首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
3.
4.
We have examined transmembrane signaling events via the TCR/CD3 complex (TCR/CD3) at various stages of T cell development for evidence of developmental regulation. Engagement of TCR/CD3 induced defective activation of phospholipase C (PLC) in thymocytes relative to peripheral blood T lymphocytes. The defect in PLC activation via TCR/CD3 was restricted to immature thymocytes (CD3low, CD4+CD8+). Mature thymocytes (CD3high, CD4+CD8-/CD8+CD4-) were similar to PBL in signaling via TCR/CD3. Both immature and mature thymocytes expressed a similar profile of PLC isoenzyme mRNA species, indicating that the defect in signaling in immature thymocytes was not due to altered expression of PLC isoenzymes. Activation of tyrosine phosphorylation pathways implicated in the coupling of TCR/CD3 to PLC was impaired in immature thymocytes, as evidenced by depressed phosphorylation of CD3 zeta subunit after stimulation with anti TCR/CD3 mAb. This was associated with lower levels of p59fyn tyrosine kinase and minimal or undetectable stimulus-induced kinase activation in immature thymocytes relative to mature thymocytes. We conclude that the capacity to signal via TCR/CD3 is regulated during T cell development by mechanisms acting at the level of TCR/CD3-associated tyrosine phosphorylation pathways.  相似文献   

5.
NK cells are large granular lymphocytes capable of killing certain tumor cells and virally infected cells in a non-MHC-restricted manner. NK cells can also effect an antibody dependent cytotoxicity that is triggered by CD16, an FcR for IgG. In NK cells, CD16 is expressed in association with zeta, a signal transducing subunit of the TCR complex. Here we show that, just as T cell activation via the TCR complex results in tyrosine phosphorylation of zeta TCR, NK cell activation via CD16 results in tyrosine phosphorylation of zeta NK. Whereas antibody-dependent cytotoxicity also results in tyrosine phosphorylation of zeta, natural cytotoxicity does not. Our results indicate that zeta functions as a transducing element for antibody dependent, but not antibody independent killing by NK cells. Consequently, NK cells are likely to express at least two distinct receptor complexes capable of triggering cytolytic effector function.  相似文献   

6.
The T-cell receptor (TCR) zeta subunit is an important component of the TCR complex, involved in signal transduction events following TCR engagement. In this study, we showed that the TCR zeta chain is constitutively tyrosine phosphorylated to similar extents in thymocytes and lymph node T cells. Approximately 35% of the tyrosine-phosphorylated TCR zeta (phospho zeta) precipitated from total cell lysates appeared to be surface associated. Furthermore, constitutive phosphorylation of TCR zeta in T cells occurred independently of antigen stimulation and did not require CD4 or CD8 coreceptor expression. In lymph node T cells that constitutively express tyrosine-phosphorylated TCR zeta, there was a direct correlation between surface TCR-associated protein tyrosine kinase (PTK) activity and expression of phospho zeta. TCR stimulation of these cells resulted in an increase in PTK activity that coprecipitated with the surface TCR complex and a corresponding increase in the levels of phospho zeta. TCR ligations also contributed to the detection of several additional phosphoproteins that coprecipitated with surface TCR complexes, including a 72-kDa tyrosine-phosphorylated protein. The presence of TCR-associated PTK activity also correlated with the binding of a 72-kDa protein, which became tyrosine phosphorylated in vitro kinase assays, to tyrosine phosphorylated TCR zeta. The cytoplasmic region of the TCR zeta chain was synthesized, tyrosine phosphorylated, and conjugated to Sepharose beads. Only tyrosine-phosphorylated, not nonphosphorylated, TCR zeta beads were capable of immunoprecipitating the 72-kDa protein from total cell lysates. This 72-kDa protein is likely the murine equivalent of human PTK ZAP-70, which has been shown to associate specifically with phospho zeta. These results suggest that TCR-associated PTK activity is regulated, at least in part, by the tyrosine phosphorylation status of TCR zeta.  相似文献   

