首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Lindsay SE  Fry SC 《Planta》2008,227(2):439-452
Primary cell wall polysaccharides of some plants carry ester-linked feruloyl groups that can be oxidatively dimerised both within the protoplast and after secretion into the apoplast. Apoplastic dimerisation has been postulated to form inter-polysaccharide cross-links, contributing to wall assembly, but this role remains conjectural. By feeding cultured cells with [14C]cinnamate, we monitored the kinetics of polysaccharide-binding and subsequent dimerisation of 14C-labelled feruloyl groups. Cultured maize and spinach cells took up [14C]cinnamate more rapidly than barley, Arabidopsis, Acer, tomato and rose cultures. Maize and spinach cells rapidly formed [14C]feruloyl-polysaccharides and, simultaneously, low-Mr [14C]feruloyl esters. When all free [14C]cinnamate had been consumed, there followed a gradual recruitment of radiolabel from the low-Mr pool into the polysaccharide fraction. A proportion of the [14C]feruloyl-polysaccharides was sloughed into the culture medium, the rest remaining wall-bound. Some of the polysaccharide-bound [14C]feruloyl groups were coupled to form dehydrodiferulates. At least six putative isomers of [14C]dehydrodiferulate were formed both rapidly (thus intra-protoplasmically) and gradually (thus mainly apoplastically). These data do not support the hypothesis that intra-protoplasmic dimerisation yields predominantly one isomer (8–5′-dehydrodiferulate). In maize, apoplastic coupling was much more extensive in 7-day old than in 2-day-old cultures; indeed, in 2-day-old cultures apoplastic coupling could not be evoked even by exogenous H2O2, suggesting strong control of peroxidase action by apoplastic factors. When apoplastic coupling was minimised by exogenous application of peroxidase-blockers (iodide, dithiothreitol and cysteine), a higher proportion of the secreted [14C]feruloyl-polysaccharides was sloughed into the medium. This observation lends support to the hypothesis that feruloyl coupling contributes to wall assembly.  相似文献   

2.
Primary cell walls of grasses and cereals contain arabinoxylans with esterified ferulate side chains, which are proposed to cross‐link the polysaccharides during maturation by undergoing oxidative coupling. However, the mechanisms and control of arabinoxylan cross‐linking in vivo are unclear. Non‐lignifying maize (Zea mays L.) cell cultures were incubated with l‐ [1‐3H]arabinose or (E)‐[U‐14C]cinnamate (radiolabelling the pentosyl and feruloyl groups of endogenous arabinoxylans, respectively), or with exogenous feruloyl‐[3H]arabinoxylans. The cross‐linking rate of soluble extracellular arabinoxylans, monitored on Sepharose CL‐2B, peaked suddenly and transiently, typically at ~9 days after subculture. This peak was not associated with appreciable changes in peroxidase activity, and was probably governed by fluctuations in H2O2 and/or inhibitors. De‐esterified arabinoxylans failed to cross‐link, supporting a role for the feruloyl ester groups. The cross‐links were stable in vivo. Some of them also withstood mild alkaline conditions, indicating that they were not (only) based on ester bonds; however, most were cleaved by 6 m NaOH, which is a property of p‐hydroxybenzyl–sugar ether bonds. Cross‐linking of [14C]feruloyl‐arabinoxylans also occurred in vitro, in the presence of endogenous peroxidases plus exogenous H2O2. During cross‐linking, the feruloyl groups were oxidized, as shown by ultraviolet spectra and thin‐layer chromatography. Esterified diferulates were minor oxidation products; major products were: (i) esterified oligoferulates, released by treatment with mild alkali; and (ii) phenolic components attached to polysaccharides via relatively alkali‐stable (ether‐like) bonds. Thus, feruloyl esters participate in polysaccharide cross‐linking, but mainly by oligomerization rather than by dimerization. We propose that, after the oxidative coupling, strong p‐hydroxybenzyl–polysaccharide ether bonds are formed via quinone‐methide intermediates.  相似文献   

