首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flagella from a total of 118 strains representing mostly pathovars of the phytopathogenic group Pseudomonas syringae, but also P. chlororaphis, P. cichorii, P. corrugata, P. fluorescens, P. fuscovaginae, P. stutzeri, P. viridiflava, as well as related phytopathogenic genera (Burkholderia cepacia and Ralstonia solanacearum) were characterized by immuno-fluorescent staining, SDS-PAGE, and immunoblotting. Eighty-six strains of the P. syringae group pathovars, P. cichorii and P. viridiflava were shown to possess flagella of serotypes H1 or H2, composed of a unique flagellin, whose molecular size varied between 31 and 31.5 kDa. Similarities between the P. syringae flagellin and a 31 kDa surface protein involved in pathogenicity are pointed out. The distribution of H1 and H2 antigens in the nine recently described genomospecies of P. syringae-P. viridiflava group suggested that flagellin would represent a phylogenetic marker within the arginin-dihydrolase-negative fluorescent pseudomonads. The characterization of flagellin was proposed as an identification tool at a level situated between genus and species.  相似文献   

2.
The 16S-23S rRNA gene internal transcribed spacer region (ITS1) from 34 strains of Pseudomonas avellanae and some strains of Pseudomonas syringae pathovars was amplified and assessed by restriction fragment length polymorphism (RFLP) using 10 restriction enzymes. In addition, the ITS1 region of four representative P. avellanae strains was sequenced and compared by the neighbour-joining algorithm with that of P. syringae pathovars. Two main groups of P. avellanae strains were observed that did not correlate with their origin. The ITS1 region sequencing revealed a high similarity with the P. syringae complex. One group of P. avellanae strains showed high similarity to P. s. pv. actinidiae and P. s. pv. tomato; another group showed similarity with P. s. pv. tabaci and P. s. pv. glycinea. Two strains clustered with P. s. pv. pisi. The difficulties to unambiguously classify the strains associated with hazelnut decline in Greece and Italy are discussed.  相似文献   

3.
The production of peptide siderophores and the variation in siderophore production among strains of Pseudomonas syringae and Pseudomonas viridiflava were investigated. An antibiose test was used to select a free amino acid-containing agar medium favorable for production of fluorescent siderophores by two P. syringae strains. A culture technique in which both liquid and solid asparagine-containing culture media were used proved to be reproducible and highly effective for inducing production of siderophores in a liquid medium by the fluorescent Pseudomonas strains investigated. Using asparagine as a carbon source appeared to favor siderophore production, and relatively high levels of siderophores were produced when certain amino acids were used as the sole carbon and energy sources. Purified chelated siderophores of strains of P. syringae pv. syringae, P. syringae pv. aptata, P. syringae pv. morsprunorum, P. syringae pv. tomato, and P. viridiflava had the same amino acid composition and spectral characteristics and were indiscriminately used by these strains. In addition, nonfluorescent strains of P. syringae pv. aptata and P. syringae pv. morsprunorum were able to use the siderophores in biological tests. Our results confirmed the proximity of P. syringae and P. viridiflava; siderotyping between pathovars of P. syringae was not possible. We found that the spectral characteristics of the chelated peptide siderophores were different from the spectral characteristics of typical pyoverdins. Our results are discussed in relation to the ecology of the organisms and the conditions encountered on plant surfaces.  相似文献   

