首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 427 毫秒
1.
Genotype‐by‐genotype (G×G) interactions are an essential requirement for the coevolution of hosts and parasites, but have only been documented in a small number of animal model systems. G×G effects arise from interactions between host and pathogen genotypes, such that some pathogen strains are more infectious in certain hosts and some hosts are more susceptible to certain pathogen strains. We tested for G×G interactions in the gypsy moth (Lymantria dispar) and its baculovirus. We infected 21 full‐sib families of gypsy moths with each of 16 isolates of baculovirus and measured the between‐isolate correlations of infection rate across host families for all pairwise combinations of isolates. Mean infectiousness varied among isolates and disease susceptibility varied among host families. Between‐isolate correlations of infection rate were generally less than one, indicating nonadditive effects of host and pathogen type consistent with G×G interactions. Our results support the presence of G×G effects in the gypsy moth–baculovirus interaction and provide empirical evidence that correlations in infection rates between field‐collected isolates are consistent with values that mathematical models have previously shown to increase the likelihood of pathogen polymorphism.  相似文献   

2.
Adaptation of the gypsy moth to an unsuitable host plant   总被引:2,自引:0,他引:2  
The pattern of adaptation with regard to life history traits and traits thought to be important in feeding habits of caterpillars in two populations of the gypsy moth (Lymantria dispar L.; Lepidoptera: Lymantriidae) originating from the locust tree (Robinia pseudoacacia; Fabaceae) and oak (Quercus petrea; Fagaceae) forests were investigated in the laboratory. The Robinia population has experienced unsuitable locust tree leaves as an exclusive food resource for more than 40 years. Since Quercus species are the principal host plants of the gypsy moth, the specific objectives of this study have been to measure the extent of differentiation between ancestral and derived populations in several life history traits (egg-to-adult viability, duration of larval and pupal stages, and pupal weight) and nutritional indices – relative growth rate (RGR), relative consumption rate (RCR), assimilation efficiency (AD), gross growth efficiency (ECI), and net growth efficiency (ECD). Significant differences between the Quercus and Robinia populations were detected in pupal duration, RGR, RCR, and AD. The presence of a significant population × host interaction in traits such as preadult viability, duration of pupal stage, RGR, and ECI suggests that adaptation of the gypsy moth to the unsuitable host might be ongoing. Using a full-sib design, we screened for genetic variation in life history traits within both populations, and examined the genetic correlations of performance across oak and locust leaves within both populations. The genetic variances for analyzed life history traits were lower under conditions that are commonly encountered in nature. Our data show that positive cross-host genetic correlations preponderate within both populations.  相似文献   

3.
In some species females compete for food, foraging territories, mating, and nesting sites. Competing females can exhibit morphological, physiological, and behavioral adaptations typical of males, which are commonly considered as secondary sexual traits. Competition and the development of traits increasing competitiveness require much energy and may exert adverse effects on fecundity and survival. From an evolutionary perspective, positive selection for increased competitiveness would then result in evolution of reduced values for traits related to fitness such as fecundity and survival. There is recent evidence for such evolutionary trade‐offs involving male competition, but no study has considered competing females so far. Using data from competitions for dominance in cows (Bos taurus), we found negative genetic correlations between traits providing success in competition, that is, fighting ability and fitness traits related to milk production and with fertility (the inverse of parity‐conception interval). Fighting ability also showed low but positive genetic correlations with “masculine” morphological traits, and negative correlations with “feminine” traits. A genetic change in traits over time has occurred due to selection on competitiveness, corresponding to an evolutionary process of “masculinization” counteracting the official selection for milk yield. Similar evolutionary trade‐off between success in competition and fitness components may be present in various species experiencing female competition.  相似文献   

4.
Phenotypic variation is common in most pathogens, yet the mechanisms that maintain this diversity are still poorly understood. We asked whether continuous host variation in susceptibility helps maintain phenotypic variation, using experiments conducted with a baculovirus that infects gypsy moth (Lymantria dispar) larvae. We found that an empirically observed tradeoff between mean transmission rate and variation in transmission, which results from host heterogeneity, promotes long‐term coexistence of two pathogen types in simulations of a population model. This tradeoff introduces an alternative strategy for the pathogen: a low‐transmission, low‐variability type can coexist with the high‐transmission type favoured by classical non‐heterogeneity models. In addition, this tradeoff can help explain the extensive phenotypic variation we observed in field‐collected pathogen isolates, in traits affecting virus fitness including transmission and environmental persistence. Similar heterogeneity tradeoffs might be a general mechanism promoting phenotypic variation in any pathogen for which hosts vary continuously in susceptibility.  相似文献   