3.
Pauly M  Scheller HV 《Planta》2000,210(4):659-667
 A microsomal preparation from suspension-cultured potato stem cells (Solanum tuberosum L. cv. AZY) was incubated with [14C]acetyl-CoA resulting in a precipitable radiolabeled product. Analysis of the product revealed that it consisted mostly of acetylated proteins and cell wall polysaccharides, including xyloglucan, homogalacturonan and rhamnogalacturonan I. Thus, acetyl-CoA is a donor-substrate for the O-acetylation of wall polysaccharides. A rhamnogalacturonan acetylesterase was used to develop an assay to measure and characterize rhamnogalacturonan O-acetyl transferase activity in the microsomal preparation. Using this assay, it was shown that the transferase activity was highest during the linear growth phase of the cells, had a pH-optimum at pH 7.0, a temperature optimum at 30 °C, an apparent K m of 35 μM and an apparent V max of 0.9 pkat per mg protein. Further analysis of the radiolabeled acetylated product revealed that it had a molecular mass >500 kDa. Received: 3 July 1999; Accepted: 27 September 1999  相似文献   

4.
The sub-cellular feruloylation and oxidative coupling sites of cell wall polysaccharides were investigated in planta by monitoring the kinetics of appearance of arabinosyl- and feruloyl-radiolabelled polysaccharides in the protoplasmic compartment and their secretion in the wall either in the presence or absence of brefeldin A (BFA). By using root apical segments excised from wheat seedlings (Triticum durum Desf.), incubated with trans-[U-14C]cinnamic acid, we demonstrated that [14C]ferulate, likely [14C]diferulate, as well as trimers and larger products of ferulate are incorporated into the protoplasmic polysaccharides very rapidly within 1–3 min of [14C]cinnamate feeding. This agrees with the assumption that (glucurono)arabinoxylans [(G)AX] feruloylation and oxidative coupling occur intracellularly, likely in the Golgi apparatus. Simultaneously, polymer bound radioactive hydroxycinnamic acids appeared to be incorporated into the cell wall of root apical segments as early as 2 min after trans-[U-14C]cinnamic acid feeding. On the contrary, starting from l-[1-14C]arabinose as tracer, the secretion of the pentose-containing polymers into the wall was between 5 to 10 min. These results indicated that (G)AX feruloylation and oxidative coupling occur both intra-protoplasmically and in muro. The occurrence of in muro feruloylation and oxidative coupling was confirmed by the use of BFA a well known inhibitor of secretion. The drug caused a strong inhibition of the synthesis and secretion into the wall of the 14C-pentosyl-labelled polymers as well as of 14C-feruloyl-polymers. In spite of this, the total amount of 14C-feruloyl-polymers incorporated into the wall was only slightly affected by BFA. This indicates the existence of a mechanism involved into secretion of the activated hydroxycinnamoyl precursors to the wall, alternative to that involved in polysaccharide secretion. Lucia Ilenia Mastrangelo and Marcello Salvatore Lenucci equally contributed to this work.  相似文献   

5.
Graminaceous primary cell walls contain polysaccharides to which are esterified feruloyl residues. Ester biosynthesis is highly specific and the present experiments were performed to ascertain the likely site of feruloylation in living grass cell cultures. Cell cultures of tall fescue grass (Festuca arundinacea Schreber) incorporated exogenous l-[1-3H]arabinose into polymers at a linear rate after a short lag of approx. 1–3 min. Radiolabelled polymers did not start to accumulate in the culture medium until 20–35 min after [3H]arabinose was supplied. However, polymer-bound feruloyl-arabinose residues began to accumulate 3H after a lag of 1–3 min. Assuming that the onset of secretion of radiolabelled polymers into the medium indicates the time before which essentially all the radiolabel was internal to the plasma membrane, the results show that the polysaccharide-bound [3H]arabinose residues must have been feruloylated within the protoplast.Abbreviations AIR alcohol-insoluble residue - BAW butan1-ol/acetic acid/water (12:3:5 by volume) - BEW butan-1-ol/ ethanol/water (20:5:11 by volume) - EPW ethyl acetate/pyridine/ water (8:2:1 by volume) - RAra Chromatographic mobility relative to that of l-arabinose We are very grateful to Mr. Gundolf Wende for assistance with the characterisation of the feruloyl esters. K.E.M. is funded by a studentship from the Science and Engineering Research Council in collaboration with Zeneca Agrochemicals.  相似文献   