4.
The molecular basis underlying the ability of pathogens to infect certain plant species and not others is largely unknown. Pseudomonas syringae is a useful model species for investigating this phenomenon because it comprises more than 50 pathovars which have narrow host range specificities. Tomato (Solanum lycopersicum) is a host for P. syringae pv. tomato, the causative agent of bacterial speck disease, but is considered a nonhost for other P. syringae pathovars. Host resistance in tomato to bacterial speck disease is conferred by the Pto protein kinase which acts in concert with the Prf nucleotide-binding lucine-rich repeat protein to recognize P. syringae pv. tomato strains expressing the type III effectors AvrPto or AvrPtoB (HopAB2). The Pto and Prf genes were isolated from the wild tomato species S. pimpinellifolium and functional alleles of both of these genes now are known to exist in many species of tomato and in other Solanaceous species. Here, we extend earlier reports that avrPto and avrPtoB genes are widely distributed among pathovars of P. syringae which are considered nonhost pathogens of tomato. This observation prompted us to examine the possibility that recognition of these type III effectors by Pto or Prf might contribute to the inability of many P. syringae pathovars to infect tomato species. We show that 10 strains from presumed nonhost P. syringae pathovars are able to grow and cause pathovar-unique disease symptoms in tomato leaves lacking Pto or Prf, although they did not reach the population levels or cause symptoms as severe as a control P. syringae pv. tomato strain. Seven of these strains were found to express avrPto or avrPtoB. The AvrPto- and AvrPtoB-expressing strains elicited disease resistance on tomato leaves expressing Pto and Prf. Thus, a gene-for-gene recognition event may contribute to host range restriction of many P. syringae pathovars on tomato species. Furthermore, we conclude that the diverse disease symptoms caused by different Pseudomonas pathogens on their normal plant hosts are due largely to the array of virulence factors expressed by each pathovar and not to specific molecular or morphological attributes of the plant host.  相似文献   

5.
Distinction between Pseudomonas syringae pathovar (pv.) pisi (Ps. syr. pisi) , responsible for bacterial blight of pea ( Pisum sativum ), and pv. syringae (Ps. syr. syringae) , still requires strain inoculation onto peas. Patterns of enzymes including esterase (EST) and superoxide dismutase (SOD) were examined for diagnostic purposes. Profiles of 59 Ps. syr . pisi strains and 53 Ps. syr . syringae strains were compared. Pseudomonas syringae pisi was characterized by one unique zymotype for SOD and two slightly different zymotypes for EST. Pseudomonas syringae syringae zymotypes were very heterogeneous with 10 different zymotypes for SOD and 32 for EST. Twenty-four percent of the Ps. syr . syringae strains shared SOD zymotype 1 of Ps. syr . pisi , thus preventing the use of this enzymatic system for identification. In contrast, the two EST zymotypes of Ps. syr. pisi strains were specific to the pathovar and could be used for its identification. The two Ps. syr. pisi EST patterns were correlated to race structure of the pathovar, zymotype 1 corresponding to races 2, 3, 4 and 6, and zymotype 2 to races 1, 5 and 7. Esterase isozyme profiling was proposed as a new identification procedure for bacterial pea blight agent.  相似文献   

6.
Significant amounts of ethylene were produced by Pseudomonas syringae pv. glycinea, pv. phaseolicola (which had been isolated from viny weed Pueraria lobata [Willd.] Ohwi [common name, kudzu]), and pv. pisi in synthetic medium. On the other hand, the bean strains of P. syringae pv. phaseolicola and strains of 17 other pathovars did not produce ethylene. P. syringae pv. glycinea and P. syringae pv. phaseolicola produced nearly identical levels of ethylene (about 5 x 10(sup-7) nl h(sup-1) cell(sup-1)), which were about 10 times higher than the ethylene level of P. syringae pv. pisi. Two 22-bp oligonucleotide primers derived from the ethylene-forming enzyme (efe) gene of P. syringae pv. phaseolicola PK2 were investigated for their ability to detect ethylene-producing P. syringae strains by PCR analysis. PCR amplification with this primer set resulted in a specific 0.99-kb fragment in all ethylene-producing strains with the exception of the P. syringae pv. pisi strains. Therefore, P. syringae pv. pisi may use a different biosynthetic pathway for ethylene production or the sequence of the efe gene is less conserved in this bacterium. P. syringae pv. phaseolicola isolated from kudzu and P. syringae pv. glycinea also produced ethylene in planta. It could be shown that the enhanced ethylene production in diseased tissue was due to the production of ethylene by the inoculated bacteria. Ethylene production in vitro and in planta was strictly growth associated.  相似文献   

