首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang H  Mak S  Cui W  Li W  Han R  Hu S  Ye M  Pi R  Han Y 《Neurochemistry international》2011,59(7):981-988
Oxidative stress is closely related to the pathogenesis of neurodegenerative disorders such as Parkinson’s disease (PD). In this study, we investigated the neuroprotective effect of tacrine–ferulic acid dimers linked by an alkylenediamine side chain (TnFA, n = 2−7), a series of novel acetylcholinesterase inhibitors, against 6-hydroxydopamine (6-OHDA)-induced apoptosis in PC12 cells. Among these dimers, pre-treatment of tacrine(2)–ferulic acid (T2FA, 3−30 μM) attenuated 6-OHDA-induced apoptosis in a concentration-dependent manner. The activations of glycogen synthase kinase 3β (GSK3β) and extracellular signal-regulated kinase (ERK) were observed after the treatment of 6-OHDA. Both SB415286 (an inhibitor of GSK3β) and PD98059 (an inhibitor of ERK kinase) reduced the neurotoxicity induced by 6-OHDA, indicating that GSK3β and ERK are involved in 6-OHDA-induced apoptosis. T2FA was able to inhibit the activation of GSK3β, but not ERK, in an Akt-dependent manner. Furthermore, LY294002, a phosphoinositide 3-kinase inhibitor, abolished the neuroprotective effect of T2FA. Collectively, these results suggest that T2FA prevents 6-OHDA-induced apoptosis possibly by activating the Akt pathway in PC12 cells.  相似文献   

2.
Despite the identification of several mutations in familial Parkinson's disease (PD), the underlying mechanisms of dopaminergic neuronal loss in idiopathic PD are still unknown. To study whether caspase-dependent apoptosis may play a role in the pathogenesis of PD, we examined 6-hydroxydopamine (6-OHDA) toxicity in dopaminergic SH-SY5Y cells and in embryonic dopaminergic mesencephalic cultures. 6-OHDA induced activation of caspases 3, 6 and 9, chromatin condensation and cell death in SH-SY5Y cells. The caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-(O-methyl)fluoromethylketone (zVAD-fmk) or adenovirally mediated ectopic expression of the X-chromosomal inhibitor of apoptosis protein (XIAP) blocked caspase activation and prevented death of SH-SY5Y cells. Similarly, zVAD-fmk provided protection from 6-OHDA-induced loss of tyrosine hydroxylase-positive neurones in mesencephalic cultures. In contrast, zVAD-fmk failed to protect mesencephalic dopaminergic neurones from 6-OHDA-induced loss of neurites and reduction of [(3)H]dopamine uptake. These data suggest that, although caspase inhibition provides protection from 6-OHDA-induced death of dopaminergic neurones, the neurones may remain functionally impaired.  相似文献   

3.
4.
Neurogenesis involves generation of functional newborn neurons from neural stem cells (NSCs). Insufficient formation or accelerated degeneration of newborn neurons may contribute to the severity of motor/nonmotor symptoms of Parkinson’s disease (PD). However, the functional role of adult neurogenesis in PD is yet not explored and whether glycogen synthase kinase-3β (GSK-3β) affects multiple steps of adult neurogenesis in PD is still unknown. We investigated the possible underlying molecular mechanism of impaired adult neurogenesis associated with PD. Herein, we show that single intra-medial forebrain bundle (MFB) injection of 6-hydroxydopamine (6-OHDA) efficiently induced long-term activation of GSK-3β and reduced NSC self-renewal, proliferation, neuronal migration, and neuronal differentiation accompanied with increased astrogenesis in subventricular zone (SVZ) and hippocampal dentate gyrus (DG). Indeed, 6-OHDA also delayed maturation of neuroblasts in the DG as witnessed by their reduced dendritic length and arborization. Using a pharmacological approach to inhibit GSK-3β activation by specific inhibitor SB216763, we show that GSK-3β inhibition enhances radial glial cells, NSC proliferation, self-renewal in the SVZ, and the subgranular zone (SGZ) in the rat PD model. Pharmacological inhibition of GSK-3β activity enhances neuroblast population in SVZ and SGZ and promotes migration of neuroblasts towards the rostral migratory stream and lesioned striatum from dorsal SVZ and lateral SVZ, respectively, in PD model. GSK-3β inhibition enhances dendritic arborization and survival of granular neurons and stimulates NSC differentiation towards the neuronal phenotype in DG of PD model. The aforementioned effects of GSK-3β involve a crosstalk between Wnt/β-catenin and Notch signaling pathways that are known to regulate NSC dynamics.  相似文献   