6.
Geshi N  Jørgensen B  Scheller HV  Ulvskov P 《Planta》2000,210(4):622-629
 The biosynthesis of galactan was investigated using microsomal membranes isolated from suspension-cultured cells of potato (Solanum tuberosum L. var. AZY). Incubation of the microsomal membranes in the presence of UDP-[14C]galactose resulted in a radioactive product insoluble in 70% methanol. The product released only [14C]galactose upon acid hydrolysis. Treatment of the product with Aspergillus niger endo-1,4-β-galactanase released 65–70% of the radioactivity to a 70%-methanol-soluble fraction. To a minor extent, [14C]galactose was also incorporated into proteins, however these galactoproteins were not a substrate for Aspergillus niger endo-1,4-β-galactanase. Thus, the majority of the 14C-labelled product was 1,4-β-galactan. Compounds released by the endo-1,4-β-galactanase treatment were mainly [14C]galactose and [14C]galactobiose, indicating that the synthesized 1,4-β-galactan was longer than a trimer. In vitro synthesis of 1,4-β-galactan was most active with 6-d-old cells, which are in the middle of the linear growth phase. The optimal synthesis occurred at pH 6.0 in the presence of 7.5 mM Mn2+. Aspergillus aculeatus rhamnogalacturonase A digested at least 50% of the labelled product to smaller fragments of approx. 14 kDa, suggesting that the synthesized [14C]galactan was attached to the endogenous rhamnogalacturonan I. When rhamnogalacturonase A digests of the labelled product were subsequently treated with endo-1,4-β-galactanase, radioactivity was not only found as [14C]galactose or [14C]galactobiose but also as larger fragments. The larger fragments were likely the [14C]galactose or [14C]galactobiose still attached to the rhamnogalacturonan backbone since treatment with β-galactosidase together with endo-1,4-β-galactanase digested all radioactivity to the fraction eluting as [14C]galactose. The data indicate that the majority of the [14C]galactan was attached directly to the rhamnose residues in rhamnogalacturonan I. Thus, isolated microsomal membranes contain enzyme activities to both initiate and elongate 1,4-β-galactan sidechains in the endogenous pectic rhamnogalacturonan I. Received: 24 June 1999 / Accepted: 30 August 1999  相似文献   

7.
I discuss the range of oxidative phenolic coupling products formed from the tyrosine residues of cell wall glycoproteins and from the feruloyl residues of wall polysaccharides possibly by the action of peroxidases and/or laccases. In the cases of both tyrosine- and ferulate-coupling, the coupling products are not confined to dimers but include trimers and probably higher oligomers, which are sometimes predominant. Thus, some previous assays, in which specifically dimers were monitored, will have underestimated the extent of phenolic coupling. The possibility is discussed that some of the phenolic coupling products, in both glycoproteins and polysaccharides, are inter-polymeric and that they may therefore act as cross-links in the cell wall. The limitations in the evidence for this hypothesis are stressed. The sub-cellular site of oxidative phenolic coupling is discussed. In-vivo radiolabelling of cultured maize cells with [14C]cinnamate has shown that, especially in young, rapidly growing cultures, much oxidative coupling of feruloyl-arabinoxylans occurs within the endomembrane system, before secretion of the polysaccharides into the cell wall. Appreciable feruloyl coupling within the cell wall depended on the supply of H2O2 and on culture age. The situation with tyrosine coupling in glycoproteins is also debated. Although peroxidase activity has long been known to occur in the endomembrane system, the recent finding of intraprotoplasmic feruloyl coupling provided the first evidence that peroxidases (and/or laccases) may act in this sub-cellular location in vivo. I draw attention to the distinction between peroxidase action (in vivo) and activity (assayed in vitro), and to the unknown origin of H2O2 within the endomembrane system.  相似文献   

