is also necessary for its association with focal adhesion kinase (FAK), which is often considered a likely candidate mediator of focal adhesion targeting via its carboxy-terminal targeting sequence, we show here that binding to FAK is not essential for the targeting of v-Src to focal adhesions. The p85 regulatory subunit of phosphatidylinositol (PI) 3-kinase also associates with v-Src in an SH3-dependent manner, but in this case inhibition of PI 3-kinase activity suppressed assembly of focal adhesions containing the oncoprotein. Thus, the Src SH3 domain, which binds PI 3-kinase and which is necessary for activation of Akt downstream, is required for the actin-dependent targeting of v-Src to focal adhesions.  相似文献   

3.
The non-receptor tyrosine kinase FAK plays a key role at sites of cellular adhesion. It is subject to regulatory tyrosine phosphorylation in response to a variety of stimuli, including integrin engagement after attachment to extracellular matrix, oncogene activation, and growth factor stimulation. Here we use an antibody that specifically recognizes the phosphorylated form of the putative FAK autophosphorylation site, Tyr(397). We demonstrate that FAK phosphorylation induced by integrins during focal adhesion assembly differs from that induced by activation of a temperature-sensitive v-Src, which is associated with focal adhesion turnover and transformation. Specifically, although v-Src induces tyrosine phosphorylation of FAK, there is no detectable phosphorylation of Tyr(397). Moreover, activation of v-Src results in a net decrease in fibronectin-stimulated phosphorylation of Tyr(397), suggesting possible antagonism between v-Src and integrin-induced phosphorylation. Our mutational analysis further indicates that the binding of v-Src to Tyr(397) of FAK in its phosphorylated form, which is normally mediated, at least in part, by the SH2 domain of Src, is not essential for v-Src-induced cell transformation. We conclude that different stimuli can induce phosphorylation of FAK on distinct tyrosine residues, linking specific phosphorylation events to ensuing biological responses.  相似文献   

4.
A number of cellular processes, such as proliferation, differentiation, and transformation, are regulated by cell-extracellular matrix interactions. Previous studies have identified a novel tyrosine kinase, the focal adhesion kinase p125FAK, as a component of cell adhesion plaques. p125FAK was identified as a 125-kDa tyrosine-phosphorylated protein in cells transformed by the v-src oncogene. p125FAK is an intracellular protein composed of three domains: a central domain with homology to protein tyrosine kinases, flanked by two noncatalytic domains of 400 amino acids which bear no significant homology to previously cloned proteins. p125FAK is believed to play an important regulatory role in cell adhesion because it localizes to cell adhesion plaques and because its phosphorylation on tyrosine residues is regulated by binding of cell surface integrins to the extracellular matrix. Recent studies have shown that Src, through its SH2 domain, stably associates with pp125FAK and that this association prevents dephosphorylation of pp125FAK in vitro by protein tyrosine phosphatases. In this report, we identify Tyr-397 as the primary in vivo and in vitro site of p125FAK tyrosine phosphorylation and association with Src. Substituting phenylalanine for tyrosine at position 397 significantly reduces p125FAK tyrosine phosphorylation and association with Src but does not abolish p125FAK kinase activity. In addition, p125FAK kinase is able to trans-phosphorylate Tyr-397 in vitro in a kinase-deficient p125FAK variant. Phosphorylation of Tyr-397 provides a site [Y(P)AEI] that fits the consensus sequence for the binding of Src.  相似文献   