5.
Hispidin, a phenolic compound from Phellinus linteus (a medicinal mushroom), has been shown to possess strong anti-oxidant, anti-cancer, anti-diabetic, and anti-dementia properties. However, the cardioprotective efficacy of hispidin has not yet been investigated. In the present study, we investigated the protective effect of hispidin against oxidative stress-induced apoptosis in H9c2 cardiomyoblast cells and neonatal rat ventricular myocytes. While the treatment of H9c2 cardiomyoblast cells with hydrogen peroxide caused a loss of cell viability and an increase in the number of apoptotic cells, hispidin significantly protected the cells against hydrogen peroxide-induced cell death without any cytotoxicity as determined by XTT assay, LDH release assay, Hoechst 33342 assay, and Western blotting of apoptosis proteins such as caspase-3, Bax, and Bcl-2. Our data also shows that hispidin significantly scavenged intracellular ROS, and markedly enhanced the expression of antioxidant enzymes such as heme oxygenase-1 and catalase, which was accompanied by the concomitant activation of Akt/GSK-3β and ERK1/2 phosphorylation in H9c2 cardiomyoblast cells. The effects of hispidin on Akt and ERK phosphorylation were abrogated by LY294002 (a PI3K/Akt inhibitor) and U0126 (an ERK1/2 inhibitor). The effect of hispidin on GSK-3b activities was also blocked by LY294002. Furthermore, inhibiting the Akt/GSK-3β and ERK1/2 pathway by these inhibitors significantly reversed the hispidin-induced Bax and Bcl-2 expression, apoptosis induction, and ROS production. These findings indicate that hispidin protects against apoptosis in H9c2 cardiomyoblast cells exposed to hydrogen peroxide through reducing intracellular ROS production, regulating apoptosis-related proteins, and the activation of the Akt/GSK-3β and ERK1/2 signaling pathways.  相似文献   

6.
ERK and Akt have been shown to regulate cell sensitivity to death-inducing stress by phosphorylating GSK-3β, a major modulator of the threshold for mitochondrial permeability transition. Here we examined intra-mitochondrial localization of the pro-survival kinases and their regulation by phosphatases. Stepwise trypsin digestion of mitochondria isolated from HEK293 or H9c2 cells was performed, and immunoblotting revealed that GSK-3β and ERK localized dominantly in the outer membrane (OM), while Akt resided at comparable levels in OM, the inner membrane (IM) and the matrix. Treatment with IGF-1 increased the protein level of Akt in the matrix, while ERK and GSK-3β protein levels were increased in OM. Simultaneously, IGF-1 treatment elevated the level of Thr202/Tyr204-phospho-ERK in IM and matrix and levels of Ser473-phospho-Akt and Ser9-phospho-GSK-3β in OM, IM and matrix. Exposing cells to reactive oxygen species (ROS) by using antimycin A increased the levels of DUSP5 and PHLPP-1 mainly in OM and induced dephosphorylation of Akt, ERK and GSK-3β. The mitochondrial localization of DUSP5 was confirmed by experiments with mitochondria purified by Percoll gradient centrifugation and by transfection of cells with GFP-tagged DUSP5. Knockdown of either DUSP5 or PHLPP-1 increased the levels of both Thr202/Tyr204-phospho-ERK and Ser473-phospho-Akt in mitochondria. Cell death induced by antimycin A was suppressed by siRNA-mediated knockdown of DUSP5. The results suggest that Akt and ERK in mitochondria show distinct intra-mitochondrial localization and crosstalk in GSK-3β regulation and that recruitment of DUSP5 as well as PHLPP-1 to mitochondria contributes to ROS-induced termination of the protective signaling.  相似文献   

