首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Within a population of simultaneous hermaphrodites, individuals may vary in both their current reproductive investment (biomass invested in gonads) and in how they allocate that investment between male and female function. In the chalk bass, Serranus tortugarum, estimates of both reproductive allocation and reproductive success as a male and a female can be made for individuals of different sizes. As individuals increase in size, their investment in gamete production increases, and there is a shift in allocation to a stronger female bias. Spawning frequency as a female in pair spawnings and as a male in both pair spawning and streaking (an alternative mating tactic) does not vary with individual size. As a result, larger individuals should release more sperm or eggs per spawn. Size-assortative pair spawning in this species leads to larger individuals having higher potential returns in total male reproductive success than smaller individuals, which should lead to increases in absolute levels of sperm production in larger individuals when individuals compete for fertilizations through sperm competition. However, smaller individuals contribute a smaller proportion of the sperm released in spawns with multiple spawners and thus are under more intense sperm competition than larger individuals, which should select for increases in male allocation in smaller individuals, all else equal. A local-mate-competition (LMC) model predicts that these factors select for increasing absolute male and female investment with individual size but a relative shift to more female-biased allocation as individual size increases. These predictions are supported by gonadal data. The predictions of average male allocation from the quantitative LMC model were 21.6% and 25.7%, whereas the collections averaged 21.3%. This close agreement of both the mean male allocation and its relative shift with individual size between model and data support the hypothesis that size-specific shifts in sex allocation in this species represent an adaptive response to patterns of mating success and sperm competition.  相似文献   

2.
Sex allocation theory predicts that, in hermaphroditic organisms,individuals allocate a fixed amount of resources divided amongmale and female functions to reproduction and that the proportiondevoted to each sex depends on the mating group size. As themating group size increases, hermaphrodites are predicted toallocate proportionally more resources to the male and lessresources to the female function (approaching equal allocationto both sexes) to face increased sperm competition. Up to nowlittle experimental evidence has been provided to support thetheory in hermaphroditic animals. Facultative shift betweenmale and female allocation in response to variation in localgroup size does occur in several taxa but not always in theexpected direction and not with similar patterns. In the protandricand then simultaneously hermaphroditic polychaete worm Ophryotrochadiadema reproductive resources are flexibly allocated in theprotandrous and the hermaphroditic phase. The cost of male reproductionduring adolescence is spread over the whole energy budget ofthe animal as shown by the shortening of lifespan and the loweringof growth rate in individuals with enhanced male expenditureduring the protandrous phase. Moreover, in this species, shortterm sex allocation adjustments differ from those describedin other taxa. Individuals regulate their reproductive outputso that where reproductive competitors are present, the numberof female gametes is strongly reduced but the number of malegametes (although it changes) is not significantly increased.Resources subtracted from the female function are not directlyallocated to sperm production, but to expensive male behaviorsthat are likely to enhance male reproductive success. Theseresults are discussed in the light of the relevance of sexualselection in large populations of hermaphrodites.  相似文献   

3.
Does the mode of self-pollination affect the evolutionarily stable allocation to male vs. female function? We distinguish the following scenarios. (1) An ‘autogamous’ species, in which selfing occurs within the flower prior to opening. The pollen used in selfing is a constant fraction of all pollen grains produced. (2) A species with ‘abiotic pollination’, in which selfing occurs when pollen dispersed in one flower lands on the stigma of a nearby flower on the same plant (geitonogamy). The selfing rate increases with male allocation but a higher selfing rate does not mean a reduced export of pollen. (3) An ‘animal-pollinated’ species with geitonogamous selfing. Here the selfing rate also increases with male allocation, but pollen export to other plants in the population is a decelerating function of the number of simultaneously open flowers. In all three models selfing selects for increased female allocation. For model 3 this contradicts the general opinion that geitonogamous selfing does not affect evolutionarily stable allocations. In all models, the parent benefits more from a female-biased allocation than any other individual in the population. In addition, in models 2 and 3, greater male allocation results in more local mate competition. In model 3 and in model 2 with low levels of inbreeding depression, hermaphroditism is evolutionarily stable. In model 2 with high inbreeding depression, the population converges to a fitness minimum for the relative allocation to male function. In this case the fitness set is bowed inwards, corresponding with accelerating fitness gain curves. If the selfing rate increases with plant size, this is a sufficient condition for size-dependent sex allocation (more allocation towards seeds in large plants) to evolve. We discuss our results in relation to size-dependent sex allocation in plants and in relation to the evolution of dioecy.  相似文献   

