首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In Pieris napi, female fitness increases with number of matings, but wild females mate at an unexpectedly low rate. From a sexual conflict perspective this could be because males manipulate female remating, or alternatively, because wild females experience costs associated with remating which are not applicable under laboratory conditions. To get an indication which sex controls remating and/or the different sexes’ relative costs and benefits of remating, we here test whether female mating frequency is affected by male courtship intensity. We found no effect on female mating frequency or lifespan. This indicates that (i) females control remating and their optimal mating frequency is lower compared to males, or (ii) males can manipulate female remating. We argue that both these alternatives may apply simultaneously to P. napiand that they are inseparable.  相似文献   

2.
Female remating behaviour is a key mating system parameter that is predicted to evolve according to the net effect of remating on female fitness. In many taxa, females commonly resist male remating attempts because of the costs of mating. Here, we use replicated populations of the seed beetle Acanthoscelides obtectus selected for either early or late life reproduction and show that 'Early' and 'Late' females evolved different age-specific rates of remating. Early females were more likely to remate with control males as they aged, while Late females were more resistant to remating later in life. Thus, female remating rate decreases with age when direct selection on late-life fitness is operating and increases when such selection is relaxed. Our findings not only demonstrate that female resistance to remating can evolve rapidly, but also that such evolution is in accordance with the genetic interests of females.  相似文献   

3.
By measuring the direct and indirect fitness costs and benefits of sexual interactions, the feasibility of alternate explanations for polyandry can be experimentally assessed. This approach becomes more complicated when the relative magnitude of the costs and/or benefits associated with multiple mating (i.e., remating with different males) vary with female condition, as this may influence the strength and direction of sexual selection. Here, using the model organism Drosophila melanogaster, we test whether the indirect benefits that a nonvirgin female gains by remating (“trading‐up”) are influenced by her condition (body size). We found that remating by small‐bodied, low‐fecundity females resulted in the production of daughters of relatively higher fecundity, whereas the opposite pattern was observed for large‐bodied females. In contrast, remating had no measurable effect on the relative reproductive success of sons from dams of either body size. These results are consistent with a hypothesis based on sexually antagonistic genetic variation. The implications of these results to our understanding of the evolution and consequences of polyandry are discussed.  相似文献   

4.
The accessory gland protein (Acp) ejaculate molecules of male Drosophila melanogaster mediate sexual selection and sexual conflict at the molecular level. However, to date no studies have comprehensively measured the timing and magnitude of fitness benefits to males of transferring specific Acps. This is an important omission because without this information it is not possible to fully understand the strength and form of selection acting on adaptations such as Acps. Here, we measured the fitness benefits to males of ejaculate sex peptide (SP) transfer. SP is of interest because it is a candidate for mediating sexual conflict: its frequent receipt reduces female fitness. In single matings with virgin females SP is known to increase egg laying and decrease receptivity. Hence, we predicted that SP could: (i) boost a male’s absolute paternity by increasing offspring production and delaying female remating and/or (ii) boost relative paternity share. We tested these predictions using two different lines of SP‐lacking males, in both two‐mating and free‐mating assay conditions. SP transfer conferred higher absolute, but not relative, male reproductive success. In matings with virgin females, SP transfer increased mating productivity and delayed remating and hence the onset of sperm competition. In already mated females, SP transfer did not elevate absolute progeny production, but did increase intermating intervals and hence the period over which a male could gain paternity. Consistent with this, under free‐mating conditions over an extended period, we detected a ‘per‐mating’ fitness benefit for males transferring SP. These benefits are consistent with a role for SP in mediating conflict, with SP acting to maximize short‐term fitness benefits for males.  相似文献   