7.
8.
The current model of T cell activation is that TCR engagement stimulates Src family tyrosine kinases (SFK) to phosphorylate CD3zeta. CD3zeta phosphorylation allows for the recruitment of the tyrosine kinase ZAP70, which is phosphorylated and activated by SFK, leading to the phosphorylation of downstream targets. We stimulated mouse CTLs with plate-bound anti-CD3 and, after cell lysis, recovered proteins that associated with the CD3 complex. The protein complexes were not preformed, and a number of tyrosine-phosphorylated proteins were inducibly and specifically associated with the TCR/CD3 complex. These results suggest that complex formation only occurs at the site of TCR engagement. The recruitment and tyrosine phosphorylation of most proteins were abolished when T cells were stimulated in the presence of the SFK inhibitor PP2. Surprisingly, CD3zeta, but not CD3epsilon, was inducibly tyrosine phosphorylated in the presence of PP2. Furthermore, ZAP70 was recruited, but not phosphorylated, after TCR stimulation in the presence of PP2, thus confirming the phosphorylation status of CD3zeta. These data suggest that there is a differential requirement for SFK activity in phosphorylation of CD3zeta vs CD3epsilon. Consistent with this possibility, ZAP70 recruitment was also detected with anti-CD3-stimulated, Lck-deficient human Jurkat T cells. We conclude that TCR/CD3-induced CD3zeta phosphorylation and ZAP70 recruitment do not absolutely require Lck or other PP2-inhibitable SFK activity, but that SFK activity is absolutely required for CD3epsilon and ZAP70 phosphorylation. These data reveal the potential for regulation of signaling through the TCR complex by the differential recruitment or activation of SFK.  相似文献   

9.
High level expression of Fc epsilon RI gamma chain replaces the deficient TCR zeta-chain and contributes to altered TCR/CD3-mediated signaling abnormalities in T cells of patients with systemic lupus erythematosus. Increased responsiveness to Ag has been considered to lead to autoimmunity. To test this concept, we studied early signaling events and IL-2 production in fresh cells transfected with a eukaryotic expression vector encoding the Fc epsilon RI gamma gene. We found that the overexpressed Fc epsilon RI gamma chain colocalizes with the CD3 epsilon chain on the surface membrane of T cells and that cross-linking of the new TCR/CD3 complex leads to a dramatic increase of intracytoplasmic calcium concentration, protein tyrosine phosphorylation, and IL-2 production. We observed that overexpression of Fc epsilon RI gamma is associated with increased phosphorylation of Syk kinase, while the endogenous TCR zeta-chain is down-regulated. We propose that altered composition of the CD3 complex leads to increased T cell responsiveness to TCR/CD3 stimulation and sets the biochemical grounds for the development of autoimmunity.  相似文献   

10.
11.
We have examined the ability of the CD3-gamma delta epsilon and CD3-zeta signaling modules of the T cell receptor (TCR) to couple CD38 to intracellular signaling pathways. The results demonstrated that in TCR+ T cells that express the whole set of CD3 subunits CD38 ligation led to complete tyrosine phosphorylation of both CD3-zeta and CD3-epsilon polypeptide chains. In contrast, in TCR+ cells with a defective CD3-zeta association CD38 engagement caused tyrosine phosphorylation of CD3-epsilon but not of CD3-zeta. Despite these differences, in both cell types CD38 ligation resulted in protein-tyrosine kinase and mitogen-activated protein kinase activation. However, in cells expressing chimerical CD25-zeta or CD25-epsilon receptors or in a TCR-beta- Jurkat T cell line, CD38 ligation did not result in tyrosine phosphorylation of the chimeric receptors, or CD3 subunits, or protein-tyrosine kinase or mitogen-activated protein kinase activation. In summary, these results support a model in which CD38 transduces activating signals inside the cell by means of CD3-epsilon and CD3-zeta tyrosine phosphorylation. Moreover, these data identify the CD3-gamma delta epsilon signaling module as a necessary and sufficient component of the TCR/CD3 complex involved in T cell activation through CD38.  相似文献   