5.
We present a field test of the genetically based performance trade‐off hypothesis for resource specialization in a population of the moth Rothschildia lebeau whose larvae primarily feed on three host plant species. Pairwise correlations between growth vs. growth, survival vs. survival and growth vs. survival across the different hosts were calculated, using families (sibships) as the units of analysis. Of 15 pairwise correlations, 14 were positive, 5 significantly so and none were negative. The same pattern was found using complementary growth and survival data from the laboratory. Overall, we found no evidence of negative genetic correlations in cross‐host performance that would be indicative of performance trade‐offs in this population. Rather, variation among families in performance appears to reflect ‘general vigour’ whereby families that perform well on one host perform well across multiple hosts. We discuss the implications of positive genetic correlations in cross‐host performance in terms of the ecology and evolution of host range. We argue that this genetic architecture facilitates colonization of novel hosts and recolonization of historical hosts, therefore contributing to host shifts, host range expansions, biological invasions and introductions, and host ranges that are regionally broad but locally narrow.  相似文献   

6.
Variation in thermal performance within and between populations provides the potential for adaptive responses to increasing temperatures associated with climate change. Organisms experiencing temperatures above their optimum on a thermal performance curve exhibit rapid declines in function and these supraoptimal temperatures can be a critical physiological component of range limits. The gypsy moth, Lymantria dispar (L.) (Lepidoptera: Erebidae), is one of the best‐documented biological invasions and factors driving its spatial spread are of significant ecological and economic interest. The present study examines gypsy moth sourced from different latitudes across its North American range for sensitivity to high temperature in constant temperature growth chamber experiments. Supraoptimal temperatures result in higher mortality in northern populations compared with populations from the southern range extent (West Virginia and coastal plain of Virginia, U.S.A.). Sublethal effects of high temperature on traits associated with fitness, such as smaller pupal mass, are apparent in northern and West Virginia populations. Overall, the results indicate that populations near the southern limits of the range are less sensitive to high temperatures than northern populations from the established range. However, southern populations are lower performing overall, based on pupal mass and development time, relative to northern populations. This suggests that there may be a trade‐off associated with decreased heat sensitivity in gypsy moth. Understanding how species adapt to thermal limits and possible fitness trade‐offs of heat tolerance represents an important step toward predicting climatically driven changes in species ranges, which is a particularly critical consideration in conservation and invasion ecology.  相似文献   

7.
Trade‐offs are fundamental to evolutionary outcomes and play a central role in eco‐evolutionary theory. They are often examined by experimentally selecting on one life‐history trait and looking for negative correlations in other traits. For example, populations of the moth Plodia interpunctella selected to resist viral infection show a life‐history cost with longer development times. However, we rarely examine whether the detection of such negative genetic correlations depends on the trait on which we select. Here, we examine a well‐characterized negative genotypic trade‐off between development time and resistance to viral infection in the moth Plodia interpunctella and test whether selection on a phenotype known to be a cost of resistance (longer development time) leads to the predicted correlated increase in resistance. If there is tight pleiotropic relationship between genes that determine development time and resistance underpinning this trade‐off, we might expect increased resistance when we select on longer development time. However, we show that selecting for longer development time in this system selects for reduced resistance when compared to selection for shorter development time. This shows how phenotypes typically characterized by a trade‐off can deviate from that trade‐off relationship, and suggests little genetic linkage between the genes governing viral resistance and those that determine response to selection on the key life‐history trait. Our results are important for both selection strategies in applied biological systems and for evolutionary modelling of host–parasite interactions.  相似文献   

