首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 871 毫秒
1.
Late blight caused by the oomycete Phytophthora infestans is the economically most important and destructive disease in potato cultivation. Quantitative resistance to late blight available in tetraploid cultivars is correlated with late maturity in temperate climates, which is an undesirable characteristic. A total of 30 DNA-based markers known to be linked to loci for pathogen resistance in diploid potato were selected and tested as polymerase chain reaction-based markers for linkage with quantitative trait loci (QTL) for late blight resistance and plant maturity in two half-sib families of tetraploid potatoes. Most markers originated from within or were physically closely linked to candidate genes for quantitative resistance factors. The families were repeatedly evaluated in the field for quantitative resistance to late blight and maturity. Resistance was corrected for the maturity effect. Nine of eleven different map segments tagged by the markers harbored QTL affecting maturity-corrected resistance. Interactions were found between unlinked resistance QTL, providing testable strategies for marker-assisted selection in tetraploid potato. Based on the linkage observed between QTL for resistance and plant maturity and based on the genetic interactions observed between candidate genes tagging resistance QTL, we discuss models for the molecular basis of quantitative resistance and maturity.  相似文献   

2.
Late blight caused by the oomycete Phytophthora infestans is the most important fungal disease in potato cultivation worldwide. Resistance to late blight is controlled by a few major genes (R genes) which can be easily overcome by new races of P. infestans and/or by an unknown number of genes expressing a quantitative type of resistance which may be more durable. Quantitative resistance of foliage to late blight was evaluated in five F1 hybrid families originating from crosses among seven different diploid potato clones. Tuber resistance was evaluated in four of the families. Two of the families were scored for both foliage maturity and vigour. The five families were genotyped with DNA-based markers and tested for linkage with the traits analysed. QTL (quantitative trait locus) analysis identified at least twelve segments on ten chromosomes of potato having genes that affect reproducibly foliage resistance. Two of those segments also have major R genes for resistance to late blight. The segments are tagged by 21 markers that can be analyzed based on PCR (polymerase chain reaction) with specific oligonucleotide primers. One QTL was detected for tuber resistance and one for foliage vigour. Two QTLs were mapped for foliage maturity. Major QTL effects on foliage and tuber resistance to late blight and on foliage maturity and vigour were all linked with marker GP179 on linkage group V of potato. Plants having alleles at this QTL, which increased foliage resistance, exhibited decreased tuber resistance, later maturity and more vigour.  相似文献   

3.
To find out new resistance sources to late blight in the wild germplasm for potato breeding, we examined the polygenic resistance of Solanum sparsipilum and S. spegazzinii by a quantitative trait locus (QTL) analysis. We performed stem and foliage tests under controlled conditions in two diploid mapping progenies. Four traits were selected for QTL detection. A total of 30 QTLs were mapped, with a large-effect QTL region on chromosome X detected in both potato relatives. The mapping of literature-derived markers highlighted colinearities with published late blight QTLs or R-genes. Results showed (a) the resistance potential of S. sparsipilum and S. spegazzinii for late blight control, and (b) the efficacy of the stem test as a complement to the foliage test to break down the complex late blight resistance into elementary components. The relationships of late blight resistance QTLs with R-genes and maturity QTLs are discussed.  相似文献   

4.
The oomycete Phytophthora infestans causes late blight, the most relevant disease of potato (Solanum tuberosum) worldwide. Field resistance to late blight is a complex trait. When potatoes are cultivated under long day conditions in temperate climates, this resistance is correlated with late plant maturity, an undesirable characteristic. Identification of natural gene variation underlying late blight resistance not compromised by late maturity will facilitate the selection of resistant cultivars and give new insight in the mechanisms controlling quantitative pathogen resistance. We tested 24 candidate loci for association with field resistance to late blight and plant maturity in a population of 184 tetraploid potato individuals. The individuals were genotyped for 230 single nucleotide polymorphisms (SNPs) and 166 microsatellite alleles. For association analysis we used a mixed model, taking into account population structure, kinship, allele substitution and interaction effects of the marker alleles at a locus with four allele doses. Nine SNPs were associated with maturity corrected resistance (P < 0.001), which collectively explained 50% of the genetic variance of this trait. A major association was found at the StAOS2 locus encoding allene oxide synthase 2, a key enzyme in the biosynthesis of jasmonates, plant hormones that function in defense signaling. This finding supports StAOS2 as being one of the factors controlling natural variation of pathogen resistance.  相似文献   