7.
The PI3K/Akt/mTORC1 pathway plays prominent roles in malignant transformation, prevention of apoptosis, drug resistance, and metastasis. One molecule regulated by this pathway is GSK-3β. GSK-3β is phosphorylated by Akt on S9, which leads to its inactivation; however, GSK-3β also can regulate the activity of the PI3K/Akt/mTORC1 pathway by phosphorylating molecules such as PTEN, TSC2, p70S6K, and 4E-BP1. To further elucidate the roles of GSK-3β in chemotherapeutic drug and hormonal resistance of MCF-7 breast cancer cells, we transfected MCF-7 breast cancer cells with wild-type (WT), kinase-dead (KD), and constitutively activated (A9) forms of GSK-3β. MCF-7/GSK-3β(KD) cells were more resistant to doxorubicin and tamoxifen compared with either MCF-7/GSK-3β(WT) or MCF-7/GSK-3β(A9) cells. In the presence and absence of doxorubicin, the MCF-7/GSK-3β(KD) cells formed more colonies in soft agar compared with MCF-7/GSK-3β(WT) or MCF-7/GSK-3β(A9) cells. In contrast, MCF-7/GSK-3β(KD) cells displayed an elevated sensitivity to the mTORC1 blocker rapamycin compared with MCF-7/GSK-3β(WT) or MCF-7/GSK-3β(A9) cells, while no differences between the 3 cell types were observed upon treatment with a MEK inhibitor by itself. However, resistance to doxorubicin and tamoxifen were alleviated in MCF-7/GSK-3β(KD) cells upon co-treatment with an MEK inhibitor, indicating regulation of this resistance by the Raf/MEK/ERK pathway. Treatment of MCF-7 and MCF-7/GSK-3β(WT) cells with doxorubicin eliminated the detection of S9-phosphorylated GSK-3β, while total GSK-3β was still detected. In contrast, S9-phosphorylated GSK-3β was still detected in MCF-7/GSK-3β(KD) and MCF-7/GSK-3β(A9) cells, indicating that one of the effects of doxorubicin on MCF-7 cells was suppression of S9-phosphorylated GSK-3β, which could result in increased GSK-3β activity. Taken together, these results demonstrate that introduction of GSK-3β(KD) into MCF-7 breast cancer cells promotes resistance to doxorubicin and tamoxifen, but sensitizes the cells to mTORC1 blockade by rapamycin. Therefore GSK-3β is a key regulatory molecule in sensitivity of breast cancer cells to chemo-, hormonal, and targeted therapy.  相似文献   

8.
The death of midbrain dopaminergic neurons in sporadic Parkinson disease is of unknown etiology but may involve altered growth factor signaling. The present study showed that leptin, a centrally acting hormone secreted by adipocytes, rescued dopaminergic neurons, reversed behavioral asymmetry, and restored striatal catecholamine levels in the unilateral 6-hydroxydopamine (6-OHDA) mouse model of dopaminergic cell death. In vitro studies using the murine dopaminergic cell line MN9D showed that leptin attenuated 6-OHDA-induced apoptotic markers, including caspase-9 and caspase-3 activation, internucleosomal DNA fragmentation, and cytochrome c release. ERK1/2 phosphorylation (pERK1/2) was found to be critical for mediating leptin-induced neuroprotection, because inhibition of the MEK pathway blocked both the pERK1/2 response and the pro-survival effect of leptin in cultures. Knockdown of the downstream messengers JAK2 or GRB2 precluded leptin-induced pERK1/2 activation and neuroprotection. Leptin/pERK1/2 signaling involved phosphorylation and nuclear localization of CREB (pCREB), a well known survival factor for dopaminergic neurons. Leptin induced a marked MEK-dependent increase in pCREB that was essential for neuroprotection following 6-OHDA toxicity. Transfection of a dominant negative MEK protein abolished leptin-enhanced pCREB formation, whereas a dominant negative CREB or decoy oligonucleotide diminished both pCREB binding to its target DNA sequence and MN9D survival against 6-OHDA toxicity. Moreover, in the substantia nigra of mice, leptin treatment increased the levels of pERK1/2, pCREB, and the downstream gene product BDNF, which were reversed by the MEK inhibitor PD98059. Collectively, these data provide evidence that leptin prevents the degeneration of dopaminergic neurons by 6-OHDA and may prove useful in the treatment of Parkinson disease.  相似文献   

