首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To investigate genetic diversity among populations of the sika deer, Cervus nippon, nucleotide sequences (705-824 bases) of the mitochondrial D-loop regions were determined in animals from 13 localities in the Japanese islands. Phylogenetic trees constructed by the sequences indicated that the Japanese sika deer is separated into two distinct lineages: the northern Japan group (the Hokkaido island and most of the Honshu mainland) and the southern Japan group (a part of the southern Honshu mainland, the Kyushu island, and small islands around the Kyushu island). All sika deer examined in this study shared four to seven units of repetitive sequences (37 to 40 bases each) within the D-loop sequences. The number of tandem repeats was different among the populations, and it was specific to each population. Six or seven repeats occurred in populations of the northern Japan group, while four or five repeats occurred in populations of the southern Japan group. Each repeat unit included several nucleotide substitutions, compared with others, and 26 types were identified from 31 animals. Sequences of the first, second, and third units in arrays were clearly different between the northern and the southern groups. Based on these D-loop data, colonization and separation of the sika deer populations in the Japanese islands were estimated to have occurred less than 0.5 million years before present. Our results provide an invaluable insight into better understanding the evolutionary history, phylogeny, taxonomy, and population genetics of the sika deer.  相似文献   

2.
To determine the geographical origin of the sika deer (Cervus nippon) naturalized in Germany and Austria, we sequenced the mitochondrial control region for 214 individuals. Adding these sequences to previously published data from native sika deer across its natural geographic range, the total comes to 245, extending what is already known about the geographical variation in this sequence in Cervus nippon. From these sequences, a neighbour-joining tree was constructed. This tree showed that the 49 different mitochondrial (mt)DNA types are grouped into three distinct phylogenetic clusters, which correspond to different geographic areas. Similarities between sequences of the naturalized sika deer and those described from native sika deer from both southern Honshu, Kyushu with associated islands, and northern Honshu suggest that the ancestors of the sika deer populations in Germany and Austria originated from the Japanese archipelago. In contrast, there is no evidence that female sika deer of Chinese, Taiwanese or north Vietnamese origin were involved in the ancestry of the present sika population in Germany and Austria.  相似文献   

3.
We assessed genetic differentiation and diversity in 14 populations of sika deer (Cervus nippon) from Japan and four populations of sika deer introduced to the UK, using nine microsatellite loci. We observed extreme levels of differentiation and significant differences in diversity between populations. Our results do not support morphological subspecies designations, but are consistent with previous mitochondrial DNA analyses which suggest the existence of two genetically distinct lineages of sika deer in Japan. The source of sika introduced to the UK was identified as Kyushu. The underlying structure of Japanese populations probably derives from drift in separate glacial refugia and male dispersal limited by distance. This structure has been perturbed by bottlenecks and habitat fragmentation, resulting from human activity from the mid-nineteenth century. Most current genetic differentiation and differences in diversity among populations probably result from recent drift. Coalescent model analysis suggests sika on each of the main Japanese islands have experienced different recent population histories. Hokkaido, which has large areas of continuous habitat, has maintained high levels of gene flow. In Honshu the population is highly fragmented and is likely to have been evolving by drift alone. In Kyushu there has been a balance between gene flow and drift but all the populations have experienced high levels of drift. Habitat fragment size was not significantly associated with genetic diversity in populations but there was a significant correlation between habitat fragment size and effective population size.  相似文献   

4.
In southern Kantoh, Japanese sika deer (Cervus nippon) are distributed discontinuously due to large urban areas and developed road networks. To assess the impact of habitat fragmentation on sika deer subpopulations, we examined mitochondrial D-loop sequences from 435 individuals throughout southern Kantoh. About 13 haplotypes were detected, and their distributions revealed spatial genetic structure. Significant genetic differentiation was observed among seven of eight subpopulations. We found no significant correlation between pairwise F ST and geographical distance among subpopulations. Genetic diversity indices suggested that seven of eight subpopulations had probably experienced population bottlenecks in the recent past. Therefore, and in the light of the results of a nested clade analysis of these haplotypes, we conclude that recent fluctuations in population size and the interruption of gene flow due to past and present habitat fragmentation have played major roles influencing the spatial genetic structure of the sika deer population. This is the first evidence of spatial genetic population structure in the highly fragmented sika deer population in Honshu, Japan.  相似文献   