5.
Interval mapping of quantitative trait loci (QTL) for resistance to late blight, height, and maturity was performed on a tetraploid full-sib family of potato comprising 227 clones from a cross between a susceptible parent, 12601ab1, and a resistant cultivar, Stirling, which were of similar height and main crop maturity. Thirty-eight AFLP primer combinations provided 585 informative markers, and 23 SSRs proved useful for identifying linkage groups (LGs). A simplex QTL allele was found on LGV of Stirling close to marker STM3179, which was associated with early maturity, short plants, and susceptibility to blight and explained 54.7, 26.5, 26.3, and 17.5% of the variation for maturity, height, tuber blight, and foliage blight. When the residuals from the regressions of foliage and tuber blight on maturity were analyzed, there was no significant effect of a QTL on LGV, but a duplex QTL allele for resistance was found on LGIV of Stirling, which explained 30.7 and 13.6% of the variation for foliage and tuber blight on an additive model. Partial dominance for resistance explained even more of the variation, up to 37.2% for foliage blight. A major gene for blight resistance in Stirling was also mapped to LGXI.  相似文献   

6.
Traditional quantitative trait loci (QTL) mapping approaches are typically based on early or advanced generation analysis of bi-parental populations. A limitation associated with this methodology is the fact that mapping populations rarely give rise to new cultivars. Additionally, markers linked to the QTL of interest are often not immediately available for use in breeding and they may not be useful within diverse genetic backgrounds. Use of breeding populations for simultaneous QTL mapping, marker validation, marker assisted selection (MAS), and cultivar release has recently caught the attention of plant breeders to circumvent the weaknesses of conventional QTL mapping. The first objective of this study was to test the feasibility of using family-pedigree based QTL mapping techniques generally used with humans and animals within plant breeding populations (PBPs). The second objective was to evaluate two methods (linkage and association) to detect marker-QTL associations. The techniques described in this study were applied to map the well characterized QTL, Fhb1 for Fusarium head blight resistance in wheat (Triticum aestivum L.). The experimental populations consisted of 82 families and 793 individuals. The QTL was mapped using both linkage (variance component and pedigree-wide regression) and association (using quantitative transmission disequilibrium test, QTDT) approaches developed for extended family-pedigrees. Each approach successfully identified the known QTL location with a high probability value. Markers linked to the QTL explained 40–50% of the phenotypic variation. These results show the usefulness of a human genetics approach to detect QTL in PBPs and subsequent use in MAS.  相似文献   

7.
Association or linkage disequilibrium (LD)-based mapping strategies are receiving increased attention for the identification of quantitative trait loci (QTL) in plants as an alternative to more traditional, purely linkage-based approaches. An attractive property of association approaches is that they do not require specially designed crosses between inbred parents, but can be applied to collections of genotypes with arbitrary and often unknown relationships between the genotypes. A less obvious additional attractive property is that association approaches offer possibilities for QTL identification in crops with hard to model segregation patterns. The availability of candidate genes and targeted marker systems facilitates association approaches, as will appropriate methods of analysis. We propose an association mapping approach based on mixed models with attention to the incorporation of the relationships between genotypes, whether induced by pedigree, population substructure, or otherwise. Furthermore, we emphasize the need to pay attention to the environmental features of the data as well, i.e., adequate representation of the relations among multiple observations on the same genotypes. We illustrate our modeling approach using 25 years of Dutch national variety list data on late blight resistance in the genetically complex crop of potato. As markers, we used nucleotide binding-site markers, a specific type of marker that targets resistance or resistance-analog genes. To assess the consistency of QTL identified by our mixed-model approach, a second independent data set was analyzed. Two markers were identified that are potentially useful in selection for late blight resistance in potato.  相似文献   

