共查询到20条相似文献,搜索用时 0 毫秒
1.
Laura A. B. Wilson 《Evolution; international journal of organic evolution》2018,72(4):867-877
Morphological divergence of domesticated as compared to wild forms must result from changes in the ontogenetic process. Species‐specific tests for heterochrony have rejected a single explanation of domestic forms representing juveniles of their wild relatives. Ontogenetic allometric trajectories for 12 pairs of wild and domestic mammals were examined using skull growth data for 1070 specimens, including representatives from all lineages in which domestication has occurred. A suite of tests were performed to quantify allometric disparity in wild and domestic forms and assess the extent and patterning of modification to allometric trajectories. Domestication has modified postnatal ontogenetic allometric trajectories in mammals, and has generated disparity, achieved through lengthening of trajectory slopes and alteration to slope angles. Allometric disparity was similar for domestic forms compared to their wild relatives, whereas the magnitude of dispersion along allometric vectors differed between precocial mammals and altricial mammals, underscoring the importance of life history and shared evolutionary history in patterns of ontogenetic variation. The results verify the importance of scaling in the morphological changes associated with domestication. The response to domestication for all measured trajectory parameters was variable across species, suggesting multiple pathways of change. 相似文献
2.
The evolution of adaptive growth rate and its influence on how other life history traits evolve is a neglected topic in biology. Growth rate influences life history because size strongly influences age-specific survival and fecundity, and because growth rate defines the relationship between age and size. Improved predictions about the evolution of life history traits may be possible with a greater understanding of the factors that influence the evolution of growth rate. We experimentally tested the hypothesis that a trade off may exist between growth rate and developmental stability in freshwater threespine sticklebacks, Gasterosteus aculeatus. We compared the degree of developmental instability (measured as fluctuating asymmetry = FA) in four lateral plate and two fin traits of fish reared under a high vs. low growth regime in response to food ration and temperature. We found evidence that symmetry was reduced (FA increased) in fast growing compared to slow growing fish, suggesting that a trade off between developmental stability and growth is possible. FA plausibly reflected developmental instability because of significant associations between rank FA levels across traits in individuals. These results are preliminary because of the possible confounding effects of temperature and food ration on asymmetry, and because we do not know if this trade off has fitness or other life history consequences. Our results also do not support the hypothesis of honest signaling sometimes invoked in studies of sexual selection because greater symmetry was found under poorer rather than better resource levels. 相似文献
3.
Whether environmental effects during juvenile development can alter the ontogeny of adult mating behaviour remains largely unexplored. We evaluated the effect of diet on the early expression of conspecific recognition in spadefoot toads, Spea bombifrons. We found that juvenile toads display phonotaxis behaviour six weeks post-metamorphosis. However, preference for conspecifics versus heterospecifics emerged later and was diet dependent. Thus, the environment can affect the early development of species recognition in a way that might alter adult behaviour. Evaluating such effects is important for understanding variation in hybridization between species and the nature of species boundaries. 相似文献
4.
5.
Phenotypic plasticity can be important for local adaptation, because it enables individuals to survive in a novel environment until genetic changes have been accumulated by genetic accommodation. By analysing the relationship between development rate and growth rate, it can be determined whether plasticity in life-history traits is caused by changed physiology or behaviour. We extended this to examine whether plasticity had been aiding local adaptation, by investigating whether the plastic response had been fixed in locally adapted populations. Tadpoles from island populations of Rana temporaria, locally adapted to different pool-drying regimes, were monitored in a common garden. Individual differences in development rate were caused by different foraging efficiency. However, developmental plasticity was physiologically mediated by trading off growth against development rate. Surprisingly, plasticity has not aided local adaptation to time-stressed environments, because local adaptation was not caused by genetic assimilation but on selection on the standing genetic variation in development time. 相似文献
6.