9.
Oxidative stress has been shown to mediate neuron damage in Parkinson's disease (PD). In the present report, we intend to clarify the intracellular pathways mediating dopaminergic neuron death after oxidative stress production using post-mitotic PC12 cells treated with the neurotoxin 6-hydroxydopamine (6-OHDA). The use of post-mitotic cells is crucial, because one of the suggested intracellular pathways implicated in neuron death relates to the re-entry of neurons (post-mitotic cells) in the cell cycle. We find that 6-OHDA sequentially increases intracellular oxidants, functional cell damage and caspase-3 activation, leading to cell death after 12 h of incubation. Prevention of cell damage by different antioxidants supports the implication of oxidative stress in the observed neurotoxicity. Oxidative stress-dependent phosphorylation of the MAPK JNK and oxidative stress-independent PKB/Akt dephosphorylation are involved in 6-OHDA neurotoxicity. Decrease in p21(WAF1/CIP1) and cyclin-D1 expression, disappearance of the non-phosphorylated band of retinoblastoma protein (pRb), and expression of proliferating cell nuclear antigen, not present in PC12 post-mitotic cells, suggest a re-entry of differentiated cells into cell cycle. Our results indicate that such a re-entry is mediated by oxidative stress and is involved in 6-OHDA-induced cell death. We conclude that at least three intracellular pathways are involved in 6-OHDA-induced cell death in differentiated PC12 cells: JNK activation, cell cycle progression (both oxidative stress-dependent), and Akt dephosphorylation (not related to the increase of oxidants); the three pathways are necessary for the cells to die, since blocking one of them is sufficient to keep the cells alive.  相似文献   

10.
The neurotoxin 6-hydroxydopamine (6-OHDA) has been widely used to generate an experimental model of Parkinson's disease. It has been reported that reactive oxygen species (ROS), such as the superoxide anion and hydrogen peroxide (H2O2), generated from 6-OHDA are involved in its cytotoxicity; however, the contribution and role of ROS in 6-OHDA-induced cell death have not been fully elucidated. In the present study using PC12 cells, we observed the generation of 50 microM H2O2 from a lethal concentration of 100 microM 6-OHDA within a few minutes, and compared the sole effect of H2O2 with 6-OHDA. Catalase, an H2O2-removing enzyme, completely abolished the cytotoxic effect of H2O2, while a significant but partial protective effect was observed against 6-OHDA. 6-OHDA induced peroxiredoxin oxidation, cytochrome c release, and caspase-3 activation. Catalase exhibited a strong inhibitory effect against the peroxiredoxin oxidation, and cytochrome c release induced by 6-OHDA; however, caspase-3 activation was not effectively inhibited by catalase. On the other hand, 6-OHDA-induced caspase-3 activation was inhibited in the presence of caspase-8, caspase-9, and calpain inhibitors. These results suggest that the H2O2 generated from 6-OHDA plays a pivotal role in 6-OHDA-induced peroxiredoxin oxidation, and cytochrome c release, while H2O2- and cytochrome c-independent caspase activation pathways are involved in 6-OHDA-induced neurotoxicity. These findings may contribute to explain the importance of generated H2O2 and secondary products as a second messenger of 6-OHDA-induced cell death signal linked to Parkinson's disease.  相似文献   