4.
The effects of the resource pool and resource obtained during a season for seed maturation and self-incompatibility on the size-dependency of evolutionarily stable sex allocation were analysed theoretically. In hermaphroditic plants, reproductive resources allocated between male and female function may not be paid from a single resource pool, because plants can mature seeds using not only reserved resources but also newly gained resources after flowering. But the resource investment to male function is limited to the flowering stage. Under the assumption of constant reserve efficiency and diminishing resource return per investment to leaves, large plants should use both reserved and newly gained resources for seed maturation, while small plants should use only new resources. When both reserved and new resources are used, the optimal allocation for self-compatible species is to invest a constant amount of resources into male function irrespective of resource size, because the female fitness curve increases linearly and the male curve decelerates due to local mate competition. In self-incompatible species, on the other hand, fitness gain per investment through male function and the optimal amount of resources invested in male function decrease with size. Thus a decrease in maleness with size should be emphasized more in self-incompatible species than in self-compatible one. When only new resources are used for seed growth, the female fitness curve as well as male one decelerates with investment. Consequently, the investment in both male and female functions should increase with size, in both self-compatible and self-incompatible species. The magnitude of reserve efficiency relative to efficiency of resource gain after flowering affects size-dependent pattern of sex allocation, while the cost of seed maturation relative to ovule production has little effect on it. The plant size variation in a population emphasizes size-dependency of sex allocation. When size variation is large enough, it is possible that large plants become complete female in self-incompatible species, but it is not in self-compatible species.  相似文献   

5.
Sex allocation theory predicts that simultaneous hermaphrodites shift sex allocation facultatively in response to variation in local group size. This study was performed to evaluate the relative investment in each sex function by the simultaneously hermaphroditic polychaete worm Ophryotrocha diadema and to test whether allocation to each sex depends on the number of reproductive competitors. Four experimental groups were set up (in a 2 x 2 factorial design) with small or large group size and with small or large enclosures to control for potential confounding effects of density. We measured the proportion of female and male investment in focal individuals. Results revealed that individuals regulated their reproductive output so that when reproductive competitors were present, the number of female gametes was strongly reduced and the male function increased. In contrast, under monogamy, individuals in small groups produced lower numbers of sperm but had a higher egg output than worms in large groups. Density did not affect sex allocation in our experiment. Our findings provide qualitative support for Local Mate Competition theory, but also show that the pattern of sex allocation specific to this species is more complex than expected by current theory.  相似文献   

6.
Game theory models of sperm competition predict that within species, males should increase their sperm expenditure when they have one competitor, but decrease expenditure with increasing numbers of competitors. So far, there have been few tests or support for this prediction. Here, we show that males of a freshwater fish, the European bitterling, Rhodeus sericeus, do indeed adjust their ejaculation rate to the number of male competitors by first increasing and then decreasing their ejaculation rates as the number of competitors increases. However, this occurred only under restricted conditions. Specifically, the prediction was upheld as long as no female had deposited eggs in the live mussels that are used as spawning sites. After one or more females had spawned, males did not decrease their ejaculation rates with the number of competitors, but instead they became more aggressive. This indicates that decreased ejaculation rate and increased aggression are alternative responses to increased risk of sperm competition.  相似文献   