8.
We investigated the association between late blight resistance and foliage maturity type in potato by means of molecular markers. Two QTLs were detected for foliage resistance against Phytophthora infestans (on chromosomes 3 and 5) and one for foliage maturity type (on chromosome 5). The QTL for resistance to late blight and the QTL for foliage maturity type on chromosome 5 appeared to be mapped on indistinguishable positions. We were interested whether this genetic linkage was due to closely linked but different genes, or due to one (or more) gene(s) with pleiotropic effects. We therefore developed an approach to detect QTLs, in which resistance to late blight was adjusted for foliage maturity type. This analysis revealed the same two QTLs for resistance against P. infestans, but the effect of the locus on chromosome 5 was reduced to only half the original effect. This is a strong indication that the two indistinguishable QTLs for foliage maturity type and for late blight resistance on chromosome 5 may actually be one gene with a pleiotropic effect on both traits. However, there was still a significant effect on resistance against P. infestans on the locus on chromosome 5 after adjusting for foliage maturity type. Therefore we cannot rule out the presence of two closely linked QTLs on chromosome 5: one with a pleiotropic effect on both late blight resistance and foliage maturity type, and another with merely an effect on resistance. In addition, the two QTLs for resistance to late blight showed an important epistatic interaction, suggesting that QTLs for resistance affect each other's expression.  相似文献   

9.
Sheath blight caused by Rhizoctonia solani Kühn is one of the important diseases of rice, resulting in heavy yield loss in rice every year. No rice line resistant to sheath blight has been identified till date. However, in some rice lines a high degree of resistance to R. solani has been observed. An indica rice line, Tetep, is a well documented source of durable and broad spectrum resistance to rice blast as well as quantitative resistance to sheath blight. The present study identified genetic loci for quantitative resistance to sheath blight in rice line Tetep. A mapping population consisting of 127 recombinant inbred lines derived from a cross between rice cultivars HP2216 (susceptible) and Tetep (resistant to sheath blight) was evaluated for sheath blight resistance and other agronomic traits for 4 years across three locations. Based on sheath blight phenotypes and genetic map with 126 evenly distributed molecular markers, a quantitative trait loci (QTLs) contributing to sheath blight resistance was identified on long arm of chromosome 11. Two QTL mapping approaches i.e., single marker analysis and composite interval mapping in multi environments were used to identify QTLs for sheath blight resistance and agronomical traits. The QTL qSBR11-1 for sheath blight resistance was identified between the marker interval RM1233 (26.45 Mb) to sbq33 (28.35 Mb) on chromosome 11. This region was further narrowed down to marker interval K39516 to sbq33 (~0.85 Mb) and a total of 154 genes were predicted including 11 tandem repeats of chitinase genes which may be responsible for sheath blight resistance in rice line Tetep. A set of 96 varieties and a F2 population were used for validation of markers linked to the QTL region. The results indicate that there is very high genetic variation among varieties at this locus, which can serve as a starting point for allele mining of sheath blight resistance.  相似文献   

10.
Despite the long history of breeding potatoes resistant to Phytophthora infestans, this oomycete is still economically the most important pathogen of potato worldwide. The correlation of high levels of resistance to late blight with a long vegetation period is one of the bottlenecks for progress in breeding resistant cultivars of various maturity types. Solanum phureja was identified as a source of effective late blight resistance, which was transferred to the cultivated gene pool by interspecific crosses with dihaploids of Solanum tuberosum. A novel major resistance locus, Rpi-phu1, derived most likely from S. phureja and conferring broad-spectrum resistance to late blight, was mapped to potato chromosome IX, 6.4 cM proximal to the marker GP94. Rpi-phu1 was highly effective in detached leaflet, tuber slice and whole tuber tests during 5 years of quantitative phenotypic assessment. The resistance did not show significant correlation with vegetation period length. Our findings provide a well-characterized new source of resistance for breeding early and resistant-to-P. infestans potatoes.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

11.
Field resistance to Phytophthora infestans (Mont.) de Bary, the causal agent of late blight in potatoes, has been characterized in a potato segregating family of 230 full-sib progenies derived from a cross between two hybrid Solanum phureja × S. stenotomum clones. The distribution of area under the disease progress curve values, measured in different years and locations, was consistent with the inheritance of multigenic resistance. Relatively high levels of resistance and transgressive segregations were also observed within this family. A genetic linkage map of this population was constructed with the intent of mapping quantitative trait loci (QTLs) associated with this late blight field resistance. A total of 132 clones from this family were genotyped based on 162 restriction fragment length polymorphism (RFLP) markers. The genome coverage by the map (855.2 cM) is estimated to be at least 70% and includes 112 segregating RFLP markers and two phenotypic markers, with an average distance of 7.7 cM between two markers. Two methods were employed to determine trait–marker association, the non-parametric Kruskal–Wallis test and interval mapping analysis. Three major QTLs were detected on linkage group III, V, and XI, explaining 23, 17, and 10%, respectively, of the total phenotypic variation. The present study revealed the presence of potentially new genetic loci in this diploid potato family contributing to general resistance against late blight. The identification of these QTLs represents the first step toward their introgression into cultivated tetraploid potato cultivars through marker-assisted selection.  相似文献   