11.
Oxidative stress caused by dopamine (DA) may play an important role in the pathogenesis of Parkinson's disease (PD). (+/-) Isoborneol is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and is a known antioxidant. In this study, we investigated the neuroprotective effect of isoborneol against 6-hydroxydopamine (6-OHDA)-induced cell death in human neuroblastoma SH-SY5Y cells. Pretreatment of SH-SY5Y cells with isoborneol significantly reduced 6-OHDA-induced generation of reactive oxygen species (ROS) and 6-OHDA-induced increases in intracellular calcium. Furthermore, apoptosis induced by 6-OHDA was reversed by isoborneol treatment. Isoborneol protected against 6-OHDA-induced increases in caspase-3 activity and cytochrome C translocation into the cytosol from mitochondria. Isoborneol prevented 6-OHDA from decreasing the Bax/Bcl-2 ratio. We also observed that isoborneol decreased the activation of c-Jun N-terminal kinase and induced activation of protein kinase C (PKC) which had been suppressed by 6-OHDA. Our results indicate that the protective function of isoborneol is dependent upon its antioxidant potential and strongly suggest that isoborneol may be an effective treatment for neurodegenerative diseases associated with oxidative stress.  相似文献   

12.

Background

Parkinson's disease (PD) is characterized by the selective loss of dopaminergic neurons in the substantia nigra (SN), resulting in tremor, rigidity, and bradykinesia. Although the etiology is unknown, insight into the disease process comes from the dopamine (DA) derivative, 6-hydroxydopamine (6-OHDA), which produces PD-like symptoms. Studies show that 6-OHDA activates stress pathways, such as the unfolded protein response (UPR), triggers mitochondrial release of cytochrome-c, and activates caspases, such as caspase-3. Because the BH3-only protein, Puma (p53-upregulated mediator of apoptosis), is activated in response to UPR, it is thought to be a link between cell stress and apoptosis.

Results

To test the hypothesis that Puma serves such a role in 6-OHDA-mediated cell death, we compared the response of dopaminergic neurons from wild-type and Puma-null mice to 6-OHDA. Results indicate that Puma is required for 6-OHDA-induced cell death, in primary dissociated midbrain cultures as well as in vivo. In these cultures, 6-OHDA-induced DNA damage and p53 were required for 6-OHDA-induced cell death. In contrast, while 6-OHDA led to upregulation of UPR markers, loss of ATF3 did not protect against 6-OHDA.

Conclusions

Together, our results indicate that 6-OHDA-induced upregulation of Puma and cell death are independent of UPR. Instead, p53 and DNA damage repair pathways mediate 6-OHDA-induced toxicity.  相似文献   

13.
Abstract: The neurotoxin 6-hydroxydopamine (6-OHDA) induces apoptosis in the rat phaeochromocytoma cell line PC12. 6-OHDA-induced apoptosis is morphologically indistinguishable from serum deprivation-induced apoptosis. Exposure of PC12 cells to a low concentration of 6-OHDA (25 µ M ) results in apoptosis, whereas an increased concentration (50 µ M ) results in a mixture of apoptosis and necrosis. We investigated the involvement of caspases in the apoptotic death of PC12 cells induced by 6-OHDA, using a general caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk), and compared this with serum deprivation-induced apoptosis, which is known to involve caspases. We show that zVAD-fmk (100 µ M ) completely prevented the apoptotic morphology of chromatin condensation induced by exposure to either 6-OHDA (25 and 50 µ M ) or serum deprivation. Furthermore, cell lysates from 6-OHDA-treated cultures showed cleavage of a fluorogenic substrate for caspase-3-like proteases (caspase-2, 3, and 7), acetyl-Asp-Glu-Val-Asp-aminomethylcoumarin, and this was inhibited by zVAD-fmk. However, although zVAD-fmk restored total cell viability to serum-deprived cells or cells exposed to 25 µ M 6-OHDA, the inhibitor did not restore viability to cells exposed to 50 µ M 6-OHDA. These data show the involvement of a caspase-3-like protease in 6-OHDA-induced apoptosis and that caspase inhibition is sufficient to rescue PC12 cells from the apoptotic but not the necrotic component of 6-OHDA neurotoxicity.  相似文献   

