首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Annexins are a family of proteins generally described as Ca(2+)-dependent for phospholipid binding. Yet, annexins have a wide variety of binding behaviors and conformational states, some of which are lipid-dependent and Ca(2+)-independent. We present a model that captures the cation and phospholipid binding behavior of the highly conserved core of the annexins. Experimental data for annexins A4 and A5, which have short N-termini, were globally modeled to gain an understanding of how the lipid-binding affinity of the conserved protein core is modulated. Analysis of the binding behavior was achieved through use of the lanthanide Tb(3+) as a Ca(2+) analogue. Binding isotherms were determined experimentally from the quenching of the intrinsic fluorescence of annexins A4 and A5 by Tb(3+) in the presence or absence of membranes. In the presence of lipid, the affinity of annexin for cation increases, and the binding isotherms change from hyperbolic to weakly sigmoidal. This behavior was modeled by isotherms derived from microscopic binding partition functions. The change from hyperbolic to sigmoidal binding occurs because of an allosteric transition from the annexin solution state to its membrane-associated state. Protein binding to lipid bilayers renders cation binding by annexins cooperative. The two annexin states denote two affinities of the protein for cation, one in the absence and another in the presence of membrane. In the framework of this model, we discuss membrane binding as well as the influence of the N-terminus in modifying the annexin cation-binding affinity by changing the probability of the protein to undergo the postulated two-state transition.  相似文献   

2.
3.
Cell-mediated killing: a common mechanism?   总被引:10,自引:0,他引:10  
J D Young  Z A Cohn 《Cell》1986,46(5):641-642
  相似文献   

4.
Human tissue factor (TF), the membrane-bound glycoprotein receptor for the blood-clotting factor VII/VIIa, contains in its extracellular domain three repeats of the rare motif, tryptophan-lysine-serine (WKS). Murine tissue factor, which binds human factor VII/VIIa poorly, contains only one WKS motif suggesting that the WKS motif may be involved in the binding of human factor VII/VIIa to human TF. Sequence analysis has revealed a WKS motif in 23 human proteins, seven of which are involved in the coagulation process. Another five WKS-containing proteins share some functional properties with the coagulation proteins. Analysis of the properties of these proteins provides some insight into the possible functional role of the WKS motif.  相似文献   

5.
Lee JT 《Current biology : CB》2003,13(6):R242-R254
In classical Mendelian inheritance, each parent donates a set of chromosomes to its offspring so that maternally and paternally encoded information is expressed equally. The phenomena of X-chromosome inactivation (XCI) and autosomal imprinting in mammals violate this dogma of genetic equality. In XCI, one of the two female X chromosomes is silenced to equalize X-linked gene dosage between XX and XY individuals. In genomic imprinting, parental marks determine which of the embryo's two autosomal alleles will be expressed. Although XCI and imprinting appear distinct, molecular evidence now shows that they share a surprising number of features. Among them are cis-acting control centers, long-distance regulation and differential DNA methylation. Perhaps one of the most intriguing similarities between XCI and imprinting has been their association with noncoding and antisense RNAs. Very recent data also suggest the common involvement of histone modifications and chromatin-associated factors such as CTCF. Collectively, the evidence suggests that XCI and genomic imprinting may have a common origin. Here, I hypothesize that the need for X-linked dosage compensation was a major driving force in the evolution of genomic imprinting in mammals. I propose that imprinting was first fixed on the X chromosome for XCI and subsequently acquired by autosomes.  相似文献   

6.
1. The effects of several phenols, anilines and aliphatic alcohols on yeast plasma membrane H(+)-ATPase and purine transport system as well as on Na+, K(+)-ATPase and adenosine uptake by Chinese hamster ovary cells (CHO) were investigated. 2. In all cases an inhibition was observed, which could be correlated with the octanol/water partition coefficients of the substances tested, thus making quantitative structure-activity predictions possible. 3. The observed effects correlated well with the influence of the chemicals on cell growth. 4. The results suggest a common mechanism of toxicity by the action of hydrophobic xenobiotics on biomembranes.  相似文献   