8.
Redgwell RJ  Hansen CE 《Planta》2000,210(5):823-830
 Cell wall material (CWM) was prepared from sun-dried cocoa (Theobroma cacao L.) bean cotyledons before and after fermentation. The monosaccharide composition of the CWM was identical for unfermented and fermented beans. Polysaccharides of the CWM were solubilised by sequential extraction with 0.05 M trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid (CDTA), 0.05 M Na2CO3, and 1 M, 4 M and 8 M KOH. The non-cellulosic sugar composition for each fraction was similar for unfermented and fermented samples, indicating that fermentation caused no significant modification of the structural features of individual cell wall polysaccharides. Pectic polysaccharides accounted for 60% of the cell wall polysaccharides but only small amounts could be solubilised in solutions of CDTA, Na2CO3, and 1 M and 4 M KOH. The bulk of the pectic polysaccharides were solubilised in 8 M KOH and were characterised by a rhamnogalacturonan backbone heavily substituted with side-chains of 5-linked arabinose and 4-linked galactose. Linkage analysis indicated the presence of additional acidic polysaccharides, including a xylogalacturonan and a glucuronoxylan. Cellulose, xyloglucan and a galactoglucomannan accounted for 28%, 8% and 3% of the cell wall polysaccharides, respectively. It is concluded that the types and structural features of cell wall polysaccharides in cocoa beans resemble those found in the parenchymatous tissue of many fruits and vegetables rather than those reported for many seed storage polysaccharides. Received: 29 May 1999 / Accepted: 19 October 1999  相似文献   

9.
Summary. The present study aimed to examine the presence and define the role of 4F2hc, a glycoprotein associated with the LAT2 amino acid transporter, in L-DOPA handling by LLC-PK1 cells. For this purpose we have measured the activity of the apical and basolateral inward and outward transport of [14C] L-DOPA in cell monolayers and examined the influence of 4F2hc antisense oligonucleotides on [14C] L-DOPA handling. The basal-to-apical transepithelial flux of [14C] L-DOPA progressively increased with incubation time and was similar to the apical-to-basal transepithelial flux. The spontaneous and the L-DOPA-stimulated apical fractional outflow of [14C] L-DOPA were identical to that through the basal cell side. The L-DOPA-induced fractional outflow of [14C] L-DOPA through the apical or basal cell side was accompanied by marked decreases in intracellular levels of [14C] L-DOPA. In cells treated with an antisense oligonucleotide complementary to 4F2hc mRNA for 72 h, [14C] L-DOPA inward transport and 4F2hc expression were markedly reduced. Treatment with the 4F2hc antisense oligonucleotide markedly decreased the spontaneous fractional outflow of [14C] L-DOPA through the apical or the basal cell side. It is likely that the Na+-independent and pH-sensitive uptake of L-DOPA include the hetero amino acid exchanger LAT2/4F2hc, which facilitates the trans-stimulation of L-DOPA and its outward transfer at both the apical and basal cell sides.  相似文献   

10.
[14C]Cinnamate was taken up very rapidly by cultured spinach cells and completely incorporated into low-MW conjugates within 20 min. The 14C-labelled products were similar whether the [14C]cinnamate was supplied continuously over a period of hours via a peristaltic pump or instantaneously. Radioactivity was slowly recruited from the low-MW pool into aromatic components of the cell-wall fraction. Saponification of the radioactive wall fraction yielded, in addition to radioactive ferulate and p-coumarate, large amounts of ethyl acetate-soluble radioactive material with the properties of oxidatively coupled phenols. The coupled material was associated with the most highly ‘Driselase’-resistant fractions of the cell wall. In contrast, ‘Driselase’ released most of the wall's ferulate and p-coumarate on disaccharide fragments. It is suggested that the oxidatively coupled phenols are formed from simpler phenols by peroxidase and that they cross-link the polysaccharides to which they are attached, making these polysaccharides relatively ‘Driselase’-resistant.  相似文献   