14.
6-Hydroxydopamine (6-OHDA) is a neurotoxin that has been widely used to generate Parkinson's disease (PD) models. Increased oxidative stress is suggested to play an important role in 6-OHDA-induced cell death. Given the lessened susceptibility to oxidative stress exhibited by mice lacking p66shc, this study investigated the role of p66shc in the cytotoxicity of 6-OHDA. 6-OHDA induced cell death and p66shc phosphorylation at Ser36 in SH-SY5Y cells. Pre-treatment with the protein kinase C β (PKCβ) inhibitor hispidin suppressed 6-OHDA-induced p66shc phosphorylation. Elimination of H(2)O(2) by catalase reduced cell death and p66shc phosphorylation induced by 6-OHDA. Cells deficient in p66shc were more resistant to 6-OHDA-induced cell death than wild-type cells. Furthermore, reconstitution of wild-type p66shc, but not the S36A mutant, in p66shc-deficient cells increased susceptibility to 6-OHDA. These results indicate that H(2)O(2) derived from 6-OHDA is an important mediator of cell death and p66shc phosphorylation induced by 6-OHDA and that p66shc phosphorylation at Ser36 is indispensable for the cytotoxicity of 6-OHDA.  相似文献   

15.
Studies from our laboratory have demonstrated that the major green tea polyphenol, (-)-epigallocatechin 3-gallate (EGCG), exerts potent neuroprotective actions in the mice model of Parkinson's disease. These studies were extended to neuronal cell culture employing the parkinsonism-inducing neurotoxin, 6-hydroxydopamine (6-OHDA). Pretreatment with EGCG (0.1-10 microm) attenuated human neuroblastoma (NB) SH-SY5Y cell death, induced by a 24-h exposure to 6-OHDA (50 microm). Potential cell signaling candidates involved in this neuroprotective effect were further examined. EGCG restored the reduced protein kinase C (PKC) and extracellular signal-regulated kinases (ERK1/2) activities caused by 6-OHDA toxicity. However, the neuroprotective effect of EGCG on cell survival was abolished by pretreatment with PKC inhibitor GF 109203X (1 microm). Because EGCG increased phosphorylated PKC, we suggest that PKC isoenzymes are involved in the neuroprotective action of EGCG against 6-OHDA. In addition, gene expression analysis revealed that EGCG prevented both the 6-OHDA-induced expression of several mRNAs, such as Bax, Bad, and Mdm2, and the decrease in Bcl-2, Bcl-w, and Bcl-x(L). These results suggest that the neuroprotective mechanism of EGCG against oxidative stress-induced cell death includes stimulation of PKC and modulation of cell survival/cell cycle genes.  相似文献   