5.
Allozyme variation was investigated in 17 Japanese populations of Campanula punctata, ten from the Izu Islands and seven in the mainland (Honshu). The data indicate that there are two groups, a mainland group and an island one, and that the systematically problematic Oshima Island (northernmost Izu island) populations are closely related to those of the other islands. Nei's genetic identity values among islands and among mainland populations were 0.95 and 0.97, respectively, while the value between island and mainland populations was 0.84, suggesting that the island populations are an independent species. Total genetic variation was nearly the same among island and mainland populations. However, the apportionment of variation within and among populations was considerably different; 14% of gene diversity exists among mainland populations, while 31% of the diversity exists among island populations. Mean outcrossing rates of self-incompatible mainland and Oshima populations are 0.62–0.79, supporting xenogamy; those in self-compatible island populations are 0.37–0.57 in the northern islands, indicating a mixed mating system, and 0.16–0.25 in southern ones, indicating dominant inbreeding. Total genetic diversity in each island population decreased with distance from the mainland. Genetic and geological data suggest that the ancestors of insular populations were founded on northern islands in a relatively ancient period and that they dispersed progressively to the southern ones. Chromosome number (2n = 34) and isozyme numbers indicate gene duplications in this species, which suggests it is an ancient polyploid.  相似文献   

6.
Transplant and common garden experiments have been used in studies on local adaptation, but are difficult to be conducted for large animals with long life span. A previous study on the southern Japanese islands demonstrated that relative limb lengths of sika deer (Cervus nippon) were short on islands with steep slopes. We hypothesized that this morphological variation was evidence for local adaptation, and tested this hypothesis by comparing phenotypic divergence with neutral genetic divergence among eight populations of the sika deer in the southern Japanese islands. Divergence patterns differed between the phenotypic and neutral genetic features. Genetic similarity was high among individuals on Kyushu (OI, KGS, and KGK). Individuals on Tanegashima (TN) and Yakushima (YK) also constituted a group, whereas individuals on Tsushima (TS), Wakamatsujima (WM), and Kuchinoerabujima (KE) formed a genetically distinct group. Phenotypic data indicated that individuals from TS, OI, KGS, and KGK exhibited similarity, whereas individuals on YK formed an isolated group that was separated from the other populations. The degree of phenotypic divergence was larger than that of neutral genetic divergence between TN and YK. These results suggest that divergent selection worked between two of the eight island populations (TN and YK). The morphological trait of captive-bred individuals from TN and YK, which had never experienced their original environments, retained their original morphological features. By combining the results of multiple analyses, we found that the difference in relative limb length between the two populations was consistent with local adaptation hypothesis, although conclusive results were not obtained for the other populations.  相似文献   

7.
Hybridization and backcrossing of native populations with introduced species can lead to introgression and genetic alteration. In this study, we evaluated introgression in 43 deer from a potential hybrid zone around Okinoshima Island, Kinki District, Japan. This region witnessed the migration of a hybrid population (cross between the Formosan sika deer [Cervus nippon taiouanus] and other deer species) that could potentially breed with the native Japanese sika deer (C. n. centralis). We used an existing genetic marker for the mitochondrial cytochrome b gene and two novel markers for nuclear DNA, developed using publicly available next‐generation sequencing data. We identified one mainland deer with a mitochondrial haplotype identical to that of the Formosan sika deer as well as nuclear heterozygous sequences identical to those of Formosan and Japanese sika deer. This suggests that the mainland deer is a hybrid offspring of the Okinoshima population and native deer. However, only Japanese sika deer sequences were found in the other 42 samples, indicating limited introgression. Nevertheless, hybridization pre‐ and postintroduction in the Okinoshima population could cause multispecies introgression among Japanese sika deer, negatively affecting genetic integrity. We developed a simple test based on polymerase chain reaction–restriction fragment length polymorphism to detect introgression in natural populations. Our method can accelerate genetic monitoring of Japanese sika deer in Kinki District. In conclusion, to prevent further introgression and maintain genetic integrity of Japanese sika deer, we recommend establishing fences around Okinoshima Island to limit migration, besides a continued genetic monitoring of the native deer.  相似文献   

8.
Cephalometrical configurations of Japanese people were investigated on two hundred and sixteen groups living on the four main islands of Japan: Hokkaido, Honshu, Shikoku, and Kyushu. The Japanese in Honshu were divided geographically into a narrow-featured eastern major group and a broad-featured western major group. A physical characteristic of Japanese living in the western mid-Honshu was the lengthened feature of their cephalic measurement, an influence of a long-headed group of Korean people; Japanese residents in eastern mid-Honshu, however, showed the result of mixing with a short-headed group of Korean people. Japanese people living in Hokkaido, the northernmost island, and in the Ryukyu Islands in the South of Japan, presented no important finding which suggests their influence on the physical characteristics of the Japanese. Ongoing studies indicating physical relationships between Kyushu or Shikoku residents and Honshu residents, are as yet insufficient.  相似文献   

