首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 76 毫秒
1.
Hippuris vulgaris L. is a heterophyllic aquatic plant that grows naturally under the different degrees of gravitational stress that are associated with submerged and aerial environments. This characteristic of H. vulgaris was exploited in order to study the interaction of gravitational stress with lignification processes. Lignin content was found to be 4.1% of aerial stem dry weight and 2.6% of submerged stem dry weight. The activity of phenylalanine ammonia-lyase (E.C. 4.3.1.5), an enzyme early in the lignin biosynthetic pathway, paralleled lignin content and was about 5 times higher in aerial than in submerged stems. Another lignin biosynthetic enzyme, peroxidase (E.C. 1.11.1.7), was studied, and although definite conclusions could not be drawn from measurements of total peroxidase activity, different isozyme patterns were observed in aerial and submerged-type shoots. Abscisic acid, which can induce the aerial-type shoot morphology on submerged shoots, probably is not involved in mediating changes in the lignin content of H. vulgaris . These results support the hypothesis that lignin biosynthesis is regulated by gravity.  相似文献   

2.
In natural habitats Marsilea quadrifolia L. produces different types of leaves above and below the water level. In aseptic cultures growth conditions can be manipulated so that leaves of the submerged type are produced continuously. Under such conditions the application of either blue light or an optimal concentration of abscisic acid (ABA) induced the development of aerial-type leaves. When fluridone, an inhibitor of ABA biosynthesis, was added to the culture medium it did not prevent blue light induction of aerial leaf development. During blue light treatment the endogenous ABA level in M. quadrifolia leaves remained unchanged. However, after the plants were transferred to an enriched medium, the ABA level gradually increased, corresponding to a transition in development from the submerged type of leaves to aerial leaves. These results indicate that the blue light signal is not mediated by ABA. Therefore, in the regulation of heterophyllous determination, discrete pathways exist in response to environmental signals.  相似文献   

3.
This research focused on studying how light and endogenous abscisic acid regulate leaf development in Hippuris vulgaris, a species of heterophyllic aquatic plant. Amounts of photosynthetically active radiation greater than 300 micromoles per square meter per second caused submerged H. vulgaris shoots to produce aerial-type leaves. Abscisic acid was not detected in shoots grown under noninducing light quantities (100 micromoles per square meter per second), but was present at 13.4 nanograms per gram fresh weight in shoot tips after plants were exposed to 1 photoperiod of inducing light (500 micromoles per square meter per second). This supports a role for abscisic acid in the high light-induced heterophylly in H. vulgaris, and provides additional support for the general hypothesis that abscisic acid regulates leaf development in heterophyllic aquatic plants. No relationship was observed here between postphotoperiodic light treatments of various red/far red ratios and heterophylly in H. vulgaris.  相似文献   

4.
Comparing nutrient translocation to the rice ( Oryza sativa L. var. Arborio ) shoot during anoxia with the aerobic situation, it was found that anoxia reduced the translocation of K+, phosphorus, Mg2+ and Ca2+ with progressive intensity; Ca2+ translocation was practically zero in the absence of oxygen. The translocation of K+ and phosphorus under anoxia was still considerable and contributed to the maintenance of a high osmotic potential while the blocking of Ca2+ translocation caused a decrease in its concentration in the anoxic coleoptile, possibly favouring high cell wall plasticity in that organ. As anoxia proceeded, amino acids, no longer employed in protein synthesis, accumulated in the coleoptile, reaching spectacular levels [51 mmol kg of tissue-water)−1] and, after 48 h of anoxia, their contribution to the osmotic potential was 80% of that of K+, as against less than 20% in all aerobic treatments. Anoxia caused a reduction in soluble hexose concentrations which, however, were more than compensated osmotically by the accumulation of amino acids.  相似文献   