7.
Recently, DNA pairing analyses showed that Pseudomonas syringae pv. tomato and related pathovars, including P. syringae pv. maculicola, form a genomic species (Pseudomonas tomato) (L. Gardan, H. L. Shafik, and P. A. D. Grimont, p. 445-448, in K. Rudolph, T. J. Burr, J. W. Mansfield, D. Stead, A. Vivian, and J. von Kietzell, ed., Pseudomonas syringae Pathovars and Related Pathogens, 1997). The genetic diversity of 23 strains belonging to this genomic species and 4 outgroup strains was analyzed with randomly amplified polymorphic DNA (RAPD) and amplified fragment length polymorphic (AFLP) techniques. Simple boiling of P. syringae cells was suitable for subsequent DNA amplification to obtain reliable patterns in RAPD and AFLP analyses. In general, the grouping of P. syringae strains by both analysis techniques corresponded well with the classification obtained from an RFLP analysis of ribosomal DNA operons, DNA pairing studies, and an analysis of pathogenicity data. However, two strains of P. syringae pv. maculicola produced distinct DNA patterns compared to the DNA patterns of other P. syringae pv. maculicola strains; these patterns led us to assume that horizontal transfer of DNA could occur between bacterial populations. Both techniques used in this study have high discriminating power because strains of P. syringae pv. tomato and P. syringae pv. maculicola which were indistinguishable by other techniques, including pathogenicity tests on tomato, were separated into two groups by both RAPD and AFLP analyses. In addition, data analysis showed that the AFLP method was more efficient for assessing intrapathovar diversity than RAPD analysis and allowed clear delineation between intraspecific and interspecific genetic distances, suggesting that it could be an alternative to DNA pairing studies. However, it was not possible to distinguish the two races of P. syringae pv. tomato on the basis of an analysis of the data provided by either the AFLP or RAPD technique.  相似文献   

8.
Genetic diversity and relationships of two pathovars of Pseudomonas syringae   总被引:10,自引:0,他引:10  
To determine genetic relationships within and between two pathovars of Pseudomonas syringae, strains typical of P. syringae pv. tomato (P. s. tomato) and selected strains of P. syringae pv. syringae (P. s. syringae) were characterized by three methods. DNA-DNA hybridization experiments showed that strains of P. s. tomato and P. s. syringae were, respectively, 86-100% and 37-47% homologous to DNA from a P. s. tomato reference strain when tested under stringent conditions. An analysis of electrophoretic variation in enzymes encoded by 26 loci placed 17 P. s. tomato strains studied in a group of four electrophoretic types, and these strains had a mean genetic diversity per locus of 0.076. Six P. s. syringae strains formed a second group of six electrophoretic types, which had a higher mean genetic diversity per locus of 0.479. The mean genetic distance separating P. s. tomato from P. s. syringae (D = 0.94) was unexpectedly large for strains of a single species. An analysis of restriction fragment length polymorphisms (RFLPs) with three cloned hybridization probes demonstrated that each of the P. s. tomato and P. s. syringae strains was unique. A method was developed to quantify the RFLP difference between pairs of strains, and cluster analysis revealed relationships among P. s. tomato, but not among P. s. syringae, that were similar to those based on enzyme polymorphisms. Implications of these findings for bacterial systematics and epidemiology are discussed.  相似文献   