5.
To elucidate the role of focal adhesion kinase (pp125FAK) in transformation, its phosphorylation in transformed fibroblasts was compared with that of detransformed fibroblasts induced by a histone deacetylase inhibitor, trichostatin A (TSA). Inhibition of histone deacetylase activity in two different ras-transformed fibroblast lines by TSA induced a morphological change into a flattened and more spread morphology, implying detransformation. These morphological changes included increased spreading ability of transformed NIH 3T3 cells on fibronectin. Of the six tyrosine phosphorylation sites in pp125FAK, phosphorylation at position 861 (Tyr-861) was clearly decreased during detransformation by TSA. It resulted from decreased activity of Src family tyrosine kinase and/or decreased amount of Src kinase interacting with pp125FAK. Furthermore, phosphorylation of Tyr-861 was reduced substantially by the Src family kinase inhibitor, PP1, while overexpression of Src kinase increased its phosphorylation, implying that Src kinase regulates phosphorylation of pp125FAK at Tyr-861. All of these findings suggest that increased phosphorylation of pp125FAK at Tyr-861 correlates with Ras-induced transformation of fibroblasts, and TSA is able to detransform them through regulation of pp125FAK phosphorylation at Tyr-861 by an Src family kinase.  相似文献   

6.
Changes in cellular growth and dramatic alterations in cell morphology and adhesion are common features of cells transformed by oncogenic protein tyrosine kinases, such as pp60src and other members of the Src family. In this report, we present evidence for the stable association of two Src family kinases (pp60src and pp59fyn) with tyrosine-phosphorylated forms of a focal adhesion-associated protein tyrosine kinase, pp125FAK. In Src-transformed chicken embryo cells, most of the pp125FAK was stably complexed with activated pp60src (e.g., pp60(527F). The stable association of pp125FAK with pp60(527F) in vivo required the structural integrity of the Src SH2 domain. The association of pp60(527F) and pp125FAK could be reconstituted in vitro by incubation of normal cell extracts with glutathione S-transferase fusion proteins containing SH2 or SH3/SH2 domains of pp60src. Furthermore, the association of isolated SH2 or SH3/SH2 domains with in vitro 32P-labeled pp125FAK protected the major site of pp125FAK autophosphorylation from digestion with a tyrosine phosphatase, indicating that the autophosphorylation site of pp125FAK participates in binding with Src. Immunoprecipitation of Src family kinases from extracts of normal chicken embryo cells revealed stable complexes of pp59fyn and tyrosine-phosphorylated pp125FAK. These data provide evidence for a direct interaction between two cytoplasmic nonreceptor protein tyrosine kinases and suggest that Src may contribute to changes in pp125FAK regulation in transformed cells. Furthermore, pp125FAK may directly participate in the targeting of pp59fyn or possibly other Src family kinases to focal adhesions in normal cells.  相似文献   

7.
The ability of the focal adhesion kinase (FAK) to integrate signals from extracellular matrix and growth factor receptors requires the integrity of Tyr397, a major autophosphorylation site that mediates the Src homology 2-dependent binding of Src family kinases. However, the precise roles played by FAK in specific Src-induced pathways, especially as they relate to oncogenic transformation, remain unclear. Here, we investigate the role of FAK in v-Src-induced oncogenic transformation by transducing temperature-sensitive v-Src (ts72v-Src) into p53-null FAK+/+ or FAK-/- mouse embryo fibroblasts (MEF). At the permissive temperature (PT), ts72v-Src induced abundant tyrosine phosphorylation, morphological transformation and cytoskeletal rearrangement in FAK-/- MEF, including the restoration of cell polarity, typical focal adhesion complexes, and longitudinal F-actin stress fibers. v-Src rescued the haptotactic, linear directional, and invasive motility defects of FAK-/- cells to levels found in FAK+/+ or FAK+/+-[ts72v-Src] cells, and, in the case of monolayer wound healing motility, there was an enhancement. Src activation failed to increase the high basal tyrosine phosphorylation of the Crk-associated substrate, CAS, found in FAK-/- MEF, indicating that CAS phosphorylation alone is insufficient to induce motility in the absence of FAK- or v-Src-induced cytoskeletal remodeling. Compared with FAK+/+[ts72v-Src] controls, FAK-/-[ts72v-Src] clones exhibited 7-10-fold higher anchorage-independent proliferation that could not be attributed to variations in either v-Src protein level or stability. Re-expression of FAK diminished the colony-forming activities of FAK-/-[ts72v-Src] without altering ts72v-Src expression levels, suggesting that FAK attenuates Src-induced anchorage independence. Our data also indicate that the enhanced Pyk2 level found in FAK-/- MEF plays no role in v-Src-induced anchorage independence. Overall, our data indicate that FAK, although dispensable, attenuates v-Src-induced oncogenic transformation by modulating distinct signaling and cytoskeletal pathways.  相似文献   