5.
Female remating rate dictates the level of sperm competition in a population, and extensive research has focused on how sperm competition generates selection on male ejaculate allocation. Yet the way ejaculate allocation strategies in turn generate selection on female remating rates, which ultimately influence levels of sperm competition, has received much less consideration despite increasing evidence that both mating itself and ejaculate traits affect multiple components of female fitness. Here, we develop theory to examine how the effects of mating on female fertility, fecundity and mortality interact to generate selection on female remating rate. When males produce more fertile ejaculates, females are selected to mate less frequently, thus decreasing levels of sperm competition. This could in turn favour decreased male ejaculate allocation, which could subsequently lead to higher female remating. When remating simultaneously increases female fecundity and mortality, females are selected to mate more frequently, thus exacerbating sperm competition and favouring male traits that convey a competitive advantage even when harmful to female survival. While intuitive when considered separately, these predictions demonstrate the potential for complex coevolutionary dynamics between male ejaculate expenditure and female remating rate, and the correlated evolution of multiple male and female reproductive traits affecting mating, fertility and fecundity.  相似文献   

6.
In insects, repeated mating by females may have direct effects on female fecundity, fertility, and longevity. In addition, a female's remating rate affects her fitness through mortality costs of male harassment and ecological risks of mating such as predation. We analyse a model where these female fitness factors are put into their life-history context, and traded against each other, while accounting for limitations because of mate availability. We solve analytically for the condition when female multiple mating will evolve. We show that the probability that a female mates with a courting male decreases with increases in population density. The extent of conflict between the sexes thus automatically becomes larger at higher densities. However, because at higher densities females meet males at a higher rate, the resulting ESS female remating rate is independent of population density. The female remating probability is in conflict with male adaptations that increase male mating rate by persuading or forcing females to mate, and also in conflict with male adaptations for protecting the own sperm from being removed by future female mates. We show that the relative importance of these conflicts depends on population density.  相似文献   

7.
An evolutionary conflict often exists between the sexes in regard to female mating patterns. Females can benefit from polyandry, whereas males mating with polyandrous females lose reproductive opportunities because of sperm competition. Where this conflict occurs, the evolution of mechanisms whereby males can control female remating, often at a fitness cost to the female, are expected to evolve. The fitness cost to the female will be increased in systems where a few high status males monopolise mating opportunities and thus have limited sperm supplies. Here we show that in the cockroach Nauphoeta cinerea, a species where males enforce female monogamy in the first reproductive cycle, males that have become sperm depleted continue to be able to manipulate female remating behaviour. Although the manipulation severely decreases fecundity in females mated to sperm-depleted males, males benefit, increasing their relative fitness by preventing other males from reproducing. Our results suggest that there is selection on maintaining the mechanism of manipulation rather than maintaining sperm numbers. Taken with previous research on sexual conflict in N. cinerea, this study suggests that the causes and consequences of sexual conflict are complex and can change across the life history of an individual.  相似文献   

8.
Animals of many species accept or solicit recurring copulations with the same partner; i.e., show repeated mating. An evolutionary explanation for this excess requires that the advantages of repeated mating outweigh the costs, and that behavioral components of repeated mating are genetically influenced. There can be benefits of repeated mating for males when there is competition for fertilizations or where the opportunities for inseminating additional mates are rare or unpredictable. The benefits to females are less obvious and, depending on underlying genetic architecture, repeated mating may have evolved as a correlated response to selection on males. We investigated the evolution of repeated mating with the same partner in the burying beetle Nicrophorus vespilloides by estimating the direct and indirect fitness benefits for females and the genetics of behavior underlying repeated mating. The number of times a female mated had minimal direct and no indirect fitness benefits for females. The behavioral components of repeated mating (mating frequency and mating speed) were moderately negatively genetically correlated in males and uncorrelated in females. However, mating frequency and mating speed were strongly positively genetically correlated between males and females. Our data suggest that repeated mating by female N. vespilloides may have evolved as a correlated response to selection on male behavior rather than in response to benefits of repeated mating for females.  相似文献   

9.
If females are unable to discriminate among males before mating,remating by females that store sperm may have evolved as a hedgeagainst having only "costly" mates (less preferred males thatreduce her fitness). However, the benefit of remating is notguaranteed because she can also mate by chance with anothercostly male. We devised a model to explain the evolution offemale remating by representing female fitness as a functionof the proportion of costly mates. We examined the effect ofa linear, a concave-up, and a concave-down fitness functionand found that only the latter favors the evolution of femaleremating. With a concave-down function, females mating with50% costly mates have nearly the same fitness as do femaleswith none. A biological interpretation for a concave-down functionis that sperm from good males are better at competing with spermfrom costly males or are more preferred by females. A concave-upfunction implies the reverse, whereas a linear function willoccur when sperm are equally competitive. We review specificsituations in nature that might produce a concave-down functionand find evidence that sterility and intragenomic conflict aretwo phenomena capable of driving the evolution of female rematingby our model.  相似文献   