8.
Life‐history theory postulates that evolution is constrained by trade‐offs (i.e., negative genetic correlations) among traits that contribute to fitness. However, in organisms with complex life cycles, trade‐offs may drastically differ between phases, putatively leading to different evolutionary trajectories. Here, we tested this possibility by examining changes in life‐history traits in an aphid species that alternates asexual and sexual reproduction in its life cycle. The quantitative genetics of reproductive and dispersal traits was studied in 23 lineages (genotypes) of the bird cherry‐oat aphid Rhopalosiphum padi, during both the sexual and asexual phases, which were induced experimentally under specific environmental conditions. We found large and significant heritabilities (broad‐sense) for all traits and several negative genetic correlations between traits (trade‐offs), which are related to reproduction (i.e., numbers of the various sexual or asexual morphs) or dispersal (i.e., numbers of winged or wingless morphs). These results suggest that R. padi exhibits lineage specialization both in reproductive and dispersal strategies. In addition, we found important differences in the structure of genetic variance–covariance matrices ( G ) between phases. These differences were due to two large, negative genetic correlations detected during the asexual phase only: (1) between fecundity and age at maturity and (2) between the production of wingless and winged parthenogenetic females. We propose that this differential expression in genetic architecture results from a reallocation scheme during the asexual phase, when sexual morphs are not produced. We also found significant G × E interaction and nonsignificant genetic correlations across phases, indicating that genotypes could respond independently to selection in each phase. Our results reveal a rather unique situation in which the same population and even the same genotypes express different genetic (co)variation under different environmental conditions, driven by optimal resource allocation criteria.  相似文献   

9.
Summary The genetic and plastic components of polyphagy were investigated in a population ofLymantria dispar, the gypsy moth. A simple genetic experiment assessed the expression of (1) genetic variability in life history traits within each of four environments, (2) genetic variability in diet breadth, expressed as a change in the ranks of family performance across hosts, and (3) homeostasis (equivalent performance by a family across hosts) versus phenotypic plasticity (variable performance by a family across hosts). Sibs from each of 14 families, randomly selected from a single population, were reared on four diets: two natural hosts — chestnut and red oak, and two synthetic hosts — a standard laboratory diet and a low-protein version of this diet. Average population performance, measured in terms of development time and pupal weight, was better on standard laboratory diet than on low-protein diet, and was equal on chestnut and red oak for pupal weight, but better on chestnut oak for development time. Average population performance provided no information about the genetic component of host use ability. The gypsy moth expressed genetic variation in development time within each host environment and in pupal weight within natural host environments. Phenotypic plasticity was expressed by a significant number of families in development time and pupal weight across synthetic hosts and, to a lesser extent, across natural hosts. It was only across natural hosts that genetic variation in diet breadth was expressed, and this was confined to females. Genetic variability in diet breadth may be maintained in this species as a consequence of the unpredictability of its food sources.  相似文献   

10.
  • Trade‐offs between reproduction, growth and survival arise from limited resource availability in plants. Environmental stress is expected to exacerbate these negative correlations, but no studies have evaluated variation in life‐history trade‐offs throughout species geographic ranges. Here we analyse the costs of growth and reproduction across the latitudinal range of the widespread herb Plantago coronopus in Europe.
  • We monitored the performance of thousands of individuals in 11 populations of P. coronopus, and tested whether the effects of growth and reproduction on a set of vital rates (growth, probability of survival, probability of reproduction and fecundity) varied with local precipitation and soil fertility. To account for variation in internal resources among individuals, we analysed trade‐offs correcting for differences in size.
  • Growth was negatively affected by previous growth and reproduction. We also found costs of growth and reproduction on survival, reproduction probability and fecundity, but only in populations with low soil fertility. Costs also increased with precipitation, possibly due to flooding‐related stress. In contrast, growth was positively correlated with subsequent survival, and there was a positive covariation in reproduction between consecutive years under certain environments, a potential strategy to exploit temporary benign conditions.
  • Overall, we found both negative and positive correlations among vital rates across P. coronopus geographic range. Trade‐offs predominated under stressful conditions, and positive correlations arose particularly between related traits like reproduction investment across years. By analysing multiple and diverse fitness components along stress gradients, we can better understand life‐history evolution across species’ ranges, and their responses to environmental change.
  相似文献   