12.
Southern rust, caused by Puccinia polysora Underw, is a foliar disease that can severely reduce grain yield in maize (Zea mays L.). Major resistance genes exist, but their effectiveness can be limited in areas where P. polysora is multi-racial. General resistance could be achieved by combining quantitative and race-specific resistances. This would be desirable if the resistance alleles maintained resistance across environments while not increasing plant maturity. Recombinant inbred (RI) lines were derived from a cross between NC300, a temperate-adapted all-tropical line, and B104, an Iowa Stiff Stalk Synthetic line. The RI lines were topcrossed to the tester FR615 × FR697. The 143 topcrosses were scored for Southern rust in four environments. Time to flowering was measured in two environments. The RI lines were genotyped at 113 simple sequence repeat markers and quantitative trait loci (QTL) were mapped for both traits. The entry mean heritability estimate for Southern rust resistance was 0.93. A multiple interval mapping model, including four QTL, accounted for 88% of the variation among average disease ratings. A major QTL located on the short arm of chromosome 10, explained 83% of the phenotypic variation, with the NC300 allele carrying the resistance. Significant (P < 0.001), but relatively minor, topcross-by-environment interaction occurred for Southern rust, and resulted from the interaction of the major QTL with the environment. Maturity and Southern rust rating were slightly correlated, but QTL for the two traits did not co-localize. Resistance was simply inherited in this population and the major QTL is likely a dominant resistant gene that is independent of plant maturity.  相似文献   

13.
14.
Field resistance to late blight – a fungal disease caused by Phytophthora infestans – has been genetically characterized by analyzing trait-marker association in a Solanum phureja (phu)×dihaploid Solanum tuberosum (dih-tbr) population. Trait data were developed at three locations over a 3-year period under natural infection pressure. RAPD (random amplified polymorphic DNA) and AFLP (amplified fragment length polymorphism)markers were used to develop anonymous genetic linkage groups subsequently anchored to potato chromosomes using mapped RFLP (restriction fragment length polymorphism), SSR (single sequence repeats) and AFLP markers. RFLP and SSR markers achieved the most-accurate anchoring. Two genetic maps were obtained, with 987.4 cM for phu and 773.7 cM for dih-tbr. Trait-marker association was revealed by single-marker and interval mapping analyses. Two important QTLs (quantitative trait loci) were detected on chromosomes VII and XII as a contribution from both parents, totalling up to 16% and 43%, respectively, of the phenotypic variation (PH). One additional QTL was detected on chromosome XI (up to 11% of the PH) as a contribution from the phu parent, and three others were detected on chromosome III (up to 13% of the PH), chromosome V (up to 11% of the PH) and chromosome VIII (up to 11% of the PH) as a contribution from the dih-tbr parent. Our results reveal new genetic loci of the potato genome that contribute to resistance to late blight. We postulate that some of these loci could be related to plant growth under short-day conditions. Received: 5 July 2000 / Accepted: 17 November 2000  相似文献   

15.
16.
Discovery and utilization of QTLs for insect resistance in soybean   总被引:1,自引:0,他引:1  
Boerma HR  Walker DR 《Genetica》2005,123(1-2):181-189
Insect resistance in soybean has been an objective in numerous breeding programs, but efforts to develop high yielding cultivars with insect resistance have been unsuccessful. Three Japanese plant introductions, PIs 171451, 227687 and 229358, have been the primary sources of insect resistance alleles, but a combination of quantitative inheritance of resistance and poor agronomic performance has hindered progress. Linkage drag caused by co-introgression of undesirable agronomic trait alleles linked to the resistance quantitative trait loci (QTLs) is a persistent problem. Molecular marker studies have helped to elucidate the numbers, effects and interactions of insect resistance QTLs in the Japanese PIs, and markers are now being used in breeding programs to facilitate transfer of resistance alleles while minimizing linkage drag. Molecular markers also make it possible to evaluate QTLs independently and together in different genetic backgrounds, and in combination with transgenes from Bacillus thuringiensis.  相似文献   