5.
During the auxin-sensitive phase of root initiation, rates of 3-indolyl- [2-14C] acetic acid (IAA) uptake into the 1 cm bases of shoots of the apple rootstock M.9 ( Malus pumila Mill.) 'in vitro' were not significantly affected by the presence of 10−3 M phloroglucinol (PG) using either liquid or agar-solidified media. The use of a liquid medium did however reduce rates of uptake over a 10-day period of auxin application. The distribution of labelled IAA between the 1-cm base and the shoot remainder was not affected by PG.
Exposure of shoots of the difficult-to-root M.9 and the easy-to-root M.26, to 2.8 × 10−5 M IAA containing [2-14C] IAA revealed no positive correlation between the amount of label taken up by the 1-cm base and rooting performance. M.9 bases absorbed almost twice as much label as M.26 after 9 days but had produced only one-third as many roots. Measurements of label distribution between the 1-cm base and the shoot remainder showed that less than 10% of the label moved to the shoot remainder over a 6-day period of auxin application. Dose-response curves of IAA and rooting over the range 1 × 10−5 M and 3 × 10−3 M showed that root number in M.9 was at an optimum at 1 × 10−3 M IAA after 6 days whilst M.26 required only 1 × 10−4 M for a similar response. These data support the hypothesis that differences in rooting of the two rootstocks reflect differences in the endogenous metabolism of exogenous IAA and not differences in its rates of uptake or distribution in the shoots.  相似文献   

6.
Kuwabara A  Ikegami K  Koshiba T  Nagata T 《Planta》2003,217(6):880-887
In this study, we examined the effects of ethylene and abscisic acid (ABA) upon heterophyllous leaf formation of Ludwigia arcuata Walt. Treatment with ethylene gas resulted in the formation of submerged-type leaves on terrestrial shoots of L. arcuata, while treatments with ABA induced the formation of terrestrial-type leaves on submerged shoots. Measurement of the endogenous ethylene concentration of submerged shoots showed that it was higher than that of terrestrial ones. In contrast, the endogenous ABA concentration of terrestrial shoots was higher than that of submerged ones. To clarify interactions of ethylene and ABA, simultaneous additions of these two plant hormones were examined. When L. arcuata plants were treated with these two plant hormones, the effects of ABA dominated that of ethylene, resulting in the formation of terrestrial-type leaves. This suggests that ABA may be located downstream of ethylene in signal transduction chains for forming heterophyllous changes. Further, ethylene treatment induced the reduction of endogenous levels of ABA in tissues of L. arcuata, resulting in the formation of submerged-type leaves. Thus the effects of ethylene and ABA upon heterophyllous leaf formation are discussed in relationship to the cross-talk between signaling pathways of ethylene and ABA.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - L/W ratio ratio of leaf length to width - LN leaf number - GAs gibberellins  相似文献   

7.
The K+(86Rb) uptake into the roots and the translocation to the shoots of 11-day-old intact wheat seedlings ( Triticum aestivum L. cv. Martonvásári 8) were investigated using plants grown with different K+ supplies. The effects of environmental conditions (darkness, humidity) and of metabolic and transport inhibitors (oligomycin, disalicylidene-propanediamine, 2,4-dinitriphenol, diethylstilbestrol, colchicine) were also studied. Plants with K content of about 0.2 mmol/g dry weight in the root and 0.5 mmol/g dry weight in the shoot (low K status) showed high K+ uptake into the roots and high translocation rates to the shoots. Both transport processes were very low in plants with K content of more than 1.5 and 2.2 mmol/g dry weight in the root and shoot, respectively (high K status).
Darkness and a relative humidity of the air of 100% did not influence K+ uptake by roots, but did inhibit upward translocation and water transport. Inhibition of photosynthesis and treatments with diethylstilbestrol (10−5 mol/dm3), as well as with colchicine resulted in inhibition of translocation in plants of low K status, but these inhibitors had little effect on K+ uptake by the roots. Oligomycin, 2,4-dinitrophenol and diethylstilbestrol (10−4 mol/dm3), however, inhibited K+ uptake by the roots. In general, K+ transport processes were almost unchanged in plants of high K status. It is concluded that only plants of low K status operating with active K+ transport mechanisms are responsive to environmental factors. In high K+ plants the transport processes are passive and are uncoupled from the metabolic energy flow.  相似文献   