10.
Classic sex roles depict females as choosy, but polyandry is widespread. Empirical attempts to understand the evolution of polyandry have often focused on its adaptive value to females, whereas 'convenience polyandry' might simply decrease the costs of sexual harassment. We tested whether constraint-free female strategies favour promiscuity over mating selectivity through an original experimental design. We investigated variation in mating behaviour in response to a reversible alteration of sexual dimorphism in body mass in the grey mouse lemur, a small primate where female brief sexual receptivity allows quantifying polyandry. We manipulated body condition in captive females, predicting that convenience polyandry would increase when females are weaker than males, thus less likely to resist their solicitations. Our results rather support the alternative hypothesis of 'adaptive polyandry': females in better condition are more polyandrous. Furthermore, we reveal that multiple mating incurs significant energetic costs, which are strikingly symmetrical between the sexes. Our study shows that mouse lemur females exert tight control over mating and actively seek multiple mates. The benefits of remating are nevertheless not offset by its costs in low-condition females, suggesting that polyandry is a flexible strategy yielding moderate fitness benefits in this small mammal.  相似文献   

11.
Female mating rate is fundamental to evolutionary biology as it determines the pattern of sexual selection and sexual conflict. Despite its importance, the genetic basis for female remating rate is largely unknown and has only been demonstrated in one species. In paternally investing species there is often a conflict between the sexes over female mating rate, as females remate to obtain male nutrient donations and males try to prevent female remating to ensure high fertilization success. Butterflies produce two types of sperm: fertilizing, eupyrene sperm, and large numbers of nonfertile, apyrene sperm. The function of apyrene sperm in the polyandrous, paternally investing green‐veined white butterfly, Pieris napi, is to fill the female’s sperm storage organ thereby reducing her receptivity. However, there is large variation in number of apyrene sperm stored. Here, I examine the genetic basis to this variation, and if variation in number of apyrene sperm stored is related to females’ remating rate. The number of apyrene sperm stored at the time of remating has a genetic component and is correlated with female remating tendency, whereas no such relationship is found for fertilizing sperm. The duration of the nonreceptivity period in P. napi also has a genetic component and is inversely related to the degree of polyandry. Sexual conflict over female remating rate appears to be present in this species, with males using their apyrene sperm to exploit a female system designed to monitor sperm in storage. Ejaculates with a high proportion of nonfertile sperm may have evolved to induce females to store more of these sperm, thereby reducing remating. As a counter‐adaptation, females have evolved a better detection system to regain control over their remating rate. Sexually antagonistic co‐evolution of apyrene sperm number and female sperm storage may be responsible for ejaculates with predominantly nonfertile sperm in this butterfly.  相似文献   

12.
Mate choice for novel partners should evolve when remating with males of varying genetic quality provides females with fitness‐enhancing benefits. We investigated sequential mate choice for same or novel mating partners in females of the cellar spider Pholcus phalangioides (Pholcidae) to understand what drives female remating in this system. Pholcus phalangioides females are moderately polyandrous and show reluctance to remating, but double‐mated females benefit from a higher oviposition probability compared to single‐mated females. We exposed mated females to either their former (same male) or a novel mating partner and assessed mating success together with courtship and copulatory behaviours in both sexes. We found clear evidence for mate discrimination: females experienced three‐fold higher remating probabilities with novel males, being more often aggressive towards former males and accepting novel males faster in the second than in the first mating trial. The preference for novel males suggests that remating is driven by benefits derived from multiple partners. The low remating rates and the strong last male sperm precedence in this system suggest that mating with novel partners that represent alternative genotypes may be a means for selecting against a former mate of lower quality.  相似文献   