8.
FAK (focal adhesion kinase) is a nonreceptor protein-tyrosine kinase activated by tyrosine phosphorylation following integrin-mediated cell adhesion. Oncogenic Src promotes enhanced and deregulated FAK tyrosine phosphorylation which has been proposed to contribute to altered cell growth and/or morphological properties associated with transformation. In this study, an inducible FAK expression system was used to study the potential role of FAK in v-Src transformation. Our results portray FAK as a major v-Src substrate that also plays a role in recruiting v-Src to phosphorylate substrates CAS (Crk-associated substrate) and paxillin. The FAK Tyr-397 autophosphorylation site was necessary for this scaffolding function, but was not required for v-Src to stably interact with and phosphorylate FAK. FAK was also shown to negatively regulate v-Src mediated phosphorylation of the FAK-related kinase PYK2. Despite these effects, FAK does not play an essential role in targeting v-Src to major cellular substrates including CAS and paxillin. Nor is FAK strictly required to achieve the altered morphological and growth characteristics of v-Src transformed cells.  相似文献   

9.
Crk-associated substrate (CAS) is a tyrosine kinase substrate implicated in integrin control of cell behavior. Phosphorylation, by Src family kinases, of multiple tyrosine residues in the CAS substrate domain (SD) is a major integrin signaling event that promotes cell motility. In this study, novel phosphospecific antibodies directed against CAS SD phosphotyrosine sites ("pCAS" antibodies) were characterized and employed to investigate the cellular regulation and localization of CAS SD tyrosine phosphorylation. An analysis of CAS and focal adhesion kinase (FAK) variants expressed in CAS- and FAK-deficient cell lines, respectively, indicated that CAS SD tyrosine phosphorylation is substantially achieved by Src family kinases brought into association with CAS through two distinct mechanisms: direct binding to the CAS Src-binding domain and indirect association through a FAK bridge. Cell immunostaining with pCAS antibodies revealed that CAS SD tyrosine phosphorylation occurs exclusively at sites of integrin adhesion including both nascent focal complexes formed at the edges of extending lamellipodia as well as mature focal adhesions underlying the cell body. These findings further document a role for FAK as an important upstream regulator of CAS SD tyrosine phosphorylation and implicate CAS-mediated signaling events in promoting membrane protrusion/lamellipodium extension during cell motility.  相似文献   

10.
Focal adhesion kinase (pp125FAK or FAK) and paxillin colocalize with integrins in structures called focal adhesions. pp125FAK plays an important role in the transmission of integrin-induced cytoplasmic signals. Paxillin has also been implicated in cell signaling by virtue of its association with the protein tyrosine kinases pp60src and Csk (C-terminal Src kinase) as well as with the adapter/oncoprotein p47gag-crk. In this report we show that endogenous pp125FAK and paxillin form a stable complex both in vivo and in vitro and that this interaction is direct, requiring only pp125FAK and paxillin. The paxillin binding site on pp125FAK has been localized to the carboxy-terminal 148 residues of pp125FAK, but appears to be distinct from the previously identified focal adhesion-targeting sequence also present in the carboxy-terminal domain of pp125FAK. The interaction of paxillin and pp125FAK is independent of the adhesion of cells to the extracellular matrix, as the association can be detected in suspension cells as well as those attached to fibronectin.  相似文献   