11.
In this study, we tested (1) whether non-North American gypsy moth strains are susceptible to North American isolates of Entomophaga maimaiga and (2) the potential for erosion in the efficacy of E. maimaiga in controlling gypsy moth. We used bioassays to assess the variability in virulence (measured as time to death) as well as fitness of the pathogen (measured as spore production) in four gypsy strains challenged with six E. maimaiga isolates, using host and pathogen strains originating from Asia, Europe, and North America. We found that all E. maimaiga isolates tested were pathogenic to all strains of Lymantria dispar, regardless of the geographical origin of the fungal isolate, with at least 86% mortality for all combinations of fungal isolate and gypsy moth strain. We therefore conclude that Asian gypsy moths are susceptible to North American strains of E. maimaiga. No significant interactions between fungal isolates and gypsy moth strains with regard to time to death were found, indicating that each fungal isolate had the same overall effect on all the gypsy moth strains tested. However, fungal isolates differed significantly with regard to virulence, with a Russian isolate being the slowest to kill gypsy moth (5.1+/-0.1 days) and a Japanese isolate being the overall fastest to kill its host (4.0+/-0.1 days). Fungal isolates also differed in fitness, with variability in types of spores produced. These differences in virulence and fitness were, however, not correlated with geographical origin of the fungal isolate. Gypsy moth strains had no or only little effect on fungal virulence and fitness. Based on our studies with laboratory-reared gypsy moth strains, erosion of successful control of gypsy moth by E. maimaiga seems unlikely.  相似文献   

12.
Complex interactions within multitrophic communities are fundamental to the evolution of individual species that reside within them. One common outcome of species interactions are fitness trade‐offs, where traits adaptive in some circumstances are maladaptive in others. Here, we identify a fitness trade‐off between fecundity and survival in the cynipid wasp Callirhytis quercusbatatoides that induces multichambered galls on the stem of its host plant Quercus virginiana. We first quantified this trade‐off in natural populations by documenting two relationships: a positive association between the trait gall size and fecundity, as larger galls contain more offspring, and a negative association between gall size and survival, as larger galls are attacked by birds at a higher rate. Next, we performed a field‐based experimental evolution study where birds were excluded from the entire canopy of 11 large host trees for five years. As a result of the five‐year release from avian predators, we observed a significant shift to larger galls per tree. Overall, our study demonstrates how two opposing forces of selection can generate stabilizing selection on a critical phenotypic trait in wild populations, and how traits can evolve rapidly in the predicted direction when conditions change.  相似文献   

13.
Although wound-induced responses in plants are widespread, neither the ecological nor the evolutionary significance of phytochemical induction is clear. Several studies have shown, for example, that induced responses can act against both plant pathogens and herbivores simultaneously. We present the first evidence that phytochemical induction can inhibit a pathogen of the herbivore responsible for the defoliation. In 1990, we generated leaf damage by enclosing gypsy moth larvae on branches of red oak trees. We then inoculated a second cohort of larvae with a nuclear polyhedrosis virus (LdNPV) on foliage from the damaged branches. Larvae were less susceptible to virus consumed on foliage from branches with increasing levels of defoliation, and with higher concentrations of gallotannin. Defoliation itself was not related to any of our chemistry measures. Field sampling supported the results of our experiments: death from virus among feral larvae collected from unmanipulated trees was also negatively correlated with defoliation. In 1991, defoliation and gallotannin were again found to inhibit the virus. In addition, gallotannin concentrations were found to be positively correlated with defoliation the previous year. Compared with previous results that demonstrated a delecterious effect of induction on gypsy moth pupal weight and fecundity, the inhibition of the virus should confer an advantage to the gypsy moth. Since leaf damage levels increase as gypsy moth density increases, and since leaf damage inhibits the gypsy moth virus, there is the potential for positive feedback in the system. If phytochemical induction in red oak can inhibit an animal pathogen such as LdNPV, it suggests to us that induction in red oak is a generalized response to tissue damage rather than an adaptive defense against herbivores.  相似文献   