7.
Current theory to explain the adaptive significance of sex change over gonochorism predicts that female-first sex change could be adaptive when relative reproductive success increases at a faster rate with body size for males than for females. A faster rate of reproductive gain with body size can occur if larger males are more effective in controlling females and excluding competitors from fertilizations. The most simple consequence of this theoretical scenario, based on sexual allocation theory, is that natural breeding sex ratios are expected to be female biased in female-first sex changers, because average male fecundity will exceed that of females. A second prediction is that the intensity of sperm competition is expected to be lower in female-first sex-changing species because larger males should be able to more completely monopolize females and therefore reduce male-male competition during spawning. Relative testis size has been shown to be an indicator of the level of sperm competition, so we use this metric to examine evolutionary responses to selection from postcopulatory male-male competition. We used data from 116 comparable female-first sex-changing and nonhermaphroditic (gonochoristic) fish species to test these two predictions. In addition to cross-species analyses we also controlled for potential phylogenetic nonindependence by analyzing independent contrasts. As expected, breeding sex ratios were significantly more female biased in female-first sex-changing than nonhermaphroditic taxa. In addition, males in female-first sex changers had significantly smaller relative testis sizes that were one-fifth the size of those of nonhermaphroditic species, revealing a new evolutionary correlate of female-first sex change. These results, which are based on data from a wide range of taxa and across the same body-size range for either mode of reproduction, provide direct empirical support for current evolutionary theories regarding the benefits of female-first sex change.  相似文献   

8.
When applied to hermaphrodite organisms, the local mate competition hypothesis predicts an increase of the ratio of sperm to ova produced as the number of mates increases. Here we test this prediction using a hermaphroditic platyhelminth parasite (trematode), Echinostoma caproni. This worm inhabits the small intestine of vertebrates, inevitably inducing the formation of highly subdivided populations, a condition known to promote local mate competition. Moreover this echinostome exhibits an unrestricted mating pattern involving both selfing and outcrossing as well as multiple fertilizations. We quantified the investment in reproductive organs by estimations of testes, cirrus sac, ovary, and egg size and fecundity when echinostomes were isolated alone, in pairs, or in groups of 20 worms. Adult body size was also recorded as a covariate. When mating group size increases (singles, pairs, or groups) we observed a significant increase in resource allocation to male function in addition to a significant decrease in ovary size. Smaller ovaries do not seem to affect egg size, but do result in a reduction in fecundity. Finally, our results are in accordance with the expected theoretical relationship between male allocation and the number of potential mates given local mate competition.  相似文献   

9.
It has been proposed that relative allocation to female function increases with plant size in animalpollinated species.Previous investigations in several monoecious Sagittaria species seem to run contrary to the prediction of size-dependent sex allocation (SDS),throwing doubt on the generalization of SDS.Plant size,phenotypic gender,and flower production were measured in experimental populations of an aquatic,insect-pollinated herb Sagittaria trifolia (Alismataceae) under highly different densities.The comparison of ramets produced clonally can reduce confounding effects from genetic and environmental factors.In the high-density population,48% of ramets were male without female flowers,but in the low-density population all ramets were monoecious.We observed allometric growth in reproductive allocation with ramet size,as evident in biomass of reproductive structures and number of flowers.However,within both populations female and male flower production were isometric with ramet size,in contrast to an allometric growth in femaleness as predicted by SDS.Phenotypic gender was not related to ramet size in either population.The results indicated that large plants may increase both female and male function even in animal-pollinated plants,pointing towards further studies to test the hypothesis of size-dependent sex allocation using different allocation currencies.  相似文献   

10.
While simultaneous hermaphroditism occurs in most animal phyla, theories for its adaptive significance remain untested. Sex allocation theory predicts that combined sexes are favored in sedentary and sessile organisms because localized gamete dispersal and local mate competition (LMC) among gametes promote decelerating fitness “gain curves” that relate male investment to reproductive success. Under this LMC model, males fertilize all locally available eggs at low sperm output, additional output leads to proportionally fewer fertilizations, and combined sexes with female-biased sex allocation are favored. Decelerating male gain curves have been found in hermaphroditic flowering plants, but the present paper reports the first analysis in an animal. The colonial hermaphroditic bryozoan Celleporella hyalina forms unisexual male and female zooids that can be counted to estimate absolute and relative gender allocations. I placed “sperm donor” colonies—each with different numbers of male zooids, and each homozygous for diagnostic allozyme alleles—among target maternal colonies on field mating arrays, and estimated donor fertilization success by scoring allozyme markers in target-colony progeny. Fertilization success increased with numbers of donor male zooids, but linear and not decelerating curves fit the data best. Mean sex allocation was not female biased, consistent with nondecelerating male gain. Sperm donors, moreover, did not monopolize matings as expected under high LMC, but rather shared paternity with rival colonies. Hence localized water-borne gamete dispersal alone may not yield decelerating male gain and favor the maintenance of hermaphroditism; relaxed sperm competition in low density populations might also be required. In free-spawning marine organisms, males cannot control access to fertilizations, intense sperm competition may be commonplace, and high male sex allocation may be selected to enhance siring success under competition.  相似文献   