9.
Production of the chlorosis-inducing phytotoxin coronatine in the Pseudomonas syringae pathovars atropurpurea, glycinea, maculicola, morsprunorum, and tomato has been previously reported. DNA hybridization studies previously indicated that the coronatine biosynthetic gene cluster is highly conserved among P. syringae strains which produce the toxin. In the present study, two 17-bp oligonucleotide primers derived from the coronatine biosynthetic gene cluster of P. syringae pv. glycinea PG4180 were investigated for their ability to detect coronatine-producing P. syringae strains by PCR analysis. The primer set amplified diagnostic 0.65-kb PCR products from genomic DNAs of five different coronatine-producing pathovars of P. syringae. The 0.65-kb products were not detected when PCR experiments utilized nucleic acids of nonproducers of coronatine or those of bacteria not previously investigated for coronatine production. When the 0.65-kb PCR products were digested with ClaI, PstI, and SmaI, fragments of identical size were obtained for the five different pathovars of P. syringae. A restriction fragment length polymorphism was detected in the amplified region of P. syringae pv. atropurpurea, since this pathovar lacked a conserved PvuI site which was detected in the PCR products of the other four pathovars. The 0.65-kb PCR products from six strains comprising five different pathovars of P. syringae were cloned and sequenced. The PCR products from two different P. syringae pv. glycinea strains contained identical DNA sequences, and these showed relatedness to the sequence obtained for the pathovar morsprunorum. The PCR products obtained from the pathovars maculicola and tomato were the most similar to each other, which supports the hypothesis that these two pathovars are closely related.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The rulAB locus confers tolerance to UV radiation and is borne on plasmids of the pPT23A family in Pseudomonas syringae. We sequenced 14 rulA alleles from P. syringae strains representing seven pathovars and found sequence differences of 1 to 12% within pathovar syringae, and up to 15% differences between pathovars. Since the sequence variation within rulA was similar to that of P. syringae chromosomal alleles, we hypothesized that rulAB has evolved over a long time period in P. syringae. A phylogenetic analysis of the deduced amino acid sequences of rulA resulted in seven clusters. Strains from the same plant host grouped together in three cases; however, strains from different pathovars grouped together in two cases. In particular, the rulA alleles from P. syringae pv. lachrymans and P. syringae pv. pisi were grouped but were clearly distinct from the other sequenced alleles, suggesting the possibility of a recent interpathovar transfer. We constructed chimeric rulAB expression clones and found that the observed sequence differences resulted in significant differences in UV (wavelength) radiation sensitivity. Our results suggest that specific amino acid changes in RulA could alter UV radiation tolerance and the competitiveness of the P. syringae host in the phyllosphere.  相似文献   

11.
Strains representing the fluorescent plant pathogenic Pseudomonas spp., Ps. agarici , Ps. asplenii , Ps. avellanae , Ps. beteli , Ps. caricapapayae , Ps. cichorii , Ps. corrugata , Ps. ficuserectae , Ps. flectens , Ps. fuscovaginae , Ps. marginalis , Ps. meliae , Ps. savastanoi , Ps. syringae , Ps. tolaasii and Ps. viridiflava were tested for biocidal activity using Aspergillus niger as assay organism. Inhibitory behaviour was found in strains of Ps. asplenii , Ps. blatchfordae , Ps. cichorii , Ps. corrugata , Ps. fuscovaginae , Ps. marginalis , Ps. marginalis pv. pastinacea , Ps. syringae pv. syringae , Ps. syringae pv. aptata , Ps. syringae pv. atrofaciens , Ps. syringae pv. lapsa , Ps. tolaasii , and strains of a Pseudomonas sp. pathogenic to Actinidia , in the Ps. savastanoi genomic sp. Antifungal activity could be identified with the production of members of the syringomycin family of toxins by strains in Ps. syringae , Ps. asplenii and Ps. fuscovaginae . These toxin reactions support suggestions made elsewhere of the synonymy of the latter two species. In a preliminary characterization using tests for stability to heat, protease, acid and alkaline treatments, unknown toxins consistent with syringomycin-like toxins the strains from Actinidia speciesColour RGB 0,0,128. The toxins from Ps. cichorii and from Ps. corrugata differed in their reactions from all other agents. Pseudomonas tolaasii produces the antifungal compound tolaasin. The white line reaction with ' Ps. reactans ', a test for tolaasin production by strains of Ps. tolaasii , was confirmed as specific for this compound. Some of these low molecular weight toxins may be produced by some of these plant pathogenic strains.  相似文献   