16.
LJ Zhang  YQ Xue  C Yang  WH Yang  L Chen  QJ Zhang  TY Qu  S Huang  LR Zhao  XM Wang  WM Duan 《PloS one》2012,7(7):e41226
Human albumin has recently been demonstrated to protect brain neurons from injury in rat ischemic brain. However, there is no information available about whether human albumin can prevent loss of tyrosine hydroxylase (TH) expression of dopaminergic (DA) neurons induced by 6-hydroxydopamine (6-OHDA) toxicity that is most commonly used to create a rat model of Parkinson's disease (PD). In the present study, two microliters of 1.25% human albumin were stereotaxically injected into the right striatum of rats one day before or 7 days after the 6-OHDA lesion in the same side. D-Amphetamine-induced rotational asymmetry was measured 7 days, 3 and 10 weeks after 6-OHDA lesion. We observed that intrastriatal administration of human albumin significantly reduced the degree of rotational asymmetry. The number of TH-immunoreactive neurons present in the substantia nigra was greater in 6-OHDA lesioned rats following human albumin-treatment than non-human albumin treatment. TH-immunoreactivity in the 6-OHDA-lesioned striatum was also significantly increased in the human albumin-treated rats. To examine the mechanisms underlying the effects of human albumin, we challenged PC12 cells with 6-OHDA as an in vitro model of PD. Incubation with human albumin prevented 6-OHDA-induced reduction of cell viability in PC12 cell cultures, as measured by MTT assay. Furthermore, human albumin reduced 6-OHDA-induced formation of reactive oxygen species (ROS) and apoptosis in cultured PC12 cells, as assessed by flow cytometry. Western blot analysis showed that human albumin inhibited 6-OHDA-induced activation of JNK, c-Jun, ERK, and p38 mitogen-activated protein kinases (MAPK) signaling in PC12 cultures challenged with 6-OHDA. Human albumin may protect against 6-OHDA toxicity by influencing MAPK pathway followed by anti-ROS formation and anti-apoptosis.  相似文献   

17.
Acacetin (5,7-dihydroxy-4′-methoxyflavone), a flavonoid compound isolated from Flos Chrysanthemi Indici, chrysanthemum, safflower, and Calamintha and Linaria species has been shown to have anti-cancer activity, indicating its potential clinical value in cancer treatment. In this study, we sought to study the potentials of acacetin in preventing human dopaminergic neuronal death via inhibition of 6-hydroxydopamine (6-OHDA)-induced neuronal cell death in the SH-SY5Y cells. Our results suggest that acacetin was effective in preventing 6-OHDA-induced neuronal cell death through regulation of mitochondrial-mediated cascade apoptotic cell death. Pretreatment with acacetin significantly inhibited neurotoxicity and neuronal cell death through reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) dysfunction. Acacetin also markedly acted on key molecules in apoptotic cell death pathways and reduced phosphorylation of c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinases (PI3K)/Akt, and glycogen synthase kinase-3beta (GSK-3β). These results suggested that acacetin could inhibit 6-OHDA-induced neuronal cell death originating from ROS-mediated cascade apoptosis pathway. Thus, the results of our study suggest that acacetin is a potent therapeutic agent for PD progression.  相似文献   

18.
Intracellular signaling pathways that regulate the production of lethal proteins in central neurons are not fully characterized. Previously, we reported induction of a novel neuronal protein neuronal pentraxin 1 (NP1) in neonatal brain injury following hypoxia-ischemia (HI); however, how NP1 is induced in hypoxic-ischemic neuronal death remains elusive. Here, we have elucidated the intracellular signaling regulation of NP1 induction in neuronal death. Primary cortical neurons showed a hypoxic-ischemia time-dependent increase in cell death and that NP1 induction preceded the actual neuronal death. NP1 gene silencing by NP1-specific siRNA significantly reduced neuronal death. The specificity of NP1 induction in neuronal death was further confirmed by using NP1 (−/−) null primary cortical neurons. Declines in phospho-Akt (i.e. deactivation) were observed concurrent with decreased phosphorylation of its downstream substrate GSK-3α/β (at Ser21/Ser9) (i.e. activation) and increased GSK-3α and GSK-3β kinase activities, which occurred prior to NP1 induction. Expression of a dominant-negative inhibitor of Akt (Akt-kd) blocked phosphorylation of GSK-3α/β and subsequently enhanced NP1 induction. Whereas, overexpression of constitutively activated Akt (Akt-myr) or wild-type Akt (wtAkt) increased GSK-α/β phosphorylation and attenuated NP1 induction. Transfection of neurons with GSK-3α siRNA completely blocked NP1 induction and cell death. Similarly, overexpression of the GSK-3β inhibitor Frat1 or the kinase mutant GSK-3βKM, but not the wild-type GSK-3βWT, blocked NP1 induction and rescued neurons from death. Our findings clearly implicate both GSK-3α- and GSK-3β-dependent mechanism of NP1 induction and point to a novel mechanism in the regulation of hypoxic-ischemic neuronal death.  相似文献   