11.
Abstract It has been proposed that relative allocation to female function increases with plant size in animal‐pollinated species. Previous investigations in several monoecious Sagittaria species seem to run contrary to the prediction of size‐dependent sex allocation (SDS), throwing doubt on the generalization of SDS. Plant size, phenotypic gender, and flower production were measured in experimental populations of an aquatic, insect‐pollinated herb Sagittaria trifolia (Alismataceae) under highly different densities. The comparison of ramets produced clonally can reduce confounding effects from genetic and environmental factors. In the high‐density population, 48% of ramets were male without female flowers, but in the low‐density population all ramets were monoecious. We observed allometric growth in reproductive allocation with ramet size, as evident in biomass of reproductive structures and number of flowers. However, within both populations female and male flower production were isometric with ramet size, in contrast to an allometric growth in femaleness as predicted by SDS. Phenotypic gender was not related to ramet size in either population. The results indicated that large plants may increase both female and male function even in animal‐pollinated plants, pointing towards further studies to test the hypothesis of size‐dependent sex allocation using different allocation currencies.  相似文献   

12.
While early models of ejaculate allocation predicted that both relative testes and ejaculate size should increase with sperm competition intensity across species, recent models predict that ejaculate size may actually decrease as testes size and sperm competition intensity increase, owing to the confounding effect of potential male mating rate. A recent study demonstrated that ejaculate volume decreased in relation to increased polyandry across bushcricket species, but testes mass was not measured. Here, we recorded testis mass for 21 bushcricket species, while ejaculate (ampulla) mass, nuptial gift mass, sperm number and polyandry data were largely obtained from the literature. Using phylogenetic-comparative analyses, we found that testis mass increased with the degree of polyandry, but decreased with increasing ejaculate mass. We found no significant relationship between testis mass and either sperm number or nuptial gift mass. While these results are consistent with recent models of ejaculate allocation, they could alternatively be driven by substances in the ejaculate that affect the degree of polyandry and/or by a trade-off between resources spent on testes mass versus non-sperm components of the ejaculate.  相似文献   

13.
Size and sex allocation in monoecious woody plants   总被引:2,自引:0,他引:2  
John F. Fox 《Oecologia》1993,94(1):110-113
The female size advantage hypothesis predicts that the allocation ratio of female: male reproductive effort should increase with plant size (total reproductive effort). A male height advantage hypothesis has also been proposed, based on the supposed greater advantage of height to male reproductive success in wind-pollinated plants. These ideas were tested with data for wind-pollinated, monoecious trees and shrubs which exhibit a suitably large range of sizes. Number of male inflorescences increased faster with size than did number of female inflorescences in 2 of 9 species; in the remaining 7 species there was no significant difference. The male:female ratio of inflorescence numbers increased with height in 4 of 7 species and did not change significantly in the remaining 3 species, as shown by regression. Height and size are highly correlated and so their effects could not be distinguished. The fact that many conifers place the female cones uppermost in the crown suggests that size and not height favors increased allocation to male function, as does well-established theory connecting the existence of male versus female size advantage to pollen and seed dispersal chacteristics. Regression analysis of the relation between male and female reproductive effort should be done by reduced major axis regression; ordinary least squares regression underestimates slopes; in this study opposite conclusions could be drawn from ordinary least squares and reduced major axis regressions.  相似文献   