11.
Intracellular feruloylation of pectic polysaccharides   总被引:2,自引:2,他引:0  
Stephen C. Fry 《Planta》1987,171(2):205-211
The pectic polysaccharides of spinach cell walls carry feruloyl groups on arabinose and galactose residues. The following experiments were designed to discover whether the arabinose residues are feruloylated intra-or extracellularly. Cultured spinach cells started to incorporate exogenous [3H]arabinose into polymers at a linear rate after a lag period of approx. 3–4 min, although radioactive polysaccharides and extensin did not start to appear outside the plasmalemma until after an approx. 25-min lag. In the same cells, polysaccharide-bound feruloyl-[3H]arabinose units starded to accumulate radioactivity at a linear rate after a lag period of approx. 4–5 min. Therefore, arabinose residues of polysaccharides began to be feruloylated while still intracellular. The rate of formation of polysaccharide-bound feruloyl-[3H]arabinose units did not appreciably increase after 25 min, showing that any additional extracellular feruloylation of the polysaccharide was relatively slow. This conclusion was supported by two different types of pulse-chase experiments, one of which was designed to detect feruloylation of polysaccharides up to 6 d after synthesis.Abbreviations Ara2 3-O–-L-arabinopyranosyl-L-arabinose - BAW butan-1-ol/acetic acid/water (12:3:5, by vol.) - BEW butan-1-ol/ethanol/water (20:5:11, by vol.) - EPW ethyl acetate/pyridine/water (8:2:1, by vol.) - Fer-Ara2 3-O–(3-O–feruloyl--L-arabinopyranosyl)-L-arabinose - Fer-Gal2 4-O–(6-O–feruloyl--D-galactopyranosyl)-D-galactose  相似文献   

12.
Pectin methyltransferase (PMT) catalyzing the transfer of the methyl group from S-adenosyl-L-methionine (SAM) to the C-6 carboxyl group of galactosyluronic acid residues in pectin was found in a membrane preparation of etiolated hypocotyls from 6-d-old soybean (Glycinemax Merr.). The enzyme was maximally active at pH 6.8 and 35–40 °C, and required 0.5% (w/v) Triton X-100. The incorporation of the methyl group was significantly enhanced by addition of a pectin with a low (22%) degree of methyl-esterification (DE) as exogenous acceptor substrate. The apparent Michaelis constants for SAM and the pectin (DE22) were 0.23 mM and 66 μg · ml−1, respectively. Attachment of the methyl group to the carboxyl group of the pectin via ester linkage was confirmed by analyzing radiolabeled product from incubation of the enzyme with [14C]methyl SAM and the acceptor pectin. Size-exclusion chromatography showed that both enzymatic hydrolysis with a pectin methylesterase and a mild alkali treatment (saponification) led to the release of radioactive methanol from the product. Enzymatic hydrolysis of the product with an endopolygalacturonase degraded it into small pectic fragments with low relative molecular mass, which also supports the idea that the methyl group is incorporated into the pectin. The soybean hypocotyls were fractionated into their cell wall components by successive extraction with water, EDTA, and alkali treatment. Among the resulting polysaccharide fractions, high PMT activity was observed when a de-esterified polysaccharide derived from the EDTA-soluble fraction (the pectic fraction) was added as an alternative acceptor substrate, indicating that the enzyme may be responsible for producing methyl-esterified pectin in vivo. Received: 10 September 1999 / Accepted: 11 October 1999  相似文献   

13.
Encina A  Fry SC 《Planta》2005,223(1):77-89
Feruloyl-polysaccharides can be oxidatively coupled in isolated cell walls by peroxidase plus exogenous H2O2 in vitro, but the extent to which similar reactions may occur in the apoplast in vivo was unclear. Numerous cellular factors potentially control feruloyl coupling in vivo, and their net controlling influence is not readily studied in vitro. Therefore, we have monitored apoplastic feruloyl coupling in cultured maize cells in vivo using a radiolabelled model substrate, 5-O-feruloyl-α-L-arabinofuranosyl-(1→3)-β-D-xylopyranosyl-(1→4)-D-xylose (FAXX). FAXX was expected to permeate the wall and to undergo reactions analogous to those normally exhibited by apoplastic feruloyl-polysaccharides in vivo. Little difference was found between the fates of [feruloyl14C]FAXX and [pentosyl3H]FAXX, indicating negligible apoplastic hydrolase or transferase activities. Very little radioactivity entered the protoplasm. Maize cells that had recently been washed in fresh medium were able to bind most of the FAXX (90%) in their cell walls, regardless of the age of the culture. During wall-binding, the [14C]feruloyl groups were converted to [14C]dehydrodiferulates and larger coupling products, as revealed by TLC after alkaline hydrolysis. As expected for an oxidative reaction, wall-binding was delayed by added anti-oxidants (ascorbate, ferulate, sinapate, chlorogenate or rutin). It was also completely inhibited by iodide, an H2O2-scavenger, indicating a role for peroxidase rather than oxidase. The observations indicate that oxidative coupling of feruloyl groups occurred within the cell wall, dependent on endogenous apoplastic H2O2 and wall-localised peroxidase, in vivo. Cells that had not recently been washed in fresh medium were much less able to bind FAXX, indicating the presence in the apoplast of an endogenous inhibitor of oxidative coupling. This inhibitor was of low Mr, was destroyed by heating, and remained in the aqueous phase (pH ≈3.5) when shaken with ethyl acetate. Its effectiveness was not altered by ascorbate oxidase. It is thus a small, heat-labile, hydrophilic inhibitor (not ascorbate) which we suggest plays a natural role in the control of wall cross-linking, and thus potentially in the control of cell growth.  相似文献   