8.
Abstract: The submerged leaves of Ludwigia arcuata are much narrower than the terrestrial leaves. Such heterophyllous changes in leaf shape have been observed in other aquatic angiosperms, such as Callitriche heterophylla, Hippuris vulgaris and Ranunculus flabellaris, but the cause of the formation of heterophyllous leaves in L. arcuata seems to be quite different. In contrast to other species, in which the shapes of epidermal cells have been changed, the change of leaf shape in L. arcuata was found to be due to changes in the numbers of epidermal cells aligned in transverse sections. The susceptibility of leaves to changes in shape above and below the water is dependent on the developmental stages: leaves younger than the fourth leaf responded to a change in environment, while leaves older than the fifth leaf did not. Treatment with ACC (1-aminocyclopropane-1-carboxylic acid), a precursor to ethylene, induced the formation of submerged-type leaves on terrestrial shoots, implying that ethylene might be the endogenous factor responsible for the change in leaf shape. The results are discussed with reference to the significance of the acclimation of plants to environmental changes.  相似文献   

9.
Mesophyll cells isolated from Phaseolus vulgaris and Lycopersicon esculentum show decreasing photosynthetic rates when suspended in media containing increasing concentrations of osmoticum. The photosynthetic activity was sensitive to small changes in osmotic potential over a range of sorbitol concentrations from 0.44 M (−1.08 MPa) to 0.77 M (−1.88 MPa). Photorespiration assayed by 14CO2 release in CO2-free air and by 14CO2 release from the oxidation of [1–14C] glycolate also decreased as the osmotic potential of the incubation medium was reduced. The CO2 compensation points of the cells increased with increasing concentration of osmoticum from approximately 60 μ I−11 at −1.08 MPa to 130 μl 1−1 for cells stressed at −1.88 MPa. Changes in photosynthetic and photorespiratory activities occurred at moderate osmotic potentials in these cells suggesting that in whole leaves during a reduction in water potential, non- stomatal inhibition of CO2 assimilation and glycolate pathway metabolism occurs simultaneously with stomatal closure.  相似文献   

10.
Salinity response of a freshwater charophyte, Chara vulgaris   总被引:2,自引:2,他引:0  
Abstract. Chara vulgaris L. growing in an oligohaline lake was adapted to laboratory conditions and subjected to long-term salinity treatments ranging from 0 to 350 mol m 3 NaCl added to the lake water (40–680 mosmol kg 1). Osmotic potential and concentration of the main osmotically active solutes (K+, Na+, Mg2+, Cl and sucrose) in the vacuolar sap of the central internodal cells were estimated. C. vulgaris did regulate turgor but incompletely. Turgor decreased from 335 mosmol kg 1 under control conditions to 52–111 mosmol kg 1 at 350 mol m 3 NaCl. The enhancement of πi was achieved by increase in both ions and sucrose. Sterile and fertile plants differed in their response to osmotic stress. In sterile plants, the ions accounted for about 87% of the vacuolar osmotic potential. The increase of πi under osmotic stress was exclusively due to an accumulation of Na+ and Cl-. In fertile plants, sucrose accounted for about 35% of πi and ions for about 51% Under osmotic stress, sucrose content increased together with the ionic content of Na+ and Cl-.  相似文献   

11.
Cotyledons of watermelon ( Citrullus vulgaris Schrad. cv. Fairfax) were excised from the embryo after 24 h of imbibition and cultured for several days on filter paper with water or abscisic acid (ABA) solution. In some experiments the cotyledons were pretreated with benzyladenine (BA) for times ranging from 5 min to 2 h before transfer to ABA.
A treatment with 10−5 M ABA blocked all developmental parameters examined (growth and increase in appropriate markers for glyoxysome, peroxisome and plastid development). This blocking can be prevented by an initial treatment with 10−4 M BA for 2 h. This pretreatment with BA overrides the action of ABA: the final developmental responses are not just restored to the level of the water control, but they are almost as high as those obtained by treating the cotyledons with BA only. If BA is administered for three days together with ABA the reversal of inhibition is much less efficient.  相似文献   