11.
Focal adhesion kinase (FAK) is a cytoplasmic protein tyrosine kinase localized to regions called focal adhesions. Many stimuli can induce tyrosine phosphorylation and activation of FAK, including integrins and growth factors. The major site of autophosphorylation, tyrosine 397, is a docking site for the SH2 domains of Src family proteins. The other sites of phosphorylation are phosphorylated by Src kinases. Phosphorylated FAK binds proteins of focal adhesion and can activate them directly or indirectly by phosphorylation. These activated proteins forming the FAK complex facilitate the generation of downstream signals necessary to regulate cell functions, like motility, survival and proliferation. Dysregulation of FAK could participate in the development of cancer. This review will focus upon the mechanisms by which FAK transmits biochemical signals and elicits biological effects.  相似文献   

12.
Paxillin, a focal-adhesion-associated protein, becomes phosphorylated in response to a number of stimuli which also induce the tyrosine phosphorylation of the focal-adhesion-associated protein tyrosine kinase pp125FAK. On the basis of their colocalization and coordinate phosphorylation, paxillin is a candidate for a substrate of pp125FAK. We describe here conditions under which the phosphorylation of paxillin on tyrosine is pp125FAK dependent, supporting the hypothesis that paxillin phosphorylation is regulated by pp125FAK. pp125FAK must localize to focal adhesions and become autophosphorylated to induce paxillin phosphorylation. Phosphorylation of paxillin on tyrosine creates binding sites for the SH2 domains of Crk, Csk, and Src. We identify two sites of phosphorylation as tyrosine residues 31 and 118, each of which conforms to the Crk SH2 domain binding motif, (P)YXXP. These observations suggest that paxillin serves as an adapter protein, similar to insulin receptor substrate 1, and that pp125FAK may regulate the formation of signaling complexes by directing the phosphorylation of paxillin on tyrosine.  相似文献   

13.
Differential regulation of cell motility and invasion by FAK   总被引:41,自引:0,他引:41  
Cell migration and invasion are fundamental components of tumor cell metastasis. Increased focal adhesion kinase (FAK) expression and tyrosine phosphorylation are connected with elevated tumorigenesis. Null mutation of FAK results in embryonic lethality, and FAK-/- fibroblasts exhibit cell migration defects in culture. Here we show that viral Src (v-Src) transformation of FAK-/- cells promotes integrin-stimulated motility equal to stable FAK reexpression. However, FAK-/- v-Src cells were not invasive, and FAK reexpression, Tyr-397 phosphorylation, and FAK kinase activity were required for the generation of an invasive cell phenotype. Cell invasion was linked to transient FAK accumulation at lamellipodia, formation of a FAK-Src-p130Cas-Dock180 signaling complex, elevated Rac and c-Jun NH2-terminal kinase activation, and increased matrix metalloproteinase expression and activity. Our studies support a dual role for FAK in promoting cell motility and invasion through the activation of distinct signaling pathways.  相似文献   

14.
The phosphorylation of protein tyrosine kinases (PTKs) on tyrosine residues is a critical regulatory event that modulates catalytic activity and triggers the physical association of PTKs with Src homology 2 (SH2)-containing proteins. The integrin-linked focal adhesion kinase, pp125FAK, exhibits extracellular matrix-dependent phosphorylation on tyrosine and physically associates with two nonreceptor PTKs, pp60src and pp59fyn, via their SH2 domains. Herein, we identify Tyr-397 as the major site of tyrosine phosphorylation on pp125FAK both in vivo and in vitro. Tyrosine 397 is located at the juncture of the N-terminal and catalytic domains, a novel site for PTK autophosphorylation. Mutation of Tyr-397 to a nonphosphorylatable residue dramatically impairs the phosphorylation of pp125FAK on tyrosine in vivo and in vitro. The mutation of Tyr-397 to Phe also inhibits the formation of stable complexes with pp60src in cells expressing Src and FAK397F, suggesting that autophosphorylation of pp125FAK may regulate the association of pp125FAK with Src family kinases in vivo. The identification of Tyr-397 as a major site for FAK autophosphorylation provides one of the first examples of a cellular protein containing a high-affinity binding site for a Src family kinase SH2 domain. This finding has implications for models describing the mechanisms of action of pp125FAK, the regulation of the Src family of PTKs, and signal transduction through the integrins.  相似文献   