9.
10.
Forests dominated by broad-leaved evergreen trees cover a narrow zone of the southern coast of Korea as well as warm-temperate and subtropical regions of Japan. However, little is known about their establishment history, especially in Korea. Endemic Quercus acuta grows in Korea and Japan. We evaluated its genetic diversity, population structure, and degree of lineage admixture in terms of its distribution history. Analyses utilized seven nuclear microsatellites that were genotyped from 330 individuals of 16 populations. Genetic diversity was highest for the Japanese Kyushu populations. The allelic diversity of populations was similar between Jeju Island and Kyushu, implying that they are putative refugia. Although the mean F ST value was very low, patterns for isolation-by-distance were strong and significant. Results from Bayesian clustering and Monmonier’s algorithm indicated that populations are roughly partitioned from west (Korea and Kyushu) to east (Japanese Honshu). Therefore, the two divisions within this species are demographically independent and may have arisen due to past fragmentation. In considering the mixed genetic structure between Korea and Kyushu populations, and the higher levels of genetic diversity in mainland Korea relative to Honshu, we hypothesized that this species has been able to survive within Jeju Island and Kyushu. Consequently, mainland Korea populations might have been shaped by range expansion that kept them well mixed from a continuous and large genetic resource.  相似文献   

11.
Morphological comparisons of the sika deer Cervus nippon mandible and molars were conducted between two (northern and southern) Japanese subspecific lineages and among local populations of different ('grazer' or 'intermediate feeder') feeding types. The northern lineage showed greater M1 breadth, M3 hypsodonty and mandibular corpus height than the southern lineage. Such differences were not observed between the 'grazer' and 'intermediate feeder' populations of the northern lineage. However, a northern population, which inhabits a particularly harsh environment (Kinkazan Island), had the largest values of relative molar size and hypsodonty, although this was not statistically significant. These results imply that, in the Japanese sika deer, the selective pressures acting on the current 'grazer' populations are not strong enough to bring out noticeable adaptive change in molar size and hypsodonty, but adaptive change in these traits may occur in an environment that promotes excessive molar wear, more than that seen in the current sika deer habitats of Japan. Combined with what is known of the Pleistocene history of the sika deer, we infer that the ancestral population of the northern Japanese lineage likely acquired their relatively larger and more hypsodont molars in an extremely harsh environment during the last or previous glacial periods.  相似文献   

12.
Gypsy moth populations from Japan, mainland Asia, Europe, Tunisia, and North America were analyzed for variation in mitochondrial DNA (mtDNA) sequences from three gene regions. These samples resolve into four groups, representing gypsy moths from (1) Okinawa, Japan, (2) Hokkaido, Japan, (3) Honshu and Kyushu, Japan and mainland Asia, and (4) Europe, Tunisia, and North America. Some patterns of geographic variation observed for mtDNA (for example, the distinctiveness of gypsy moths from Hokkaido, Japan) coincide with those observed by Goldschmidt from analyses of morphology, life history, and intersexuality. Other patterns (relative sequence homogeneity across Asia, Honshu, and Kyushu and reduced levels of variation in mainland Japan) do not.  相似文献   

13.
We previously revealed the presence of six genetically distinct matrilineal populations of the Japanese dormouse Glirulus japonicus in the distribution range of Honshu, Shikoku, and Kyushu islands. In this study, we extended this analysis using mitochondrial cytochrome b gene sequences (n = 96) and Y-chromosome-specific SRY gene sequences (n = 22) from individuals collected from Honshu, Shikoku, Kyushu, and Oki Dogo I. The cytochrome b sequence data allowed us to define precise geographic ranges of the six previously known and three newly found distinct matrilineal lineages: northeastern Honshu (I), east-central Honshu (II), west-central Honshu and the Kii Peninsula (III), the western part of Honshu (IV), Shikoku (V), westernmost Honshu and Kyushu (VI), the northern part of central Honshu (VII), the southern part of central Honshu (VIII), and Oki Dogo I. (IX). Our inference of geographic borders suggests that regions of lower and higher altitudes in the mountain systems played important roles in driving the hosting and separation of lineages, respectively. Six matrilineal lineages (I, II, V, VI, VIII, and XI) were shown to possess their own SRY haplotypes, while lineages III and IV shared one haplotype. These data together with our previous observation of nuclear ribosomal RNA gene variation indicate advanced populational subdivision in this species. It is thus evident that each of the populations, including those living at high latitudes and in limited geographic spaces, have survived for several million years. A specific ability to tolerate cold may have permitted G. japonicus to preserve anciently diverged lineages in each locality.  相似文献   