12.
Antigen recognition through T cell receptor (TCR)-CD3 complex transduces signals into T cells, which regulate activation, function, and differentiation of T cells. The TCR-CD3 complex is composed of two signaling modules represented by CD3zeta and CD3epsilon. Signaling through CD3zeta has been extensively analyzed, but that via CD3epsilon, which is also crucial in immature thymocyte development, is still not clearly understood. We isolated cDNA encoding a novel CD3epsilon-binding protein CAST. CAST specifically interacts in vivo and in vitro with CD3epsilon but not with CD3zeta or FcRgamma via a unique membrane-proximal region of CD3epsilon. CAST is composed of 512 amino acids including a single tyrosine and undergoes tyrosine phosphorylation upon TCR stimulation. Overexpression of two dominant-negative types of CAST, a minimum CD3epsilon-binding domain and a tyrosine-mutant, strongly suppressed NFAT activation and interleukin-2 production. These results demonstrate that CAST serves as a component of preformed TCR complex and transduces activation signals upon TCR stimulation and represents a new signaling pathway via the CD3epsilon-containing TCR signaling module.  相似文献   

13.
14.
15.
T lymphocyte activation resulting from antigen recognition involves a protein tyrosine kinase pathway which triggers phosphorylation of several cellular substrates including the CD3 zeta subunit of the T cell receptor (TCR) to form pp21. The homologous TCR-associated protein, CD3 eta, is an alternatively spliced product of the same gene locus as CD3 zeta. CD3 eta lacks one of six cytoplasmic tyrosine residues (Tyr-132) found in CD3 zeta and is itself not phosphorylated. Site-directed mutagenesis in conjunction with in vitro and in vivo phosphorylation studies herein demonstrates that Tyr-132 is required for the formation of pp21. Moreover, the differential phosphorylation of CD3 zeta versus CD3 eta is not due to a selective association of the known TCR-associated protein tyrosine kinase, p59fyn; p59fyn but not p56lck or p62yes is associated with each of the three TCR isoforms containing CD3 zeta 2, or CD3 eta 2, or CD3 zeta-eta. This association occurs through components of the TCR complex distinct from CD3 zeta or CD3 eta. In addition, we show that pp21 formation is not only dependent on Tyr-132 but results from concomitant phosphorylation of other CD3 zeta residues including Tyr-121. Mutation of Tyr-90, -121, or -132 does not alter primary signal transduction as shown by the ability of individual CD3 zeta Tyr----Phe mutants to produce interleukin-2 upon TCR stimulation. Thus, the substantial structural changes in CD3 zeta upon TCR stimulation as reflected by alteration in its mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis may affect subsequent events such as receptor desensitization, receptor movement, and/or protein associations.  相似文献   

16.
Activated T cells undergo apoptosis when the Fas-antigen (APO-1, CD95) is ligated by Fas Ligand (FasL) or agonistic anti-Fas antibodies. Repeated stimulation of T lymphocytes via the TCR/CD3-complex induces activation-induced cell death (AICD) associated with FasL surface expression. FasL binding to Fas molecules triggers the Fas-dependent death signaling cascade. Since it is still controversial whether Fas-induced cell death is associated with tyrosine kinase activity, we investigated the tyrosine kinase activation requirements in anti-Fas antibody-induced cell death and AICD in human T cell clones. We report that cell death triggered by anti-Fas antibody is not accompanied by an increase in tyrosine phosphorylation and cannot be blocked by inhibitors of protein tyrosine kinases (PTK). Under the same conditions, AICD of T cell clones is clearly associated with tyrosine kinase activation. In fact, semiquantitative RT-PCR analysis of FasL mRNA expression triggered in T cell clones via the TCR/CD3-complex revealed that tyrosine phosphorylation is required for functional FasL mRNA and surface expression.  相似文献   

17.
A C Chan  M Iwashima  C W Turck  A Weiss 《Cell》1992,71(4):649-662
Protein-tyrosine kinases (PTKs) play an integral role in T cell activation. Stimulation of the T cell antigen receptor (TCR) results in tyrosine phosphorylation of a number of cellular substrates. One of these is the TCR zeta chain, which can mediate the transduction of extracellular stimuli into cellular effector functions. We have recently identified a 70 kd tyrosine phosphoprotein (ZAP-70) that associates with zeta and undergoes tyrosine phosphorylation following TCR stimulation. Here we report the isolation of a cDNA clone encoding ZAP-70. ZAP-70 represents a novel PTK and is expressed in T and natural killer cells. Moreover, tyrosine phosphorylation and association of ZAP-70 with zeta require the presence of src family PTKs and provide a potential mechanism by which the src family PTKs and ZAP-70 may interact to mediate TCR signal transduction.  相似文献   