12.
Anaerobic production of succinate, a common feature in animals able to sustain anoxia, has seldom been reported in plants. By the use of 1H-nuclear magnetic resonance spectroscopy we show here that succinate is produced by rice seedlings (Oryza sativa L. cv. Arborio) subjected to anoxic conditions. Starting from levels below I μmol (g fresh weight)−1 in air, after 48 h of anoxia the levels of alanine, succinate and lactate had increased to 23.8, 5.2 and 1.0 μmol (g fresh weight) −1, respectively, in shoot tissues. Succinate was accumulated in shoots, notably in the coleoptiles, but not in roots of the rice seedlings, suggesting its involvement in rice coleoptile elongation under anoxia. Other possible functions of succinate production in rice seedling, an organism highly tolerant to anoxia, are discussed.  相似文献   

13.
Leaf development was studied in the heterophyllous aquatic plant Hippuris vulgaris in order to characterize the developmental events that lead to the formation of aerial- vs. submerged-type leaves. Recent evidence that abscisic acid regulates leaf development in this species provided a basis for using abscisic acid as a developmental tool to accurately control leaf development. We found that leaf primordia were fully competent to develop into either aerial- or submerged-type leaves until the 10th plastochron, when they were ca. 300 μm long. Also, leaves between about the 10th and 21st plastochron formed sectored transition leaves (i.e., the basipetal portion was composed of aerial-type tissue and the apical portion was composed of submerged-type tissue, or vice versa), indicating that tissue determination as one or the other leaf type occurred on a local, as opposed to whole-leaf, level. Finally, no significant difference was observed between the apical dimensions of aerial or submerged-type shoots. These results indicate that the final determination of Hippuris vulgaris leaves occurs a) relatively late in leaf development, and b) independently of the shoot apex, and provide a basis for using this plant in further studies concerning leaf determination and pattern formation (e.g., stomates, lateral venation) in plants.  相似文献   

14.
When completely submerged, the leaves of some species retain a surface gas film. Leaf gas films on submerged plants have recently been termed 'plant plastrons', analogous with the plastrons of aquatic insects. In aquatic insects, surface gas layers (i.e. plastrons) enlarge the gas–water interface to promote O2 uptake when under water; however, the function of leaf gas films has rarely been considered. The present study demonstrates that gas films on leaves of completely submerged rice facilitate entry of O2 from floodwaters when in darkness and CO2 entry when in light. O2 microprofiles showed that the improved gas exchange was not caused by differences in diffusive boundary layers adjacent to submerged leaves with or without gas films; instead, reduced resistance to gas exchange was probably due to the enlarged water–gas interface (cf. aquatic insects). When gas films were removed artificially, underwater net photosynthesis declined to only 20% of the rate with gas films present, such that, after 7 days of complete submergence, tissue sugar levels declined, and both shoot and root growth were reduced. Internal aeration of roots in anoxic medium, when shoots were in aerobic floodwater in darkness or when in light, was improved considerably when leaf gas films were present. Thus, leaf gas films contribute to the submergence tolerance of rice, in addition to those traits already recognized, such as the shoot-elongation response, aerenchyma and metabolic adjustments to O2 deficiency and oxidative stress.  相似文献   

15.
Rates of oxygen consumption were measured in the geothermal, hot spring fish, Oreochromis alcalicus grahami by stopped flow respirometry. At 37° C, routine oxygen consumption followed the allometric relationship: V o2=0.738 M 0.75, where V o2 is ml O2 h −1 and M is body mass (g). This represents a routine metabolic rate for a 10 g fish at 37° C of 0.415 ml O2 g−1 h −1 (16.4 μmol O2 g −1 h −1). Acutely increasing the temperature from 37 to 42° C significantly elevated the rate of O2 consumption from 0.739 to 0.970 ml O2 g −1 h −1 ( Q 10=l.72). In the field, O. a. grahami was observed to be 'gulping' air from the surface of the water especially in hot springs that exceeded 40° C. O. a. grahami may utilize aerial respiration when O2 requirements are high.  相似文献   