14.
Phylogenetic relationships among migratory locust (Locusta migratoria) populations in different climatic regions were analysed by sequencing four mitochondrial DNA regions, with special reference to the origin of Japanese populations. The populations are clearly separated into two clades: one consists of individuals from temperate and cold‐temperate areas of Japan and the Chinese continent, and the other comprises those from subtropical islands of Japan, Hainan Island in China, Timol Leste, Australia, Ethiopia, France, and some individuals from Tsushima Island and Honshu of Japan. The divergence time between the two clades is estimated to be 0.86–1.89 Mya. The phylogenetic analysis revealed that Japanese L. migratoria populations were composed of individuals of six different origins: (1) Hokkaido populations possibly from the Russian continent; (2) Honshu–Kyushu populations from the Chinese continent; (3) Southwest Island populations from Hainan Island or adjacent areas; (4) Ogasawara populations that might have originated from Micronesia; (5) part of the Tsushima population that originated from somewhere in the Asian tropics; and (6) a possible relict population of ancient southern haplotypes that exists in western areas of northern Honshu. The Tsugaru Straits and Tokara Straits have acted as effective geographical barriers, as in other organisms, isolating locust populations for a few thousand years. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 570–581.  相似文献   

15.
The associations of the butterfly fauna of the Japanese islands of Hokkaido, Honshu, Kyushu, Shikoku and Ryukyu Rett are analysed with respect to one another and to the fauna of the far-east U.S.S.R. A faunal discontinuity exists between the fauna of Ryukyu Rett and all other areas. The fauna of Ryukyu Rett can be considered as being of the Oriental region, the faunas of the other Japanese islands as being of the Palaearctic region. This view was reinforced with conclusions drawn from MacArthus&Wilson's theory of island biogeography (1963, 1967). The divergence of die faunas of the Japanese islands is dependent on their isolation - the further the distance between islands, the greater the isolation and the greater the faunal divergence. Thus the fauna of all silands of Japan, except of the Ryukyu Rett, have a close association with the far-east Russian fauna. There is a greater similarity between these faunas than between the fauna of the islands of Hokkaido, Honshu, Kyushu and Shikoku with respect to that of Ryukyu Rett.  相似文献   

16.
Comparison of food habits of sympatric animals provides understanding of interspecific relations. Previous studies of food habits of the two ruminants of Japan, sika deer (Cervus nippon) and Japanese serows (Capricornis crispus), have shown that sika deer are variable, and they are gazers in northern Japan, but browsers in southern Japan, whereas Japanese serows are browsers. However, these studies described the food habits of each species separately, and no study has compared the food habits of these species living in sympatry. Therefore, we examined these species on Mt. Yatsugatake, central Japan, using microhistological analyses and nutritional analyses of feces. Sasa nipponica, a dwarf bamboo, predominated in the fecal composition of sika deer, whereas both S. nipponica and dicotyledonous plants were found in the feces of Japanese serows. Crude protein levels of serow feces were higher than those of deer. The particle sizes of plant fragments in serow feces were smaller than those in deer feces, suggesting that serow fed more selectively on digestible plants than deer did. These results support the suggestions of previous studies conducted in different habitats and show that sika deer are less selective grazers, and Japanese serows are more selective browsers. Thus, food differences are likely explained by the feeding ecophysiology of the animals and not habitat differences.  相似文献   