14.
Milkowski C  Baumert A  Strack D 《Planta》2000,211(6):883-886
A cDNA encoding a UDP-glucose:sinapate glucosyltransferase (SGT) that catalyzes the formation of 1-O-sinapoylglucose, was isolated from cDNA libraries constructed from immature seeds and young seedlings of rape (Brassica napus L.). The open reading frame encoded a protein of 497 amino acids with a calculated molecular mass of 55,970 Da and an isoelectric point of 6.36. The enzyme, functionally expressed in Escherichia coli, exhibited broad substrate specificity, glucosylating sinapate, cinnamate, ferulate, 4-coumarate and caffeate. Indole-3-acetate, 4-hydroxybenzoate and salicylate were not conjugated. The amino acid sequence of the SGT exhibited a distinct sequence identity to putative indole-3-acetate glucosyltransferases from Arabidopsis thaliana and a limonoid glucosyltransferase from Citrus unshiu, indicating that SGT belongs to a distinct subgroup of glucosyltransferases that catalyze the formation of 1-O-acylglucosides (β-acetal esters). Received: 14 July 2000 / Accepted: 8 August 2000  相似文献   

15.
 The levels of different cytokinins, indole-3-acetic acid (IAA) and abscisic acid (ABA) in roots of Glycine max [L.] Merr. cv. Bragg and its supernodulating mutant nts382 were compared for the first time. Forty-eight hours after inoculation with Bradyrhizobium, quantitative and qualitative differences were found in the root's endogenous hormone status between cultivar Bragg and the mutant nts382. The six quantified cytokinins, ranking similarly in each genotype, were present at higher concentrations (30–196% on average for isopentenyl adenosine and dihydrozeatin riboside, respectively) in mutant roots. By contrast, the ABA content was 2-fold higher in Bragg, while the basal levels of IAA [0.53 μmol (g DW)−1, on average] were similar in both genotypes. In 1 mM NO3 -fed Bragg roots 48 h post-inoculation, IAA, ABA and the cytokinins isopentenyl adenine, and isopentenyl adenosine quantitatively increased with respect to uninoculated controls. However, only the two cytokinins increased in the mutant. High NO3 (8 mM) markedly reduced root auxin concentration, and neither genotypic differences nor the inoculation-induced increase in auxin concentration in Bragg was observed under these conditions. Cytokinins and ABA, on the other hand, were little affected by 8 mM NO3 . Root IAA/cytokinin and ABA/cytokinin ratios were always higher in Bragg relative to the mutant, and responded to inoculation (mainly in Bragg) and nitrate (both genotypes). The overall results are consistent with the auxin-burst-control hypothesis for the explanation of autoregulation and supernodulation in soybean. However, they are still inconclusive with respect to the inhibitory effect of NO3 . Received: 16 April 1999 / Accepted: 13 December 1999  相似文献   