14.
Correlated responses to bi‐directional selection on thorax length, examined on several life‐history traits and chromosome inversion polymorphisms, have revealed apparent novel trade‐offs in Drosophila ananassae. We provide evidence of trade‐offs between hatching time and pupal period, pupal period and egg‐pupa development time, and pupal period and larval development time (LDT). Body size shows positive correlations with ovariole number, LDT and DT (egg–fly). We provide evidence of sexual dimorphism for trade‐offs between longevity and body size and starvation and longevity in females only. Trade‐offs between wing/thorax (W/T) ratio and longevity, W/T ratio and starvation, and DT (egg‐ fly) and longevity are evident in males only. Sexual dimorphism is also evident for inversion polymorphism with body size and longevity. A longevity assay suggests that low line females outlived high line females whereas high line males outlived low line males. The mean longevity in males is negatively correlated with the 2L‐ST and 3R‐ST arrangement frequencies whereas the 3L‐ST arrangement frequency is positively correlated with the mean longevity in males but opposite arrangements are found in females. Absolute starvation resistance is negatively correlated with 2L‐ST and 3R‐ST chromosome arrangements and results in a trade‐off between longevity and absolute starvation resistance in females. Analyses of fecundity, hatchability, and viabilities based on age intervals in both G10 and G13 suggest that the early reproduction is favoured in D. ananassae. The productivity percentage is highest in the high line and there is no effect of late reproduction on it. Overall, we provide some unravelled trade‐offs and striking sex differences, which may help in understanding the life‐history evolution of the species. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 90 , 669–685.  相似文献   

15.
Immune responses are costly, causing trade‐offs between defense and other host life history traits. Aphids present a special system to explore the costs associated with immune activation since they are missing several humoral and cellular mechanisms thought important for microbial resistance, and it is unknown whether they have alternative, novel immune responses to deal with microbial threat. Here we expose pea aphids to an array of heat‐killed natural pathogens, which should stimulate immune responses without pathogen virulence, and measure changes in life‐history traits. We find significant reduction in lifetime fecundity upon exposure to two fungal pathogens, but not to two bacterial pathogens. This finding complements recent genomic and immunological studies indicating that pea aphids are missing mechanisms important for bacterial resistance, which may have important implications for how aphids interact with their beneficial bacterial symbionts. In general, recent exploration of the immune systems of non‐model invertebrates has called into question the generality of our current picture of insect immunity. Our data highlight that taking an ecological approach and measuring life‐history traits to a broad array of pathogens provides valuable information that can complement traditional approaches.  相似文献   

16.
Evaluating trade‐offs in life‐history traits of plant pathogens is essential to understand the evolution and epidemiology of diseases. In particular, virulence costs when the corresponding host resistance gene is lacking play a major role in the adaptive biology of pathogens and contribute to the maintenance of their genetic diversity. Here, we investigated whether life‐history traits directly linked to the establishment of plant–nematode interactions, that is, ability to locate and move toward the roots of the host plant, and to invade roots and develop into mature females, are affected in Meloidogyne incognita lines virulent against the tomato Mi‐1.2 resistance gene. Virulent and avirulent near‐isogenic lines only differing in their capacity to reproduce or not on resistant tomatoes were compared in single inoculation or pairwise competition experiments. Data highlighted (1) a global lack of trade‐off in traits associated with unnecessary virulence with respect to the nematode ability to successfully infest plant roots and (2) variability in these traits when the genetic background of the nematode is considered irrespective of its (a)virulence status. These data suggest that the variation detected here is independent from the adaptation of M. incognita to host resistance, but rather reflects some genetic polymorphism in this asexual organism.  相似文献   

17.
Predicting the evolution of phenotypic traits requires an understanding of natural selection on them. Despite its indispensability in the fight against parasites, selection on host immune defense has remained understudied. Theory predicts immune traits to be under stabilizing selection due to associated trade‐offs with other fitness‐related traits. Empirical studies, however, report mainly positive directional selection. This discrepancy could be caused by low phenotypic variation in the examined individuals and/or variation in host resource level that confounds trade‐offs in empirical studies. In a field experiment where we maintained Lymnaea stagnalis snails individually in cages in a lake, we investigated phenotypic selection on two immune defense traits, phenoloxidase (PO)‐like activity and antibacterial activity, in hemolymph. We used a diverse laboratory population and manipulated snail resource level by limiting their food supply. For six weeks, we followed immune activity, growth, and two fitness components, survival and fecundity of snails. We found that PO‐like activity and growth were under stabilizing selection, while antibacterial activity was under positive directional selection. Selection on immune traits was mainly driven by variation in survival. The form of selection on immune defense apparently depends on the particular trait, possibly due to its importance for countering the present parasite community.  相似文献   