17.
Aim The main Japanese islands are land‐bridge islands divided by the biogeographic division Blakiston’s Line and represent two natural laboratories for studying land‐bridge diversification. Colonization of the current mammal fauna has been dated to the middle to late Pleistocene using fossil evidence. The purpose of this paper is to apply a molecular clock to the genetic divergences between Japanese mammalian taxa and their sister mainland taxa to test the late Pleistocene land‐bridge colonization hypothesis. Location The main Japanese islands (Kyushu, Shikoku, Honshu and Hokkaido). Methods I used mitochondrial DNA (cytochrome b) and a species tree approach to estimate the divergence times of 24 Japanese non‐volant terrestrial mammal taxa and their mainland sister taxa using the program *beast . I then tested for evidence of non‐simultaneous divergence among these taxon‐pairs by controlling for expected coalescent stochasticity using the program Ms Bayes . Results Divergence events between taxa on Japan and their mainland sister taxa were significantly older than expected under the current paradigm, which is based on fossil data. Consistent with the land‐bridge colonization hypothesis, there was evidence of multiple divergence events. Main conclusions These results implicate a colonization timeframe that is older than posited by the current paradigm based on fossil evidence. However, these results are still consistent with the land‐bridge colonization hypothesis. Multiple periods of land‐bridge connectivity may account for the current mammalian fauna in Japan. In addition, half of the divergence time estimates in the Honshu–Shikoku–Kyushu region were clumped around 2.4 Ma, which might suggest a dramatic interchange period, concordant with a period of significant global cooling, when the first land bridge may have connected Japan to the mainland.  相似文献   

18.
Aim To provide insights into genetic differentiation between insular endemic Weigela coraeensis var. fragrans and its progenitor variety W. coraeensis var. coraeensis, the population genetic structure of both varieties was examined, and factors promoting genetic differentiation between the two taxa were explored. Location The natural range of W. coraeensis (sensu lato) throughout mainland Japan (Honshu) and the Izu Islands. Methods The analysis included 349 and 504 individuals across the mainland (Honshu) and the Izu Islands, respectively, using 10 allozyme and 10 microsatellite loci. The population genetic structure of W. coraeensis was assessed by analysing genetic diversity indices for each population, genetic differentiation among populations, model‐based Bayesian clustering or distance‐based clustering, and bottleneck tests. Results The level of genetic diversity in each of the populations on the Izu Islands was negatively correlated with geographical distance between each island and the mainland. The populations on the mainland and on the Izu Islands were genetically differentiated to a certain extent; however, the microsatellite analyses suggested that gene flow also occurred between the mainland and the islands, and among individual islands. These microsatellite analyses also suggested recent bottlenecks in several populations in both areas. Main conclusions The decrease in genetic diversity throughout the Izu Islands, which correlated with distance to the mainland, Honshu, may be the result of a repeated founder effect occurring at a series of inter‐island colonizations from north to south. The stepping stone‐like configuration of the islands may have played a role in the dispersal of the species. Geographical isolation by sea would effectively result in genetic differentiation of W. coraeensis between mainland Honshu and the Izu Islands, although some gene flow may still occur between Honshu and the northern Izu Islands. The differentiation process of the endemic plants on the Izu Islands is anagenetic but not completed, and the study of these plants will provide insightful knowledge concerning the evolution of insular endemics.  相似文献   

19.
The rumen contents of 14 sika deer (Cervus nippon) collected in November 1996 in Yamaguchi Prefecture, the western end of Honshu, Japan, were analyzed by the point-frame method. The contents were composed of high-quality foods like deciduous and evergreen browse and acorns. The composition, which consisted of a significant amount of acorns (27.8 ± 22.5%, mean ± SD), was in contrast to that of northern sika deer populations which exclusively eat graminoid leaves including dwarf bamboos. This is the first record of acorns being a major contributor to diet for wild sika deer. By the point-frame method, acorns were underestimated, and the weight contribution was much greater.  相似文献   

20.
The Japanese wood mouse Apodemus speciosus eats large, hard-walled walnuts of Juglans ailanthifolia immediately after finding or after hoarding them. However, not all individuals can efficiently eat the nuts. In this study, to examine local variation in the ability to eat walnuts, feeding behavior was compared among nine wood mouse populations, four from mainland Honshu, where the walnut tree is distributed, and five from the Izu Islands (30-100 km south of Honshu), which lack the tree species. To avoid the effects of pre-capture experience with walnuts, mice from areas lacking the walnut trees were used for testing, even in the Honshu sites. Most mice from Honshu were able to eat walnuts after a 14-day training period, whereas most insular mice could not, with the exception of mice on Kouzushima Island. An analysis of the population genetic structures of these mice based on sequences of the mitochondrial control (D-loop) region revealed that the four insular populations are genetically distinct from the mainland populations, whereas the Kouzushima population remains genetically similar to the mainland populations. The relatively recent colonization of Kouzushima may explain why mice from this island were able to feed on walnuts despite the lack of walnut trees on the island. Thus, walnut-feeding ability appears to have some innate basis in the Japanese wood mouse, and this trait would be selected for in a walnut-available environment as it would better enable mice to survive during food shortages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号