12.
Pseudomonas syringae pv. maculicola causes bacterial spot on Brassicaceae worldwide, and for the last 10 years severe outbreaks have been reported in the Loire Valley, France. P. syringae pv. maculicola resembles P. syringae pv. tomato in that it is also pathogenic for tomato and causes the same types of symptoms. We used a collection of 106 strains of P. syringae to characterize the relationships between P. syringae pv. maculicola and related pathovars, paying special attention to P. syringae pv. tomato. Phylogenetic analysis of gyrB and rpoD gene sequences showed that P. syringae pv. maculicola, which causes diseases in Brassicaceae, forms six genetic lineages within genomospecies 3 of P. syringae strains as defined by L. Gardan et al. (Int. J. Syst. Bacteriol. 49[Pt 2]:469-478, 1999), whereas P. syringae pv. tomato forms two distinct genetic lineages. A multilocus variable-number tandem-repeat (VNTR) analysis (MLVA) conducted with eight minisatellite loci confirmed the genetic structure obtained with rpoD and gyrB sequence analyses. These results provide promising tools for fine-scale epidemiological studies on diseases caused by P. syringae pv. maculicola and P. syringae pv. tomato. The two pathovars had distinct host ranges; only P. syringae pv. maculicola strains were pathogenic for Brassicaceae. A subpopulation of P. syringae pv. maculicola strains that are pathogenic for Pto-expressing tomato plants were shown to lack avrPto1 and avrPtoB or to contain a disrupted avrPtoB homolog. Taking phylogenetic and pathological features into account, our data suggest that the DC3000 strain belongs to P. syringae pv. maculicola. This study shows that P. syringae pv. maculicola and P. syringae pv. tomato appear multiclonal, as they did not diverge from a single common ancestral group within the ancestral P. syringae genomospecies 3, and suggests that pathovar specificity within P. syringae may be due to independent genetic events.  相似文献   

13.
The relationship of pyoverdins produced by 41 pathovars of Pseudomonas syringae and by phytopathogenic Pseudomonas species was investigated. A high-performance liquid chromatography method for analyzing the culture medium proved to be superior to isoelectric focusing for detecting pyoverdin production, for differentiating slightly different pyoverdins, and for differentiating atypical from typical Fe(III)-chelated pyoverdins. Nonfluorescent strains were found in Pseudomonas amygdali, Pseudomonas meliae, Pseudomonas fuscovaginae, and P. syringae. Pseudomonas agarici and Pseudomonas marginalis produced typical pyoverdins. Among the arginine dihydrolase-negative fluorescent Pseudomonas species, spectral, amino acid, and mass spectrometry analyses underscored for the first time the clear similarities among the pyoverdins produced by related species. Within this group, the oxidase-negative species Pseudomonas viridiflava and Pseudomonas ficuserectae and the pathovars of P. syringae produced the same atypical pyoverdin, whereas the oxidase-positive species Pseudomonas cichorii produced a similar atypical pyoverdin that contained a glycine instead of a serine. The more distantly related species Pseudomonas asplenii and Pseudomonas fuscovaginae both produced a less similar atypical pyoverdin. The spectral characteristics of Fe(III)-chelated atypical pyoverdins at pH 7.0 were related to the presence of two beta-hydroxyaspartic acids as iron ligands, whereas in typical pyoverdins one of the ligands is always ornithine based. The peptide chain influenced the chelation of iron more in atypical pyoverdins. Our results demonstrated that there is relative pyoverdin conservation in the amino acids involved in iron chelation and that there is faster evolution of the other amino acids, highlighting the usefulness of pyoverdins in systematics and in identification.  相似文献   

14.
The gene coding for GDP-mannose dehydrogenase ( algD ) was isolated from a Pseudomonas syringae pv. phaseolicola genomic library using a polymerase chain reaction-generated heterologous DNA-probe from Pseudomonas aeruginosa . A total of 2123 base pairs were sequenced (accession number AF001555) and analysed for homologies to the alginate gene cluster of P. aeruginosa . Downstream from algD an alg8 homologue was found suggesting a similar arrangement of the alginate gene cluster in P. syringae pv. phaseolicola to that in P. aeruginosa . Also, the deduced amino acid sequence of algD shows high similarity to that of P. aeruginosa (0.9) and Azotobacter vinelandii (0.88). Southern hybridization experiments revealed that algD is widely distributed among members of the Pseudomonas rRNA homology group I. Among others, sequences homologous to algD were detected in the P. syringae pathovars lachrymans , mori , morsprunorum, pisi , savastanoi, tabaci and tomato as well as in Pseudomonas amygdali . For most of the algD positive organisms synthesis of alginate has been reported by other studies. However, algD homologues were also detected for the species Pseudomonas corrugata , Pseudomonas marginalis and Pseudomonas avenae ( Acidovorax avenae ), for which alginate biosynthesis has not yet been reported.  相似文献   