18.
Fitness trade‐offs across episodes of selection and environments influence life‐history evolution and adaptive population divergence. Documenting these trade‐offs remains challenging as selection can vary in magnitude and direction through time and space. Here, we evaluate fitness trade‐offs at the levels of the whole organism and the quantitative trait locus (QTL) in a multiyear field study of Boechera stricta (Brassicaceae), a genetically tractable mustard native to the Rocky Mountains. Reciprocal local adaptation was pronounced for viability, but not for reproductive components of fitness. Instead, local genomes had a fecundity advantage only in the high latitude garden. By estimating realized selection coefficients from individual‐level data on viability and reproductive success and permuting the data to infer significance, we examined the genetic basis of fitness trade‐offs. This analytical approach (Conditional Neutrality‐Antagonistic Pleiotropy, CNAP) identified genetic trade‐offs at a flowering phenology QTL (costs of adaptation) and revealed genetic trade‐offs across fitness components (costs of reproduction). These patterns would not have emerged from traditional ANOVA‐based QTL mapping. Our analytical framework can be applied to other systems to investigate fitness trade‐offs. This task is becoming increasingly important as climate change may alter fitness landscapes, potentially disrupting fitness trade‐offs that took many generations to evolve.  相似文献   

19.
The development of nuclear polyhedrosis virus (NPV) infection in gypsy moth (Lymantria dispar) was studied before, during, and after host metamorphosis, and in larvae and pupae in the subsequent generation, to determine whether NPV ingested by late instars can replicate in host tissues through metamorphosis and whether it can be vertically transmitted to progeny. Individuals that survived sublethal dosages of NPV did not differ from undosed insects in pupal weight, fecundity, larval and pupal weight of progeny, or response of progeny to NPV challenge. No evidence of NPV infection or of abnormal histology was found in adult tissues examined by light microscopy and no virus was detected on the surface of eggs produced by NPV-treated moths. No NPV-caused mortality was recorded among undosed progeny of dosed or undosed parents. The progeny of dosed parents were neither more resistant nor more susceptible to LdMNPV than were progeny of undosed parents and lethal times did not differ between groups. Examination of larval, pupal, and adult tissues by DNA hybridization revealed that insects in which NPV DNA was detected died prior to adult eclosion. NPV was not detected in any hosts surviving to the adult stage. These results suggest that survivors of sublethal dosages of NPV avoid infection and are therefore incapable of vertically transmitting infectious virus to progeny.  相似文献   

20.
The extent to which individual host trees maintain their relative quality over time may affect patterns of abundance, distribution and microevolution in herbivorous insects. In this study, we explore temporal consistency in the quality of oak Quercus robur foliage, using leaf‐chewing larvae of the moth Amphipyra pyramidea as our model herbivores. By utilising an artificial diet, we are able to isolate the impact of chemical contents from physical attributes, and thereby to ask to what extent purely chemical parameters create tree‐to‐tree differences in host quality, how consistent such differences are among trees between different parts of a single growth season, and to what extent individual moth larvae are able to compensate for chemical variation in food quality. We find that with physical traits controlled for, chemical traits suffice to create strong differences in larval growth rates between trees, and between larvae fed on young and mature foliage. Nevertheless, these initial differences are efficiently compensated for the fact that larvae with lower growth rates continue to grow for a longer time, and thereby end up at the same size as larvae with high growth rates. At the pupal stage, we could no longer detect differences between either larvae fed foliage from different trees or between larvae fed young versus mature foliage – despite notably little variation among individuals within each group. Such compensatory responses were also reflected in patterns of consistency. The intraclass correlation for larval weight was relatively high (ρ=0.45), but lower for development time (ρ=0.26), and non‐existent for pupal weight (ρ=0.00). These results suggest that in terms of pupal mass, A. pyramidea is able to compensate more or less completely for differences in resource quality, that patterns of consistency vary with the specific trait examined, and that the net effect of spatiotemporal variation in host plant quality on herbivore fitness should be dissected by experiments aimed at different life history traits. If slow growth comes with high mortality, spatiotemporal patterns in resource quality may have a major impact on herbivore fitness; if not, the patterns may be nullified by efficient compensatory mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号