13.
Sexual conflict over mating rate often implies that males persist at frequently harassing females to gain matings while females resist mating attempts. In water striders, females can resist by engaging in vigorous pre‐copulatory struggles to dislodge males, but alternative means of resistance have seldom been investigated. Contrary to males, female resistance has not been investigated as a repeatable behaviour. We used Gerris buenoi to investigate the capacity to abbreviate struggles and the tendency to hide off the water as two potential female resistance traits. Specifically, we asked whether these behaviours are repeatable and whether they vary according to sexual conflict intensity and past mating experience. Also, we studied the possible connections between these behaviours and traits linked to fitness, namely endured harassment and mating activity. The capacity to abbreviate struggles was poorly repeatable and decreased with sexual conflict intensity and endured harassment. It seems to be mainly determined by the social environment and by recent events related to sexual conflict. The tendency to hide off the water was significantly repeatable across sexual conflict intensities and can be considered as a repeatable behaviour. Hiding frequently off the water allowed females to decrease the harassment endured by females and may enhance female fitness. In nature, hiding is more readily and more frequently observed than pre‐copulatory struggles. Directly associating hiding off water with female fitness would confirm that this consistent phenotype contributes to sexually antagonistic female resistance.  相似文献   

14.
Conflict between the sexes over mating decision may result in antagonistic coevolution in structures that increase control over copulation. In Aquarius paludum both females and males have long abdominal spines. We tested the hypothesis that abdominal spines increase female ability to resist male mating attempts and reduce the costs of mating in A. paludum. We manipulated female spine length and observed female mating and egg-production rate in two different studies. We found that females with intact spines succeeded to reject male mating attempt more often than females with removed spines. Intact females also mated less often than females with removed or shortened spines. Male presence and mating rate increased female egg number. Our results thus support the hypothesis that abdominal spines help female to reject male mating attempts but contrary to predictions, we found that A. paludum females somehow benefit from multiple matings in spite of the sexual conflict.  相似文献   

15.
Sexual conflict facilitates the evolution of traits that increase the reproductive success of males at the expense of components of female fitness. Theory suggests that indirect benefits are unlikely to offset the direct costs to females from antagonistic male adaptations, but empirical studies examining the net fitness pay‐offs of the interaction between the sexes are scarce. Here, we investigate whether matings with males that invest intrinsically more into accessory gland tissue undermine female lifetime reproductive success (LRS) in the cricket Teleogryllus oceanicus. We found that females incur a longevity cost of mating that is proportional to the partner’s absolute investment into the production of accessory gland products. However, male accessory gland weight positively influences embryo survival, and harmful ejaculate‐induced effects are cancelled out when these are put in the context of female LRS. The direct costs of mating with males that sire offspring with higher viability are thus compensated by direct and possibly indirect genetic benefits in this species.  相似文献   

16.
The evolution of female multiple mating is best understood by consideration of male and female reproductive perspectives. Females should usually be selected to remate at their optimum frequencies whereas males should be selected to manipulate female remating to their advantage. Female remating behavior may therefore be changed by variation of male and female traits. In this study, our objective was to separate the effects of female and male strains on female remating for the adzuki bean beetle, Callosobruchus chinensis, for which there is interstrain variation in female remating frequency. We found that interstrain variation in female remating is primarily attributable to female traits, suggesting genetic variation in female receptivity to remating in C. chinensis. Some interstrain variation in female remating propensity was attributable to an interaction between female and male strains, however, with the males of some strains being good at inducing nonreceptivity in females from one high-remating strain whereas others were good at inducing copulation in nonvirgin females from the high-remating strain. There is, therefore, interstrain variation in male ability to deter females from remating and in male ability to mate successfully with nonvirgin females. These results suggest that mating traits have evolved along different trajectories in different strains of C. chinensis.  相似文献   