17.
A major quantitative trait locus (QTL) controlling resistance to Pierce’s disease (PD) of grape, caused by the bacterium Xylella fastidiosa (Xf), was identified on a Vitis linkage map and denoted as ‘Pierce’s disease resistance 1’ (PdR1). Placement of the locus was accomplished by evaluating a family of full-sib progeny from a cross of two PD-resistant interspecific hybrids with resistance inherited from Vitis arizonica. Resistance was measured under greenhouse conditions by direct quantification of Xf numbers in stem tissues as well as by evaluation of disease symptoms based on leaf scorch and a cane maturation index (CMI). A large QTL (LOD 17.2) accounting for 72% of the phenotypic variance in bacterial numbers was localized to linkage group 14 of the male parent F8909-17. The approximate 95% confidence interval around the QTL peak extended 5.7 cM when using composite interval mapping. The other disease evaluation methods (leaf scorch and CMI, respectively) placed the resistance QTL to the same region on linkage group 14, although at wider 95% confidence intervals (6.0 and 7.5 cM), lower peak LOD scores (11.9 and 7.7) and accounting for less phenotypic variance (59 and 42%). This is the first report of an Xf resistance QTL mapped in any crop species. The relevance of the markers located in the region spanning the QTL will be discussed, addressing their usefulness for the development of PD-resistant grape cultivars.  相似文献   

18.
大豆遗传图谱的构建和若干农艺性状的QTL定位分析   总被引:15,自引:1,他引:14  
大豆许多重要农艺性状都是由微效多基因控制的数量性状,对这些数量性状进行QTL定位是大豆数量性状遗传研究领域的一个重要内容.本研究利用栽培大豆科新3号为父本、中黄20为母本杂交得到含192个单株的F2分离群体,构建了含122 个SSR标记、覆盖1719.6cM、由33个连锁群组成的连锁遗传图谱.利用复合区间作图法,对该群体的株高、主茎节数、单株粒重和蛋白质含量等农艺性状的调查数据进行QTL分析,共找到两个株高QTL,贡献率分别为9.15%和6.08%;两个主茎节数QTL,贡献率分别为10. 1%和8.6%;一个蛋白质含量QTL,贡献率为9.8%;一个单株粒重QTL,贡献率为11.4% .通过遗传作图共找到与所定位的4个农艺性状QTL连锁的6个SSR标记,这些标记可以应用于大豆种质资源的分子标记辅助选择,从而为大豆分子标记辅助育种提供理论依据.  相似文献   

19.
Fire blight caused by the bacterium Erwinia amylovora is a severe threat to apple and pear orchards worldwide. Apple varieties exhibit a wide range of relative susceptibility/tolerance to fire blight. Although, no monogenic resistance against fire blight has been identified yet, recent evidence indicates the existence of quantitative resistance. Potential sources of fire blight resistance include several wild Malus species and some apple cultivars. F1 progenies of ‘Fiesta’בDiscovery’ were inoculated with the Swiss strain Ea 610 and studied under controlled conditions to identify quantitative trait loci (QTLs) for fire blight resistance. Disease was evaluated at four time points after inoculation. Shoot lesion length and the area under disease progress curve (AUDPC) values were used for QTL analysis. One significant (LOD score of 7.5–8.1, p<0.001) QTL was identified on the linkage group 7 of ‘Fiesta’ (F7). The F7 QTL explained about 37.5–38.6% of the phenotypic variation.  相似文献   

20.
Genetic analysis across a whole plant genome based on pedigree information offers considerable potential for enhancing genetic gain from plant breeding programs through quantitative trait loci (QTL) mapping and marker-assisted selection. Here, we report its application for graphically genotyping varieties used in Chinese japonica rice (Oryza sativa L.) pedigree breeding programs. We identified 34 important chromosomal regions from the founder parent that are under selection in the breeding programs, and by comparing donor genomic regions that are under selection with QTL locations of agronomic traits, we found that QTL clustered in important genomic regions, in accordance with association analyses of natural populations and other previous studies. The convergence of genomic regions under selection with QTL locations suggests that donor genomic regions harboring key genes/QTL for important agronomic traits have been selected by plant breeders since the 1950s from the founder rice plants. The results provide better understanding of the effects of selection in breeding programs on the traits of rice cultivars. They also provide potentially valuable information for enhancing rice breeding programs through screening candidate parents for targeted molecular markers, improving crop yield potential and identifying suitable genetic material for use in future breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号