15.
Dandelion (Taraxacum officinale) possesses an unusually high degree of disease resistance. As this plant exhibits high polyphenol oxidase (PPO) activity and PPO have been implicated in resistance against pests and pathogens, we analyzed the potential involvement of five PPO isoenzymes in the resistance of dandelion against Botrytis cinerea and Pseudomonas syringae pv. tomato. Only one PPO (ppo-2) was induced during infection, and ppo-2 promoter and β-glucuronidase marker gene fusions revealed strong induction of the gene surrounding lesions induced by B. cinerea. Specific RNAi silencing reduced ppo-2 expression only, and concomitantly increased plant susceptibility to P. syringae pv. tomato. At 4 days postinoculation, P. syringae pv. tomato populations were strongly increased in the ppo-2 RNAi lines compared with wild-type plants. When the dandelion ppo-2 gene was expressed in Arabidopsis thaliana, a plant having no PPO gene, active protein was formed and protein extracts of the transgenic plants exhibited substrate-dependent antimicrobial activity against P. syringae pv. tomato. These results clearly indicate a strong contribution of a specific, single PPO isoform to disease resistance. Therefore, we propose that specific PPO isoenzymes be included in a new family of pathogenesis-related (PR) proteins.  相似文献   

16.
Plasmid analysis and variation in Pseudomonas syringae   总被引:2,自引:1,他引:1  
Total plasmid DNA was successfully isolated from 46 of 55 strains of Pseudomonas syringae . Electrophoretic separation after digestion with restriction endonuclease Eco RI gave reproducible banding patterns. Cluster analysis of banding data grouped all strains of pathovar (pv.) pisi separately from pv. glycinea , pv. phaseolicola and pv. syringae . Pathovars glycinea and phaseolicola were more similar to each other than to pv. pisi. A relationship between fragment banding patterns and race structure within pv. pisi was observed.  相似文献   

17.
The effect of the plasmid-encoded rulAB (resistance to ultraviolet radiation) determinant on responses of Pseudomonas syringae to ultraviolet-B (UV-B) radiation and the distribution of rulAB among pathovars of P. syringae were determined. The cloned rulAB determinant and the native rulAB + plasmid pPSR1 both conferred approximately a 10-fold increase in survival on P. syringae pv. syringae FF5 following increasing doses of UV-B radiation. rulAB + P. syringae strains also maintained significantly larger epiphytic populations on leaf surfaces irradiated with UV-B. rulAB -insertional mutants, constructed in two native rulAB + strains, were from 10- to 100-fold more sensitive to UV-B radiation. The UV tolerance phenotype and the rulAB genes were widely distributed among P. syringae pathovars isolated from varied plant hosts throughout the world and within a broad range of genotypic backgrounds of P. syringae pv. syringae. With one exception, the rulAB determinant was harboured on pPT23A-like plasmids; these replicons are indigenous residents of the species P. syringae and also tend to encode determinants of importance in host–pathogen interactions.  相似文献   

18.
Type VI secretion systems (T6SS) of Gram-negative bacteria form injectisomes that have the potential to translocate effector proteins into eukaryotic host cells. In silico analysis of the genomes in six Pseudomonas syringae pathovars revealed that P. syringae pv. tomato DC3000, pv. tabaci ATCC 11528, pv. tomato T1 and pv. oryzae 1-6 each carry two putative T6SS gene clusters (HSI-I and HSI-II; HSI: Hcp secretion island), whereas pv. phaseolicola 1448A and pv. syringae B728 each carry one. The pv. tomato DC3000 HSI-I and pv. tomato T1 HSI-II possess a highly similar organization and nucleotide sequence, whereas the pv. tomato DC3000, pv. oryzae 1-6 and pv. tabaci 11528 HSI-II are more divergent. Putative effector orthologues vary in number among the strains examined. The Clp-ATPases and IcmF orthologues form distinct phylogenetic groups: the proteins from pv. tomato DC3000, pv. tomato T1, pv. oryzae and pv. tabaci 11528 from HSI-II group together with most orthologues from other fluorescent pseudomonads, whereas those from pv. phaseolicola, pv. syringae, pv. tabaci, pv. tomato T1 and pv. oryzae from HSI-I group closer to the Ralstonia solanacearum and Xanthomonas orthologues. Our analysis suggests multiple independent acquisitions and possible gene attrition/loss of putative T6SS genes by members of P. syringae.  相似文献   