19.
Oxidative stress and apoptosis are considered common mediators of many neurodegenerative disorders including Parkinson's disease (PD). Recently, we identified that PKCdelta, a member of the novel PKC isoform family, is proteolytically activated by caspase-3 to induce apoptosis in experimental models of PD [Eur. J. Neurosci. 18 (6):1387-1401, 2003; Antioxid. Redox Signal. 5 (5):609-620, 2003]. Since caspase-3 cleaves PKCdelta between proline and aspartate residues at the cleavage site 324DIPD327 to activate the kinase, we developed an irreversible and competitive peptide inhibitor, Z-Asp(OMe)-Ile-Pro-Asp(OMe)-FMK (z-DIPD-fmk), to mimic the caspase-3 cleavage site of PKCdelta and tested its efficacy against oxidative stress-induced cell death in PD models. Cotreatment of z-DIPD-fmk with the parkinsonian toxins MPP(+) and 6-OHDA dose dependently attenuated cytotoxicity, caspase-3 activation, and DNA fragmentation in a mesencephalic dopaminergic neuronal cell model (N27 cells). However, z-DIPD-fmk treatment did not block MPP(+)-induced increases in caspase-9 enzyme activity. The z-DIPD-fmk peptide was much more potent (IC50 6 microM) than the most widely used and commercially available caspase-3 inhibitor z-DEVD-fmk (IC50 18 microM). Additionally, z-DIPD-fmk more effectively blocked PKCdelta cleavage and proteolytic activation than the cleavage of another caspase-3 substrate, poly(ADP-ribose) polymerase (PARP). Importantly, the peptide inhibitor z-DIPD-fmk completely rescued TH(+) neurons from MPP(+)- and 6-OHDA-induced toxicity in mouse primary mesencephalic cultures. Collectively, these results demonstrate that the PKCdelta cleavage site is a novel target for development of a neuroprotective therapeutic strategy for PD.  相似文献   

20.
Oxidative stress and mitochondrial dysfunction are two pathophysiological factors often associated with the neurodegenerative process involved in Parkinson's disease (PD). Although, 6-hydroxydopamine (6-OHDA) is able to cause dopaminergic neurodegeneration in experimental models of PD by an oxidative stress-mediated process, the underlying molecular mechanism remains unclear. It has been established that some antioxidant enzymes such as catalase (CAT) and superoxide dismutase (SOD) are often altered in PD, which suggests a potential role of these enzymes in the onset and/or development of this multifactorial syndrome. In this study we have used high-resolution respirometry to evaluate the effect of 6-OHDA on mitochondrial respiration of isolated rat brain mitochondria and the lactate dehydrogenase cytotoxicity assay to assess the percentage of cell death induced by 6-OHDA in human neuroblastoma cell line SH-SY5Y. Our results show that 6-OHDA affects mitochondrial respiration by causing a reduction in both respiratory control ratio (IC(50)?=?200?±?15?nM) and state 3 respiration (IC(50)?=?192?±?17?nM), with no significant effects on state 4(o). An inhibition in the activity of both complex I and V was also observed. 6-OHDA also caused cellular death in human neuroblastoma SH-SY5Y cells (IC(50)?=?100?±?9?μM). Both SOD and CAT have been shown to protect against the toxic effects caused by 6-OHDA on mitochondrial respiration. However, whereas SOD protects against 6-OHDA-induced cellular death, CAT enhances its cytotoxicity. The here reported data suggest that both superoxide anion and hydroperoxyl radical could account for 6-OHDA toxicity. Furthermore, factors reducing the rate of 6-OHDA autoxidation to its p-quinone appear to enhance its cytotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号