18.
In T lymphocytes, the CD2 and CD5 glycoproteins are believed to be involved in the regulation of signals elicited by the TCR/CD3 complex. Here we show that CD2 and CD3 independently associate with CD5 in human PBMC and Jurkat cells. CD5 coprecipitates with CD2 in CD3-deficient cells and, conversely, coprecipitates with CD3 in cells devoid of CD2. In unstimulated CD2+ CD3+ Jurkat cells, CD5 associates equivalently with CD2 and CD3 and is as efficiently phosphorylated in CD2 as in CD3 immune complexes. However, upon activation the involvement of CD5 is the opposite in the CD2 and CD3 pathways. CD5 becomes rapidly tyrosine phosphorylated after CD3 stimulation, but is dephosphorylated upon CD2 cross-linking. These opposing effects correlate with the decrease in the activity of the SH2 domain-containing protein phosphatase 1 (SHP-1) following CD3 activation vs an enhanced activity of the phosphatase after CD2 triggering. The failure of CD5 to become phosphorylated on tyrosine residues in the CD2 pathway has no parallel with the lack of use of zeta-chains in CD2 signaling; contrasting with comparable levels of association of CD2 or CD3 with CD5, zeta associates with CD2 only residually and is nevertheless slightly phosphorylated after CD2 stimulation. The modulation of CD5 phosphorylation may thus represent a level of regulation controlled by CD2 in signal transduction mechanisms in human T lymphocytes.  相似文献   

19.
The phosphorylation of the invariant chains associated with the human TCR has been investigated after the stimulation of T lymphocytes with CD2 mAb T11(2) and T11(3), PHA, or phorbol 12,13-dibutyrate. As described previously, stimulation of T cells with either CD2 mAb or phorbol 12,13-dibutyrate resulted in the phosphorylation of the CD3 gamma-chain. The combination of T11(2) and T11(3) mAb also induced phosphorylation of the TCR zeta-chain. The phosphorylated zeta-polypeptide of CD2-activated cells was immunoprecipitated with antiphosphotyrosine antibodies and migrated to a 21- to 23-kDa position during SDS/PAGE. These results indicate that stimulation of human T cells via the CD2 Ag with the T11(2) and T11(3) mAb activates not only protein kinase C but also tyrosine kinase(s), resulting in the phosphorylation of the CD3 gamma-chain and the tyrosine phosphorylation of the zeta-chain, respectively.  相似文献   

20.
Crosslinking of Fas (APO-1/CD95) on the surface of T cells initiates a biochemical cascade leading to programmed cell death. We have previously shown that crosslinking of Fas with an apoptosis-inducing IgM anti-Fas mAb results in suppression of the CD3-initiated cell signaling including Ca2+ mobilization and protein tyrosine phosphorylation. We conducted experiments to decipher the mechanisms whereby the cross talk between the Fas- and CD3 signaling pathways occur. We used lysates from Jurkat T and examined the composition of the TCR chain-precipitated immune complexes using immunoblots. While crosslinking of Fas affected the association of p59fyn and p56lck tyrosine kinases with the TCR chain to a limited degree, it dramatically inhibited the association of the protein tyrosine kinase ZAP70 with the chain. In cells that were preincubated with an apoptosis-inducing anti-Fas mAb, the binding of the protein tyrosine phosphatases SHP-1 to the TCR chain was increased. These experiments indicate that crosslinking of Fas interferes with early T cell signaling events by promoting the recruitment of SHP-1 and decreasing the association of protein tyrosine kinases with TCR chain. Therefore, crosslinking of Fas antigen may regulate the antigen-induced T cell response and play an active role in the T cell anergy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号