19.
Pseudomonas syringae strains translocate large and distinct collections of effector proteins into plant cells via the type III secretion system (T3SS). Mutations in T3SS-encoding hrp genes are unable to elicit the hypersensitive response or pathogenesis in nonhost and host plants, respectively. Mutations in individual effectors lack strong phenotypes, which has impeded their discovery. P. syringae effectors are designated Hop (Hrp outer protein) or Avr (avirulence) proteins. Some Hop proteins are considered to be extracellular T3SS helpers acting at the plant-bacterium interface. Identification of complete sets of effectors and related proteins has been enabled by the application of bioinformatic and high-throughput experimental techniques to the complete genome sequences of three model strains: P. syringae pv. tomato DC3000, P. syringae pv. phaseolicola 1448A, and P. syringae pv. syringae B728a. Several recent papers, including three in this issue of Molecular Plant-Microbe Interactions, address the effector inventories of these strains. These studies establish that active effector genes in P. syringae are expressed by the HrpL alternative sigma factor and can be predicted on the basis of cis Hrp promoter sequences and N-terminal amino-acid patterns. Among the three strains analyzed, P. syringae pv. tomato DC3000 has the largest effector inventory and P. syringae pv. syringae B728a has the smallest. Each strain has several effector genes that appear inactive. Only five of the 46 effector families that are represented in these three strains have an active member in all of the strains. Web-based community resources for managing and sharing growing information on these complex effector arsenals should help future efforts to understand how effectors promote P. syringae virulence.  相似文献   

20.
The enterobacterium Erwinia amylovora is a devastating plant pathogen causing necrotrophic fire blight disease of apple, pear, and other rosaceous plants. In an attempt to identify genes induced during infection of host plants, we identified and cloned a putative effector gene, avrRpt2EA. The deduced amino-acid sequence of the translated AvrRpt2EA protein is homologous to the effector protein AvrRpt2 previously reported in Pseudomonas syringae pv. tomato. These two proteins share 58% identity (70% similarity) in the functional domain; however, the secretion and translocation signal domain varied. The avrRpt2EA promoter region contains a typical 'hrp box,' which suggests that avrRpt2EA is regulated by the alternative sigma factor, HrpL. avrRpt2EA was detected in all E. amylovora strains tested but not in other closely related Erwinia species. An avrRpt2EA deletion mutant was reduced in its ability to cause systemic infection on immature pear fruits as compared with the wild-type strain, indicating that avrRpt2EA acts as a virulence factor on its native host. Growth of P. syringae pv. tomato DC3000 expressing avrRpt2EA was 10-fold higher than that of P. syringae pv. tomato DC3000 in an Arabidopsis rps2 mutant, indicating that avrRpt2EA promotes virulence of P. syringae pv. tomato DC3000 on Arabidopsis similar to P. syringae pv. tomato avrRpt2. When avrRpt2EA was expressed in P. syringae pv. tomato DC3000 in its native form, a weak hypersensitive response (HR) was induced in Arabidopsis; however, a hybrid protein containing the P. syringae pv. tomato avrRpt2 signal sequence, when expressed from the P syringae pv. tomato avrRpt2 promoter, caused a strong HR. Thus, the signal sequence and promoter of avrRpt2EA may affect its expression, secretion, or translocation, singly or in combination, in P. syringae pv. tomato DC3000. These results indicated that avrRpt2EA is genetically recognized by the RPS2 disease resistance gene in Arabidopsis when expressed in P. syringae pv. tomato DC3000. The results also suggested that although distinct pathogens such as E. amylovora and P. syringae may contain similar effector genes, expression and secretion of these effectors can be under specific regulation by the native pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号