首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.

Background  

Microbial genomes contain an abundance of genes with conserved proximity forming clusters on the chromosome. However, the conservation can be a result of many factors such as vertical inheritance, or functional selection. Thus, identification of conserved gene clusters that are under functional selection provides an effective channel for gene annotation, microarray screening, and pathway reconstruction. The problem of devising a robust method to identify these conserved gene clusters and to evaluate the significance of the conservation in multiple genomes has a number of implications for comparative, evolutionary and functional genomics as well as synthetic biology.  相似文献   

2.

Background  

The role of gene duplication in the structural and functional evolution of genomes has been well documented. Analysis of complete rice (Oryza sativa) genome sequences suggested an ancient whole genome duplication, common to all the grasses, some 50-70 million years ago and a more conserved segmental duplication between the distal regions of the short arms of chromosomes 11 and 12, whose evolutionary history is controversial.  相似文献   

3.

Background  

In addition to known protein-coding genes, large amounts of apparently non-coding sequence are conserved between the human and mouse genomes. It seems reasonable to assume that these conserved regions are more likely to contain functional elements than less-conserved portions of the genome.  相似文献   

4.
5.

Background  

Despite of the fact that mammalian genomes are far more spacious than prokaryotic genomes, recent nucleotide sequencing data have revealed that many mammalian genes are arranged in a head-to-head orientation and separated by a small intergenic sequence. Extensive studies on some of these neighboring genes, in particular homologous gene pairs, have shown that these genes are often co-expressed in a symmetric manner and regulated by a shared promoter region. Here we report the identification of two non-homologous brain disease-related genes, with one coding for a serine protease inhibitor (SERPINI1) and the other for a programmed cell death-related gene (PDCD10), being tightly linked together by an asymmetric bidirectional promoter in an evolutionarily conserved fashion. This asymmetric bidirectional promoter, in cooperation with some cis-acting elements, is responsible for the co-regulation of the gene expression pattern as well as the tissue specificity of SERPINI1 and PDCD10.  相似文献   

6.

Background  

In eukaryotic genomes, most genes are members of gene families. When comparing genes from two species, therefore, most genes in one species will be homologous to multiple genes in the second. This often makes it difficult to distinguish orthologs (separated through speciation) from paralogs (separated by other types of gene duplication). Combining phylogenetic relationships and genomic position in both genomes helps to distinguish between these scenarios. This kind of comparison can also help to describe how gene families have evolved within a single genome that has undergone polyploidy or other large-scale duplications, as in the case of Arabidopsis thaliana – and probably most plant genomes.  相似文献   

7.

Background  

Genome rearrangements influence gene order and configuration of gene clusters in all genomes. Most land plant chloroplast DNAs (cpDNAs) share a highly conserved gene content and with notable exceptions, a largely co-linear gene order. Conserved gene orders may reflect a slow intrinsic rate of neutral chromosomal rearrangements, or selective constraint. It is unknown to what extent observed changes in gene order are random or adaptive. We investigate the influence of natural selection on gene order in association with increased rate of chromosomal rearrangement. We use a novel parametric bootstrap approach to test if directional selection is responsible for the clustering of functionally related genes observed in the highly rearranged chloroplast genome of the unicellular green alga Chlamydomonas reinhardtii, relative to ancestral chloroplast genomes.  相似文献   

8.

Background  

Gene clusters are of interest for the understanding of genome evolution since they provide insight in large-scale duplications events as well as patterns of individual gene losses. Vertebrates tend to have multiple copies of gene clusters that typically are only single clusters or are not present at all in genomes of invertebrates. We investigated the genomic architecture and conserved non-coding sequences of vertebrate KCNA gene clusters. KCNA genes encode shaker-related voltage-gated potassium channels and are arranged in two three-gene clusters in tetrapods. Teleost fish are found to possess four clusters. The two tetrapod KNCA clusters are of approximately the same age as the Hox gene clusters that arose through duplications early in vertebrate evolution. For some genes, their conserved retention and arrangement in clusters are thought to be related to regulatory elements in the intergenic regions, which might prevent rearrangements and gene loss. Interestingly, this hypothesis does not appear to apply to the KCNA clusters, as too few conserved putative regulatory elements are retained.  相似文献   

9.
10.

Background  

Given the availability of full genome sequences, mapping gene gains, duplications, and losses during evolution should theoretically be straightforward. However, this endeavor suffers from overemphasis on detecting conserved genome features, which in turn has led to sequencing multiple eutherian genomes with low coverage rather than fewer genomes with high-coverage and more even distribution in the phylogeny. Although limitations associated with analysis of low coverage genomes are recognized, they have not been quantified.  相似文献   

11.

Background  

MicroRNAs (miRNAs) are small noncoding RNAs (~22 nucleotides) that regulate gene expression by cleaving mRNAs or inhibiting translation. The baboon is a well-characterized cardiovascular disease model; however, no baboon miRNAs have been identified. Evidence indicates that the baboon and human genomes are highly conserved; based on this conservation, we hypothesized that comparative genomic methods could be used to identify baboon miRNAs.  相似文献   

12.

Background

Plasmids of Borrelia species are dynamic structures that contain a large number of repetitive genes, gene fragments, and gene fusions. In addition, the transposable element IS605/200 family, as well as degenerate forms of this IS element, are prevalent. In Helicobacter pylori, flanking regions of the IS605 transposase gene contain sequences that fold into identical small stem loops. These function in transposition at the single-stranded DNA level.