14.
Many woody plant species in fire disturbed communities survive disturbance events by resprouting. The resprouting life history is predicted to be costly to plants as resources are diverted into storage for post-fire regrowth rather than allocated to current growth, and resprouting species typically grow more slowly than seeder species (species that do not resprout after disturbance events). Differences in allocation to current growth are also predicted to make resprouter species poorer competitors compared to seeder species. We tested the predictions that the evolution of a resprouter life history is associated with slow growth, increased allocation to storage, and low competitive ability in woody plant seedlings. We grew eight phylogenetically independent pairs of seeder and resprouter species in competition and no competition treatments in a field experiment near Sydney, Australia. The presence of competitors reduced plant growth rates across taxa and fire response life histories. However, relative to seeder species, resprouter species were not slower growing, they did not allocate more resources to storage, and they did not have lower competitive abilities. We propose that differences in resource allocation to storage are not responsible for differences in growth rate and competitive ability. Rather, growth rate and competitive ability in seedlings are associated with key aspects of plant life history such as life-span and body size at maturity. These traits that are sometimes, but not always, related to fire response life histories.  相似文献   

15.
The expression of sexual dimorphism is expected to be influenced by the acquisition of resources available to allocate to trait growth, combined with sex‐specific patterns of resource allocation. Resource acquisition in the wild may be mediated by a variety of ecological factors, such as the density of interspecific competitors. Allocation may in turn depend on social contexts, such as sex ratio, that alter the pay‐off for investment in sexual traits. How these factors interact to promote or constrain the expression and evolution of sexual dimorphism is poorly understood. We manipulated sex ratio and interspecific resource competition over the growing season of red‐spotted newts (Notophthalmus viridescens) in artificial ponds. Fish competitors had a stronger effect on female than male growth, which effectively eliminated the expression of sexual size dimorphism. In addition, newt sex ratio influenced fish growth, leading to reduction in fish mass with an increase in female newt frequency. Fish also reduced the expression of male tail height, a sexually selected trait, but only in tanks with a female‐biased sex ratio. This suggests males alter their resource allocation pattern in response to the strength of sexual selection. Our results demonstrate that ecologically and socially mediated interactions between sex‐specific resource acquisition and allocation can contribute to variation in the expression of sexual dimorphism.  相似文献   

16.
Aims Sex allocation in plants is often plastic, enabling individuals to adjust to variable environments. However, the predicted male-biased sex allocation in response to low resource conditions has rarely been experimentally tested in hermaphroditic plants. In particular, it is unknown whether distal flowers in linear inflorescences show a larger shift to male allocation relative to basal flowers when resources are reduced. In this study, we measure position-dependent plasticity of floral sex allocation within racemes of Aconitum gymnandrum in response to reduced resource availability.Methods Using a defoliation treatment in the field applied to potted plants from a nested half-sibling design, we examined the effects of the treatment, flower position, family and their interactions.Important findings Allocation to male function increased with more distal flower position, while female allocation either did not change with position or declined at the most distal flowers. Defoliation significantly reduced the mass of both the androecium and gynoecium, but not anther number or carpel number. Gynoecial mass declined more strongly with defoliation than did androecial mass, resulting in a significant increase in the androecium/gynoecium ratio as predicted by sex allocation theory. Plastic responses of androecium mass and gynoecium mass were affected by flower position, with less mass lost in basal flowers, but similar plastic magnitude in both sexual traits across flower position lead to consistent variation in the androecium/gynoecium ratio along the inflorescence. A significant treatment*paternal family interaction for the androecium/gynoecium ratio is evidence for additive genetic variation for plastic floral sex allocation, which means that further evolution of allocation can occur.  相似文献   