16.
Wuest F 《Amino acids》2005,29(4):323-339
Summary. Positron emission tomography (PET) is a medical imaging technique using compounds labelled with short-lived positron emitting radioisotopes to obtain functional information of physiological, biochemical and pharmacological processes in vivo. The need to understand the potential link between the ingestion of individual dietary agents and the effect of health promotion or health risk requires the exact metabolic characterization of food ingredients in vivo. This exciting but rather new research field of PET would provide new insights and perspectives on food chemistry by assessing quantitative information on pharmocokinetics and pharmacodynamics of food ingredients and dietary agents. To fully exploit PET technology in food chemistry appropriately radiolabelled compounds as relevant for food sciences are needed. The most widely used short-lived positron emitters are 11C (t1/2 = 20.4 min) and 18F (t1/2 = 109.8 min). Longer-lived radioisotopes are available by using 76Br (t1/2 = 16.2 h) and 124I (t1/2 = 4.12 d). The present review article tries to discuss some aspects for the radiolabelling of food ingredients and dietary agents either by means of isotopic labelling with 11C or via prosthetic group labelling approaches using the positron emitting halogens 18F, 76Br and 124I.  相似文献   

17.
The kinetics of calcium and magnesium entry into mycorrhizal spruce roots   总被引:10,自引:0,他引:10  
Kuhn AJ  Schröder WH  Bauch J 《Planta》2000,210(3):488-496
 The entry of calcium and magnesium from external sources into mycorrhizal roots of 3-year-old Norway spruce trees (Piceaabies [L.] Karst.) was monitored. Roots of intact plants were exposed for various periods of time, ranging from 2 min to 48 h, to nutrient solutions which contained the stable-isotope tracers 25Mg and 44Ca. After labelling, samples of roots were excised from the plants, shock-frozen, cryosubstituted and embedded. The resulting isotope composition in this material was analysed by a laser-microprobe-mass-analyser (LAMMA) at relevant positions within cross-sections of the roots. For both elements, we determined (i) the fractions of the isotopes originating from the plant prior to labelling, and (ii) the fraction of isotopes originating from the corresponding tracer that penetrated into the root. Both divalent cations rapidly penetrated across the cortical apoplast and reached the endodermis. After 2 min of exposure to the labelling solution, an initial transient gradient of the tracers could be observed within the root cortex. Subsequently, calcium as well as magnesium equilibrated between the apoplast of the entire cortex and the external tracer with a half-time, t1/2, of about 3 min. In contrast, the kinetics of radial movement into the vascular stele showed a delay with a t1/2 of 100–120 min. We take this as strong evidence that there exists a free apoplastic path for divalent cations in the cortex and that the endodermis is a major barrier to the further passage of Mg and Ca into the xylem. While 25Mg in the labelling solution exchanged rapidly with Mg in the cortical apoplast, the exchange across the plasma membrane with Mg present in the protoplasm of the same cortical cells was almost 2 orders of magnitude slower. The kinetics of Ca and Mg entry at +6 °C were similar to those obtained at a root temperature of +22 °C. Received: 23 December 1998 / Accepted: 17 September 1999  相似文献   

18.
The purpose of this study was to investigate the effect of a thiamin derivative, thiamin tetrahydrofurfuryl disulfide (TTFD), on oxygen uptake (˙VO2), lactate accumulation and cycling performance during exercise to exhaustion. Using a randomized, double-blind, cross-over design with a 10-day washout between trials, 14 subjects ingested either 1 g · day−1 of TTFD or a placebo (PL) for 4 days. On day 3, subjects performed a progressive exercise test to exhaustion on a cycle ergometer for the determination of ˙VO2submax, ˙VO2peak, lactate concentration ([La ]), lactate threshold (ThLa) and heart rate ( f c). On day 4, subjects performed a maximal 2000-m time trial on a cycle ergometer. A one-way analysis of variance (ANOVA) with repeated measures was used to determine significant differences between trials. There were no significant differences detected between trials for serial measures of ˙VO2submax, [La] or f c. Likewise, ˙VO2peak [PL 4.06 (0.19) TTFD 4.12 (0.19) l · min−1, P = 0.83], ThLa [PL 2.47 (0.17), TTFD 2.43 (0.16) l · min−1, P = 0.86] and 2000-m performance time [PL 204.5 (5.5), TTFD 200.9 (4.3) s, P = 0.61] were not significantly different between trials. The results of this study suggest that thiamin derivative supplementation does not influence high-intensity exercise performance. Accepted: 19 December 1996  相似文献   