Methodology/Principal Findings

In work reported here, bioinformatics techniques were used to scan Borrelia plasmid genomes for IS605 transposable element specific stem loop sequences. Two variant stem loop motifs are found in the left and right flanking regions of the transposase gene. Both motifs appear to have dispersed in plasmid genomes and are found “free-standing” and phylogenetically conserved without the associated IS605 transposase gene or the adjacent flanking sequence. Importantly, IS605 specific stem loop sequences are also found at the 3′ ends of lipoprotein genes (PFam12 and PFam60), however the left and right sequences appear to develop their own evolutionary patterns. The lipoprotein gene-linked left stem loop sequences maintain the IS605 stem loop motif in orthologs but only at the RNA level. These show mutations whereby variants fold into phylogenetically conserved RNA-type stem loops that contain the wobble non-Watson-Crick G-U base-pairing. The right flanking sequence is associated with the family lipoprotein-1 genes. A comparison of homologs shows that the IS605 stem loop motif rapidly dissipates, but a more elaborate secondary structure appears to develop in its place.

Conclusions/Significance

Stem loop sequences specific to the transposable element IS605 are present in plasmid regions devoid of a transposase gene and significantly, are found linked to lipoprotein genes in Borrelia plasmids. These sequences are evolutionarily conserved and/or structurally developed in an RNA format. The findings show that IS605 stem loop sequences are multifaceted and are selectively conserved during evolution when the transposable element dissipates.  相似文献   

13.

Motivation  

In the last years more than 20 vertebrate genomes have been sequenced, and the rate at which genomic DNA information becomes available is rapidly accelerating. Gene duplication and gene loss events inherently limit the accuracy of orthology detection based on sequence similarity alone. Fully automated methods for orthology annotation do exist but often fail to identify individual members in cases of large gene families, or to distinguish missing data from traceable gene losses. This situation can be improved in many cases by including conserved synteny information.  相似文献   

14.

Background  

The availability of newly sequenced vertebrate genomes, along with more efficient and accurate alignment algorithms, have enabled the expansion of the field of comparative genomics. Large-scale genome rearrangement events modify the order of genes and non-coding conserved regions on chromosomes. While certain large genomic regions have remained intact over much of vertebrate evolution, others appear to be hotspots for genomic breakpoints. The cause of the non-uniformity of breakpoints that occurred during vertebrate evolution is poorly understood.  相似文献   

15.

Background  

Gene order in eukaryotic genomes is not random, with genes with similar expression profiles tending to cluster. In yeasts, the model taxon for gene order analysis, such syntenic clusters of non-homologous genes tend to be conserved over evolutionary time. Whether similar clusters show gene order conservation in other lineages is, however, undecided. Here, we examine this issue in Drosophila melanogaster using high-resolution chromosome rearrangement data.  相似文献   

16.

Background  

Although it is not difficult for state-of-the-art gene finders to identify coding regions in prokaryotic genomes, exact prediction of the corresponding translation initiation sites (TIS) is still a challenging problem. Recently a number of post-processing tools have been proposed for improving the annotation of prokaryotic TIS. However, inherent difficulties of these approaches arise from the considerable variation of TIS characteristics across different species. Therefore prior assumptions about the properties of prokaryotic gene starts may cause suboptimal predictions for newly sequenced genomes with TIS signals differing from those of well-investigated genomes.  相似文献   

17.

Background  

Between five and fourteen per cent of genes in the vertebrate genomes do overlap sharing some intronic and/or exonic sequence. It was observed that majority of these overlaps are not conserved among vertebrate lineages. Although several mechanisms have been proposed to explain gene overlap origination the evolutionary basis of these phenomenon are still not well understood. Here, we present results of the comparative analysis of several vertebrate genomes. The purpose of this study was to examine overlapping genes in the context of their evolution and mechanisms leading to their origin.  相似文献   

18.
The CHORI-212 bacterial artificial chromosome (BAC) library was constructed by cloning EcoRI/EcoRI partially digested DNA into the pTARBAC2.1 vector. The library has an average insert size of 161 kb, and provides 10.6-fold coverage of the channel catfish haploid genome. Screening of 32 genes using overgo or cDNA probes indicated that this library had a good representation of the genome as all tested genes existed in the library. We previously reported sequencing of approximately 25,000 BAC ends that generated 20,366 high-quality BAC end sequences (BES) and identified a large number of sequences similar to known genes using BLASTX searches. In this work, particular attention was given to identification of BAC mate pairs with known genes from both ends. When identified, comparative genome analysis was conducted to determine syntenic regions of the catfish genome with the genomes of zebrafish and Tetraodon. Of the 141 mate pairs with known genes from channel catfish, conserved syntenies were identified in 34 (24.1%), with 30 conserved in the zebrafish genome and 14 conserved in the Tetraodon genome. Additional analysis of three of the 34 conserved syntenic groups by direct sequencing indicated conserved gene contents in all three species. This indicates that comparative genome analysis may provide shortcuts to genome analysis in catfish, especially for short genomic regions once the conserved syntenies are identified. Shaolin Wang and Peng Xu contributed equally to the article.  相似文献   

19.
20.

Background  

Comparative analysis of genomes is valuable to explore evolution of genomes, deduce gene functions, or predict functional linking between proteins. Here, we have systematically analyzed the genomic environment of all known DNA replication genes in 27 archaeal genomes to infer new connections for DNA replication proteins from conserved genomic associations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号