17.
Phenotypic plasticity allows animals to maximize fitness by conditionally expressing the phenotype best adapted to their environment. Although evidence for such adjustment in reproductive tactics is common, little is known about how phenotypic plasticity evolves in response to sexual selection. We examined the effect of sexual selection intensity on phenotypic plasticity in mating behavior using the beetle Callosobruchus maculatus. Male genital spines harm females during mating and females exhibit copulatory kicking, an apparent resistance trait aimed to dislodge mating males. After exposing individuals from male‐ and female‐biased experimental evolution lines to male‐ and female‐biased sociosexual environments, we examined behavioral plasticity in matings with standard partners. While females from female‐biased lines kicked sooner after exposure to male‐biased sociosexual contexts, in male‐biased lines this plasticity was lost. Ejaculate size did not diverge in response to selection history, but males from both treatments exhibited plasticity consistent with sperm competition intensity models, reducing size as the number of competitors increased. Analysis of immunocompetence revealed reduced immunity in both sexes in male‐biased lines, pointing to increased reproductive costs under high sexual selection. These results highlight how male and female reproductive strategies are shaped by interactions between phenotypically plastic and genetic mechanisms of sexual trait expression.  相似文献   

18.
1. In sexually reproducing organisms, the energetic costs of spermatogenesis can be considerable, and can limit the reproductive potential of the males. In species where males mate more than once during the reproductive season, the costs of sperm production are generally predicted to result in a decrease of ejaculate size and quality with successive fertilizations. 2. In this study we examined the variation in ejaculate size among successive fertilizations in a long‐lived freshwater crayfish species, Austropotamobius italicus. 3. Sexually active adult males of various sizes were allowed to mate repeatedly with different females on consecutive days. Trials for a given male ended when he copulated but did not release any sperm or refused to mate. 4. Males fertilized between 0 and 4 females, and most (42.5%) fertilized a single female. The overall number of females fertilized by a given male decreased with increasing male body size. Ejaculate size decreased markedly with consecutive fertilizations in a similar fashion among both large and small males, while simultaneously increasing with female body size. The total ejaculate size over successive fertilizations decreased with increasing male size. 5. Our study indicates that either sperm production or release involves non‐trivial costs in freshwater crayfish, and suggests that large/old males may face greater difficulties in gamete release than small/young ones, as shown by the lower number of females fertilized by large compared with small males, which may reflect the ongoing senescence of their reproductive performance.  相似文献   

19.
Male contests for access to receptive females are thought to have selected for the larger male body size and conspicuous weaponry frequently observed in mammalian species. However, when females copulate with multiple males within an oestrus, male reproductive success is a function of both pre- and postcopulatory strategies. The relative importance of these overt and covert forms of sexual competition has rarely been assessed in wild populations. The Soay sheep mating system is characterized by male contests for mating opportunities and high female promiscuity. We find that greater horn length, body size and good condition each independently influence a male's ability to monopolize receptive females. For males with large horns at least, this behavioural success translates into greater siring success. Consistent with sperm-competition theory, we also find that larger testes are independently associated with both higher copulation rates and increased siring success. This advantage of larger testes emerges, and strengthens, as the number of oestrous females increases, as dominant males can no longer control access to them all. Our results thus provide direct quantitative evidence that male reproductive success in wild populations of mammals is dependent upon the relative magnitude of both overt contest competition and covert sperm competition.  相似文献   

20.
We examine data on copula duration in dung flies, Scatophaga stercoraria, in relation to female phenotype. We use a marginal value theorem approach based on the plausible mechanisms of sperm competition to predict the effect of female variation on optimal copula duration, t *, from the male perspective. Future fertilizations are expected to have a trivial effect on t * with fully gravid females, but an increasing relative effect on t * towards completion of oviposition. t * is expected to be affected by female size because of variation in (1) a female's egg content, which increases the maximum egg gain available from a mating, and (2) the female reproductive tract, which affects the rate at which sperm are displaced. In fully gravid females, t * was not dependent on egg number variation, but showed a positive relation with egg content in females that had laid a varying proportion of their mature egg load at the time of mating, and were therefore not fully gravid. Our models predict that if a male can estimate egg content only by the distension of a female's abdomen, t * should increase in a similar way to that seen with 'take-over' females. We predict t * for fully gravid females by assuming that males can monitor female size. The data showed that sperm displacement rate decreased, and average egg content increased, with female size. Under two models for a sperm displacement mechanism, one (which assumes indirect displacement at a rate proportional to the increase in spermathecal volume) predicts the observed relation between t * and female size almost exactly. Small males copulated for longer than large males (as predicted and reported previously). Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号