15.
Integrins play a central role in cellular adhesion and anchorage of the cytoskeleton and participate in the generation of intracellular signals, including tyrosine phosphorylation. We have recently isolated a cDNA encoding a unique, focal adhesion-associated protein tyrosine kinase (FAK) that is a component of an integrin-mediated signal transduction pathway. Here we report the isolation of cDNAs encoding the C-terminal, noncatalytic domain of the FAK kinase, termed FRNK (FAK-related nonkinase). Both the FAK- and FRNK-encoded polypeptides, pp125FAK and p41/p43FRNK, are expressed in normal chicken embryo cells. pp125FAK and p41/p43FRNK were localized to focal adhesions, suggesting that pp125FAK is directed to the focal adhesions by sequences within its C-terminal domain. We also show that the fibronectin-dependent increase in tyrosine phosphorylation of pp125FAK is accompanied by a concomitant posttranslational modification of p41FRNK.  相似文献   

16.
Tyrosine phosphorylation of CAS (Crk-associated substrate, p130(Cas)) has been implicated as a key signaling step in integrin control of normal cellular behaviors, including motility, proliferation, and survival. Aberrant CAS tyrosine phosphorylation may contribute to cell transformation by certain oncoproteins, including v-Crk and v-Src, and to tumor growth and metastasis. The CAS substrate domain (SD) contains 15 Tyr-X-X-Pro motifs, which are thought to represent the major tyrosine phosphorylation sites and to function by recruiting downstream signaling effectors, including c-Crk and Nck. CAS makes multiple interactions, direct and indirect, with the tyrosine kinases Src and focal adhesion kinase (FAK), and as a result of this complexity, several plausible models have been proposed for the mechanism of CAS-SD phosphorylation. The objective of this study was to provide experimental tests of these models in order to determine the most likely mechanism(s) of CAS-SD tyrosine phosphorylation by FAK and Src. In vitro kinase assays indicated that FAK has a very poor capacity to phosphorylate CAS-SD, relative to Src. However, FAK expression along with Src was found to be important for achieving high levels of CAS tyrosine phosphorylation in COS-7 cells, as well as recovery of CAS-associated Src activity toward the SD. Structure-functional studies for both FAK and CAS further indicated that FAK plays a major role in regulating CAS-SD phosphorylation by acting as a docking or scaffolding protein to recruit Src to phosphorylate CAS, while a secondary FAK-independent mechanism involves Src directly bound to the CAS Src-binding domain (SBD). Our results do not support models in which FAK either phosphorylates CAS-SD directly or phosphorylates CAS-SBD to promote Src binding to this site.  相似文献   

17.
Insulin has pleiotropic effects on the regulation of cell physiology through binding to its receptor. The wide variety of tyrosine phosphorylation motifs of insulin receptor substrate 1 (IRS-1), a substrate for the activated insulin receptor tyrosine kinase, may account for the multiple functions of insulin. Recent studies have shown that activation of the insulin receptor leads to the regulation of focal adhesion proteins, such as a dephosphorylation of focal adhesion kinase (pp125FAK). We show here that C-terminal Src kinase (Csk), which phosphorylates C-terminal tyrosine residues of Src family protein tyrosine kinases and suppresses their kinase activities, is involved in this insulin-stimulated dephosphorylation of focal adhesion proteins. We demonstrated that the overexpression of Csk enhanced and prolonged the insulin-induced dephosphorylation of pp125FAK. Another focal adhesion protein, paxillin, was also dephosphorylated upon insulin stimulation, and a kinase-negative mutant of Csk was able to inhibit the insulin-induced dephosphorylation of pp125FAK and paxillin. Although we have shown that the Csk Src homology 2 domain can bind to several tyrosine-phosphorylated proteins, including pp125FAK and paxillin, a majority of protein which bound to Csk was IRS-1 when cells were stimulated by insulin. Our data also indicated that tyrosine phosphorylation levels of IRS-1 appear to be paralleled by the dephosphorylation of the focal adhesion proteins. We therefore propose that the kinase activity of Csk, through the insulin-induced complex formation of Csk with IRS-1, is involved in insulin's regulation of the phosphorylation levels of the focal adhesion proteins, possibly through inactivation of the kinase activity of c-Src family kinases.  相似文献   