7.
Mast cells are classically considered innate immune cells that act as first responders in many microbial infections and have long been appreciated as potent contributors to allergic reactions. However, recent advances in the realm of autoimmunity have made it clear that these cells are also involved in the pathogenic responses that exacerbate disease. In the murine models of multiple sclerosis, rheumatoid arthritis and bullous pemphigoid, both the pathogenic role of mast cells and some of their mechanisms of action are shared. Similar to their role in infection and a subset of allergic responses, mast cells are required for the efficient recruitment of neutrophils to sites of inflammation. Although this mast cell-dependent neutrophil response is protective in infection settings, it is postulated that neutrophils promote local vascular permeability and facilitate the entry of inflammatory cells that enhance tissue destruction at target sites. However, there is still much to learn. There is little information regarding mechanisms of mast cell activation in disease. Nor is it known how many mast cell-derived mediators are relevant and whether interactions with other cells are implicated in these diseases including T cells, B cells and astrocytes. Here we review the current state of knowledge about mast cells in autoimmune disease. We also discuss findings regarding newly discovered mast cell actions and factors that modulate mast cell function. We speculate that much of this new information will ultimately contribute to a greater understanding of the full range of mast cell actions in autoimmunity. This article is part of a Special Issue entitled: Mast cells in inflammation.  相似文献   

8.
Recent technological advances in the field of chromosome conformation capture are facilitating tremendous progress in the ability to map the three-dimensional (3D) organization of chromosomes at a resolution of several Kb and at the scale of complete genomes. Here we review progress in analyzing chromosome organization in human cells by building 3D models of chromatin based on comprehensive chromatin interaction datasets. We describe recent experiments that suggest that long-range interactions between active functional elements are sufficient to drive folding of local chromatin domains into compact globular states. We propose that chromatin globules are commonly formed along chromosomes, in a cell type specific pattern, as a result of frequent long-range interactions among active genes and nearby regulatory elements. Further, we speculate that increasingly longer range interactions can drive aggregation of groups of globular domains. This process would yield a compartmentalized chromosome conformation, consistent with recent observations obtained with genome-wide chromatin interaction mapping.  相似文献   

9.
10.
Although numerous imprinted genes have been described in several lineages, the phenomenon of genomic imprinting presents a peculiar evolutionary problem. Several hypotheses have been proposed to explain gene imprinting, the most supported being Haig's kinship theory. This theory explains the observed pattern of imprinting and the resulting phenotypes as a competition for resources between related individuals, but despite its relevance it has not been independently tested. Haig's theory predicts that gene imprinting should be present in eusocial insects in many social scenarios. These lineages are therefore ideal for testing both the theory's predictions and the mechanism of gene imprinting. Here we review the behavioral evidence of genomic imprinting in eusocial insects, the evidence of a mechanism for genomic imprinting and finally we evaluate recent results showing parent of origin allele specific expression in honeybees in the light of Haig's theory.  相似文献   

11.
  • 1.1. The effects of several phenols, anilines and aliphatic alcohols on yeast plasma membrane H+-ATPase and purine transport system as well as on Na+, K+-ATPase and adenosine uptake by Chinese hamster ovary cells (CHO) were investigated.
  • 2.2. In all cases an inhibition was observed, which could be correlated with the octanol/water partition coefficients of the substances tested, thus making quantitative structure-activity predictions possible.
  • 3.3. The observed effects correlated well with the influence of the chemicals on cell growth.
  • 4.4. The results suggest a common mechanism of toxicity by the action of hydrophobic xenobiotics on biomembranes.
  相似文献   

12.
Is there a common chemical model for life in the universe?   总被引:2,自引:0,他引:2  
A review of organic chemistry suggests that life, a chemical system capable of Darwinian evolution, may exist in a wide range of environments. These include non-aqueous solvent systems at low temperatures, or even supercritical dihydrogen-helium mixtures. The only absolute requirements may be a thermodynamic disequilibrium and temperatures consistent with chemical bonding. A solvent system, availability of elements such as carbon, hydrogen, oxygen and nitrogen, certain thermodynamic features of metabolic pathways, and the opportunity for isolation, may also define habitable environments. If we constrain life to water, more specific criteria can be proposed, including soluble metabolites, genetic materials with repeating charges, and a well defined temperature range.  相似文献   

13.
The crystal structure of the kinase domain from human checkpoint kinase 2 (Chk2) has shown, for the first time, the reciprocal exchange of activation segments between two adjacent molecules and provides the molecular basis for understanding the observed mode of Chk2 kinase activation via trans-autophosphorylation. With further examples of activation segment exchanged kinase domains now publicly available (i.e. Ste20-like kinase, Ser/Thr kinase 10 and Death-associated protein kinase 3), we suggest that this phenomenon represents a common mechanism of activation amongst a particular subset of protein kinases, that is, those that are dimeric (either transiently or constitutively), that undergo activation by autophosphorylation and that have activation segment amino acid sequences that do not resemble those of their substrate consensus sequence.  相似文献   