16.
17.
The responses of salt‐sensitive citrus rootstocks to 200 m M NaCl were periodically determined on seedlings of citrange Carrizo ( Citrus sinensis [L.] Osbeck × Poncirus trifoliata [L.] Raf) during 30 days. The stressed seedlings adjusted osmotically, reduced stomatal conductance, increased proline content and ethylene production, and showed massive leaf abscission (92%). The salt shock also increased abscisic acid (ABA) and aminocyclopropane‐1‐carboxylic acid (ACC) in roots, xylem fluid and leaves, and in addition promoted Cl accumulation. The pattern of change of ABA, ACC and proline followed a two‐phase response: an initial transient increase (10‐12 days) overlapping with a gradual and continuous accumulation. This biphasic response appears to be compatible with the proposal that the transitory hormonal rises are induced by the osmotic component of salinity, whereas the Cl increase determines the subsequent accumulations. During the second phase, Cl levels correlated with abscission in leaves. Production of leaf ethylene was also concomitant with the increase in the abscission rate. Salt‐induced abscission was either reduced with CoCl2 (52%) or inhibited with silver thiosulphate (14%). The results suggest that in salt‐stressed citrus, leaf abscission is induced by the chloride build‐up through a mechanism that stimulates leaf ACC synthesis and further conversion to ethylene.  相似文献   

18.
Preference responses of zebrafish to 10−3, 10−4 and 10−5M alanine (Ala) were concentration- dependent. Behavioural responses to copper (Cu) and Cu + Ala mixtures were also assessed. Zebrafish avoided 100 and 10 μg Cu l−1, but not 1 μg l−1. Mixtures of 10−3 m Ala+ 100 μg Cu l−1 and 10 4 M Ala + 10 μg Cu 1−1 were avoided as intensely as was Cu alone. Responses to 10−3 M Ala + 10 or 1 μg Cu l−1 and 10 4 M Ala +1 μg Cu l−1 did not differ statistically from controls (no detectable preference or avoidance). These results demonstrate, firstly, that a concentration of a pollutant avoided by itself (10 μg Cu l−1) may not be avoided when encountered with an attractant chemical stimulus (Ala) and may suppress the preference for an attractant stimulus, and secondly, that a concentration of a pollutant not avoided by itself and not considered deleterious (1 μg Cu l−1) suppresses attraction to Ala (an important constituent of prey odours for many fishes).  相似文献   

19.
Salt tolerance of the reed plant Phragmites communis   总被引:6,自引:0,他引:6  
Reed plants ( Phragmites communis Trinius) were grown at NaCl concentrations up to 500 m M and their growth, mineral contents and leaf blade osmotic potential were determined. Addition of NaCl up to 300 m M did not affect growth significantly. Sucrose, Cl-and Na+ concentrations in the shoots increased with the salinity of the medium and the shoot water content decreased. K+ always contributed most to the leaf osmotic potential. Even in the presence of 250 m M NaCl in the rooting medium, the leaf blade contained only 50 mM Na+, suggesting that the plants have an efficient mechanism for Na+ exclusion. 22Na+ uptake experiments suggested that the retranslo-cation of absorbed Na+ from shoots to the rooting medium lowered the uptake of Na+.  相似文献   

20.
Free and conjugated abscisic acid (ABA) levels in stem-cultured plantlets of potato ( Solanum commersonii Dun, PI 458317) during cold acclimation were measured. The levels of free and conjugated ABA were measured by an enzyme immunoassay (EIA) with rabbit anti-ABA-serum. The use of immunoglobulin G fraction purified from rabbit antiserum and the methylated form of ABA resulted in an improved measuring range (0.01 to 10 pmol ABA) and precision (slope of logit-log plot, −1.35) of EIA, compared to the use of antiserum and free ABA. Estimates of the EIA were consistent with those resulting from a commercial EIA. Under a 4/2°C (day/night) temperature regime, the potato plantlets increased cold hardiness from −5°C (warm-grown control) to −10°C by the 7th day. During the same period, there were two transitory increases in free ABA, the first one three-fold from 1.5 to 5.3 nmol (g dry weight)−1 on the 2nd day and the second one five-fold from 1.5 to 7.6 nmol (g dry weight)−1 on the 6th day. Each increase in ABA concentration was followed by an increase in cold hardiness. There was no significant change in conjugated ABA content (4.2±0.6 nmol [g dry weight]−1) throughout the cold acclimation period. The lack of an interrelationship between levels of free and conjugated ABA suggested that the transitory increase in free ABA during cold acclimation was not a result of the conversion of conjugated ABA. The increase in free ABA due to biosynthesis of ABA during potato cold acclimation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号