19.
This study examined the effect of mild hypobaria (MH) on the peak oxygen consumption (O2peak) and performance of ten trained male athletes [ (SEM); O2peak = 72.4 (2.2) ml · kg−1 · min−1] and ten trained female athletes [O2peak = 60.8 (2.1) ml · kg−1 · min−1]. Subjects performed 5-min maximal work tests on a cycle ergometer within a hypobaric chamber at both normobaria (N, 99.33 kPa) and at MH (92.66 kPa), using a counter-balanced design. MH was equivalent to 580 m altitude. O2peak at MH decreased significantly compared with N in both men [− 5.9 (0.9)%] and women [− 3.7 (1.0)%]. Performance (total kJ) at MH was also reduced significantly in men [− 3.6 (0.8)%] and women [− 3.8 (1.2)%]. Arterial oxyhaemoglobin saturation (SaO2) at O2peak was significantly lower at MH compared with N in both men [90.1 (0.6)% versus 92.0 (0.6)%] and women [89.7 (3.1)% versus 92.1 (3.0)%]. While SaO2 at O2peak was not different between men and women, it was concluded that relative, rather than absolute, O2peak may be a more appropriate predictor of exercise-induced hypoxaemia. For men and women, it was calculated that 67–76% of the decrease in O2peak could be accounted for by a decrease in O2 delivery, which indicates that reduced O2 tension at mild altitude (580 m) leads to impairment of exercise performance in a maximal work bout lasting ≈ 5 min. Accepted: 30 July 1996  相似文献   

20.
Canopy CO2 concentrations in a tropical rainforest in French Guiana were measured continuously for 5 days during the 1994 dry season and the 1995 wet season. Carbon dioxide concentrations ([CO2]) throughout the canopy (0.02–38 m) showed a distinct daily pattern, were well-stratified and decreased with increasing height into the canopy. During both seasons, daytime [CO2] in the upper and middle canopy decreased on average 7–10 μmol mol−1 below tropospheric baseline values measured at Barbados. Within the main part of the canopy (≥ 0.7 m), [CO2] did not differ between the wet and dry seasons. In contrast, [CO2] below 0.7 m were generally higher during the dry season, resulting in larger [CO2] gradients. Supporting this observation, soil CO2 efflux was on average higher during the dry season than during the wet season, either due to diffusive limitations and/or to oxygen deficiency of root and microbial respiration. Soil respiration rates decreased by 40% after strong rain events, resulting in a rapid decrease in canopy [CO2] immediately above the forest floor of about 50␣μmol mol−1. Temporal and spatial variations in [CO2]canopy were reflected in changes of δ13Ccanopy and δ18Ocanopy values. Tight relationships were observed between δ13C and δ18O of canopy CO2 during both seasons (r 2 > 0.86). The most depleted δ13Ccanopy and δ18Ocanopy values were measured immediately above the forest floor (δ13C = −16.4‰; δ18O = 39.1‰ SMOW). Gradients in the isotope ratios of CO2 between the top of the canopy and the forest floor ranged between 2.0‰ and 6.3‰ for δ13C, and between 1.0‰ and 3.5‰ for δ18O. The δ13Cleaf and calculated c i/c a of foliage at three different positions were similar for the dry and wet seasons indicating that the canopy maintained a constant ratio of photosynthesis to stomatal conductance. About 20% of the differences in δ13Cleaf within the canopy was accounted for by source air effects, the remaining 80% must be due to changes in c i/c a. Plotting 1/[CO2] vs. the corresponding δ13C ratios resulted in very tight, linear relationships (r 2 = 0.99), with no significant differences between the two seasons, suggesting negligible seasonal variability in turbulent mixing relative to ecosystem gas exchange. The intercepts of these relationships that should be indicative of the δ13C of respired sources were close to the measured δ13C of soil respired CO2 and to the δ13C of litter and soil organic matter. Estimates of carbon isotope discrimination of the entire ecosystem, Δe, were calculated as 20.3‰ during the dry season and as 20.5‰ during the wet season. Received: 3 March 1996 / Accepted: 19 October 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号