14.
Haem–copper oxygen reductases are transmembrane protein complexes that reduce dioxygen to water and pump protons across the mitochondrial or periplasmatic membrane, contributing to the transmembrane difference of electrochemical potential. Seven years ago we proposed a classification of these enzymes into three different families (A, B and C), based on the amino acid residues of their proton channels and amino acid sequence comparison, later supported by the so far identified characteristics of the catalytic centre of members from each family. The three families have in common the same general structural fold of the catalytic subunit, which contains the same or analogous prosthetic groups, and proton channels. These observations raise the hypothesis that the mechanisms for dioxygen reduction, proton pumping and the coupling of the two processes may be the same for all these enzymes. Under this hypothesis, they should be performed and controlled by the same or equivalent elements/events, and the identification of retained elements in all families will reveal their importance and may prompt the definition of the enzyme operating mode. Thus, we believe that the search for a minimum common denominator has a crucial importance, and in this article we highlight what is already established for the haem–copper oxygen reductases and emphasize the main questions still unanswered in a comprehensive basis.  相似文献   

15.
The X chromosome is largely inactivated in spermatogenesis of heterogametic males, and in multiple phyla it encodes few genes specifically expressed in the male germline. Writing in Nature Genetics, Bean et al. report a parallel between male germline X inactivation in nematodes and a fungal gene-silencing mechanism that alters the way we view the evolution of both phenomena.  相似文献   

16.
17.
Mutations in multiple planar cell polarity (PCP) genes can cause swirling patterns indicated by whorls and tufts of hairs in the wings and the abdomen of Drosophila and in the skin of vertebrates. Damaged global directional cue caused by mutations in four-jointed, fat, and dachsous, impaired cellular hexagonal packing caused by mutations in frizzled, or weakened intracellular signaling caused by mutations in disheveled, inturned, and prickle all make hair patterns globally irregular yet locally aligned, and in some cases, typically swirling. Why and how mutations in different genes all lead to swirling patterns is unexplored. Although the mechanisms of molecular signaling remain unclear, the features of molecular distribution are evident-most PCP molecules develop the polarized distribution in cells and this distribution can be induced by intercellular signaling. Does this suggest something fundamental to swirling patterns beyond the particular functions of genes, proteins, and signaling? A simple model indeed indicates this. Disregarding detailed molecular interactions, the induced polarization of molecular distribution in an epithelial cell can be modeled as the induced polarization of positive and negative charge distribution in a dielectric molecule. Simulations reveal why and how mutations in different genes all lead to swirling patterns, and in particular, the conditions for generating typical swirling patterns. The results show that the anisotropic propagation of polarized molecular distribution may be the common mechanism of swirling patterns caused by different mutations. They also suggest that at the cell level, as at the molecular level, a simple mechanism can generate complex and diverse patterning phenotypes in different molecular contexts. The similarity between the induced polarization and its propagation in both the epithelial cells and the dielectric molecules also interestingly suggests some commonalities between pattern formation in the biological and physical systems.  相似文献   

18.
Michel K  O'Brochta DA  Atkinson PW 《Gene》2002,298(2):141-146
Donor cleavage and strand transfer are two functions performed by transposases during transposition of class II transposable elements. Within transposable elements, the only active center described, to date, facilitating both functions, is the so-called DDE motif. A second motif, R-K-H/K-R-H/W-Y, is found in the site-specific recombinases of the tyrosine recombinase family. While present in many bacterial insertion sequences as well as in the eukaryotic family of mariner/Tc1 elements, the DDE motif was considered absent in other classes of eukaryotic class II elements such as P, and hAT and piggyBac. Based on sequence alignments of a hobo-like element from the nematode Caenorhabditis elegans, to a variety of other hAT transposases and several members of the mariner/Tc1 group, Bigot et al. [Gene 174 (1996) 265] proposed the presence of a DSE motif in hAT transposases. In the present study we tested if each of these three residues is required for transposition of the Hermes element, a member of the hAT family commonly used for insect transformation. While D402N and E572Q mutations lead to knock-out of Hermes function, mutations S535A and S535D did not affect transposition frequency or the choice of integration sites. These data give the first experimental support that D402 and E572 are indeed required for transposition of Hermes. Furthermore, this study indicates that the active center of the Hermes transposase differs from the proposed DSE motif. It remains to be shown if other residues also form the active site of this transposase.  相似文献   

19.
20.
Cell volume is central to osmoregulation in intact cells. Bovine spermatozoa, as also other mammalian spermatozoa, exhibit a very rapid regulatory volume decrease (RVD) when exposed to hypotonic saline media. This response, fastest known in animal cells, is mediated by a putative potassium channel which the pharmacological properties of a conventional channel and yet admits both electrolytes and non-electrolytes. The evolutionary basis and functional role of this conserved quinine-sensitive channel in mammalian sperm could offer hitherto unexplored facets of the link(s) between ecology and reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号