18.
Formation of a complex between the tyrosine kinases FAK and Src is a key integrin-mediated signaling event implicated in cell motility, survival, and proliferation. Past studies indicate that FAK functions in the complex primarily as a "scaffold," acting to recruit and activate Src within cell/matrix adhesions. To study the cellular impact of FAK-associated Src signaling we developed a novel gain-of-function approach that involves expressing a chimeric protein with the FAK kinase domain replaced by the Src kinase domain. This FAK/Src chimera is subject to adhesion-dependent activation and promotes tyrosine phosphorylation of p130Cas and paxillin to higher steady-state levels than is achieved by wild-type FAK. When expressed in FAK -/- mouse embryo fibroblasts, the FAK/Src chimera resulted in a striking cellular phenotype characterized by unusual large peripheral adhesions, enhanced adhesive strength, and greatly reduced motility. Live cell imaging of the chimera-expressing FAK -/- cells provided evidence that the large peripheral adhesions are associated with a dynamic actin assembly process that is sensitive to a Src-selective inhibitor. These findings suggest that FAK-associated Src kinase activity has the capacity to promote adhesion integrity and actin assembly.  相似文献   

19.
Focal adhesion kinase (FAK) is a key signaling molecule regulating cellular responses to integrin-mediated adhesion. Integrin engagement promotes FAK phosphorylation at multiple sites to achieve full FAK activation. Phosphorylation of FAK Tyr-397 creates a binding site for Src-family kinases, and phosphorylation of FAK Tyr-576/Tyr-577 in the kinase domain activation loop enhances catalytic activity. Using novel phosphospecific antibody reagents, we show that FAK activation loop phosphorylation is significantly elevated in cells expressing activated Src and is an early event following cell adhesion to fibronectin. In both cases, this regulation is largely dependent on Tyr-397. We also show that the FAK activation loop tyrosines are required for maximal Tyr-397 phosphorylation. Finally, immunostaining analyses revealed that tyrosine-phosphorylated forms of FAK are present in both newly forming and mature focal adhesions. Our findings support a model for reciprocal activation of FAK and Src-family kinases and suggest that FAK/Src signaling may occur during both focal adhesion assembly and turnover.  相似文献   

20.
Tyrosine phosphorylation of cytoskeletal proteins occurs during integrin-mediated cell adhesion to extracellular matrix proteins. We have investigated the role of tyrosine phosphorylation in the migration and initial spreading of human umbilical vein endothelial cells (HUVEC). Elevated phosphotyrosine concentrations were noted in the focal adhesions of HUVEC migrating into wounds. Anti-phosphotyrosine Western blots of extracts of wounded HUVEC monolayers demonstrated increased phosphorylation at 120-130 kDa when compared with extracts of intact monolayers. The pp125FAK immunoprecipitated from wounded monolayers exhibited increased kinase activity as compared to pp125FAK from intact monolayers. The time to wound closure in HUVEC monolayers was doubled by tyrphostin AG 213 treatment. The same concentration of AG 213 interfered with HUVEC focal adhesion and stress fiber formation. AG 213 inhibited adhesion-associated tyrosine phosphorylation of pp125FAK in HUVEC. Tyrphostins AG 213 and AG 808 inhibited pp125FAK activity in in vitro kinase assays. pp125FAK immunoprecipitates from HUVEC treated with both of these inhibitors also had kinase activity in vitro that was below levels seen in untreated HUVEC. These findings suggest that tyrosine phosphorylation of cytoskeletal proteins may be important in HUVEC spreading and migration and that pp125FAK may mediate phosphotyrosine formation during these processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号