17.
Females of most insect species maximize their fitness by mating more than once. Yet, some taxa are monandrous and there are two distinct scenarios for the maintenance of monandry. While males should always benefit from inducing permanent non‐receptivity to further mating in their mate, this is not necessarily true for females. Since females benefit from remating in many species, cases of monandry may reflect successful male manipulation of female remating (i.e. sexual conflict). Alternatively, monandry may favor both mates, if females maximize their fitness by mating only once in their life. These two hypotheses for the maintenance of monandry make contrasting predictions with regards to the effects of remating on female fitness. Here, we present an experimental test of the above hypotheses, using the monandrous housefly (Musca domestica) as a model system. Our results showed that accessory seminal fluid substances that males transfer to females during copulation have a dual effect: they trigger female non‐receptivity but also seem to have a nutritional effect that could potentially enhance female fitness. These results suggest that monandry is maintained in house flies despite potential benefits that females would gain by mating multiply.  相似文献   

18.
Abstract 1. Conspicuousness to mates can bring benefits to both males (increased mating success) and females (reduced search costs), but also brings costs (e.g. increased predation and parasitism). Assassin bugs, Rhinocoris tristis, lay egg clutches either on exposed stems or hidden under leaves. Males guard eggs against parasitoids. Guarding males are attractive to females who add subsequent clutches to the brood. This is an excellent opportunity to study the effects of conspicuousness on the fitness of males and females. 2. Using viable eggs in a multi‐clutch brood as a correlate of fitness, the present study examined whether laying eggs on stems affected (1) female fitness, through exposure to parasitism and cannibalism, and (2) male fitness, through attracting further females. 3. Stem broods were more parasitised. However, males on stems accumulated more mates and more eggs, a net benefit even accounting for parasitism. The eggs gained from being on a stem were cannibalised. By contrast, higher mortality on stems suggests that females should gain by ovipositing on leaves. To the extent that egg viability represents fitness, male and female interests may therefore differ. This suggests a potential for sexual conflict that may affect other species with male care. 4. Despite higher costs, females actually initiated more broods, and subsequently added bigger clutches to broods, on stems than under leaves. This suggests either that viable eggs do not reflect fitness, or that females laid in unfavourable locations. The key is now to address lifetime fitness, since unmeasured factors may affect offspring viability post‐hatching, and to investigate who controls the location of oviposition in R. tristis.  相似文献   

19.
The evolution of female mate choice, broadly defined to include any female behaviour or morphology which biases matings towards certain male phenotypes, is traditionally thought to result from direct or indirect benefits which females acquire when mating with preferred males. In contrast, new models have shown that female mate choice can be generated by sexual conflict, where preferred males may cause a fitness depression in females. Several studies have shown that female Drosophila melanogaster bias matings towards large males. Here, we use male size as a proxy for male attractiveness and test how female fitness is affected by reproducing with large or small males, under two different male densities. Females housed with large males had reduced lifespan and aged at an accelerated rate compared with females housed with small males, and increased male density depressed female fitness further. These fitness differences were due to effects on several different fitness components. Female fitness covaried negatively with male courtship rate, which suggests a cost of courtship. Mating rate increased with male size, whereas female fitness peaked at an intermediate mating rate. Our results suggest that female mate choice in D. melanogaster is, at least in part, a by-product of sexual conflict over the mating rate.  相似文献   

20.
Mating rate optima often differ between the sexes: males may increase their fitness by multiple mating, but for females multiple mating confers little benefit and can often be costly (especially in taxa without nuptial gifts or mala parental care). Sexually antagonistic evolution is thus expected in traits related to mating rates under sexual selection. This prediction has been tested by multiple studies that applied experimental evolution technique, which is a powerful tool to directly examine the evolutionary consequences of selection. Yet, the results so far only partly support the prediction. Here, we provide another example of experimental evolution of sexual selection, by applying it for the first time to the mating behaviour of a seed beetle Callsorobruchus chinensis. We found a lower remating rate in polygamy-line females than in monogamy-line (i.e. no sexual selection) females after 21 generations of selection. Polygamy-line females also showed a longer duration of first mating than monogamy-line females. We found no effect of male evolutionary lines on the remating rate or first mating duration. Though not consistent with the original prediction, the current and previous studies collectively suggest that the observed female-limited responses may be a norm, which is also consistent with the conceptual advances in the last two decades of the advantages and limitations of experimental evolution technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号