Aaron M. Reedy William J. Evans Robert M. Cox 《Evolution; international journal of organic evolution》2019,73(11):2324-2332
The tradeoff between survival and reproduction is a central feature of life‐history variation, but few studies have sought to explain why females of some species exhibit relatively lower survival than expected for a given level of reproductive effort (RE). Intralocus sexual conflict theory proposes that sex differences in selection on survival and RE may, by virtue of shared genes underlying these components of fitness, prevent females from optimizing this life‐history tradeoff. To test this hypothesis, we used a phylogenetically based comparative analysis of published estimates for mean annual survival and RE from females of 82 lizard species to (1) characterize the tradeoff between survival and reproduction and (2) test whether variation around this tradeoff is explained by sexual size dimorphism (SSD), a potential proxy for sexual conflict over life‐history traits. Across species, we found a strong negative correlation between mean annual survival and RE, confirming this classic life‐history tradeoff. Although residual variance around this tradeoff is unrelated to the absolute magnitude of SSD, it is strongly related to the direction of SSD. Specifically, we found that females have lower survival than expected for a given level of RE in female‐larger species, whereas they have higher survival than expected in male‐larger species. Given that female‐larger SSD is thought to reflect selection for increased fecundity, our results suggest that intralocus sexual conflict may be particularly likely to constrain female life‐history evolution in situations where increased RE is favored, but the phenotypes that facilitate this increase (e.g., body size) are constrained by antagonistic selection on males. 相似文献
7.
Harry H. Marshall Emma I. K. Vitikainen Francis Mwanguhya Robert Businge Solomon Kyabulima Michelle C. Hares Emma Inzani Gladys Kalema‐Zikusoka Kenneth Mwesige Hazel J. Nichols Jennifer L. Sanderson Faye J. Thompson Michael A. Cant 《Ecology and evolution》2017,7(6):1712-1724
Early‐life ecological conditions have major effects on survival and reproduction. Numerous studies in wild systems show fitness benefits of good quality early‐life ecological conditions (“silver‐spoon” effects). Recently, however, some studies have reported that poor‐quality early‐life ecological conditions are associated with later‐life fitness advantages and that the effect of early‐life conditions can be sex‐specific. Furthermore, few studies have investigated the effect of the variability of early‐life ecological conditions on later‐life fitness. Here, we test how the mean and variability of early‐life ecological conditions affect the longevity and reproduction of males and females using 14 years of data on wild banded mongooses (Mungos mungo). Males that experienced highly variable ecological conditions during development lived longer and had greater lifetime fitness, while those that experienced poor early‐life conditions lived longer but at a cost of reduced fertility. In females, there were no such effects. Our study suggests that exposure to more variable environments in early life can result in lifetime fitness benefits, whereas differences in the mean early‐life conditions experienced mediate a life‐history trade‐off between survival and reproduction. It also demonstrates how early‐life ecological conditions can produce different selection pressures on males and females. 相似文献
8.
Natalie Dos Remedios Tamás Székely Clemens Küpper Patricia L. M. Lee András Kosztolányi 《Ibis》2015,157(3):590-600
Sexual size dimorphism (SSD) among adults is commonly observed in animals and is considered to be adaptive. However, the ontogenic emergence of SSD, i.e. the timing of divergence in body size between males and females, has only recently received attention. It is widely acknowledged that the ontogeny of SSD may differ between species, but it remains unclear how variable the ontogeny of SSD is within species. Kentish Plovers Charadrius alexandrinus and Snowy Plovers C. nivosus are closely related wader species that exhibit similar, moderate (c. 4%), male‐biased adult SSD. To assess when SSD emerges we recorded tarsus length variation among 759 offspring in four populations of these species. Tarsus length of chicks was measured on the day of hatching and up to three times on recapture before fledging. In one population (Mexico, Snowy Plovers), males and females differed in size from the day of hatching, whereas growth rates differed between the sexes in two populations (Turkey and United Arab Emirates, both Kentish Plovers). In contrast, a fourth population (Cape Verde, Kentish Plovers) showed no significant SSD in juveniles. Our results suggest that adult SSD can emerge at different stages of development (prenatal, postnatal and post‐juvenile) in different populations of the same species. We discuss the proximate mechanisms that may underlie these developmental differences. 相似文献
9.
MICHAEL P. VENARSKY ALEXANDER D. HURYN JONATHAN P. BENSTEAD 《Freshwater Biology》2012,57(7):1471-1481
1. Centenarian species, defined as those taxa with life spans that frequently exceed 100 years, have long been of interest to ecologists because they represent an extreme end point in a continuum of life history strategies. One frequently reported example of a freshwater centenarian is the obligate cave crayfish Orconectes australis, with a maximum longevity reported to exceed 176 years. As a consequence of its reported longevity, O. australis has been used as a textbook example of life history adaptation to the organic‐carbon limitation that characterises many cave‐stream food webs. 2. Despite being widely reported, uncertainties surround the original estimates of longevity for O. australis, which were based on a single study dating from the mid‐1970s. In the present study, we re‐evaluated the growth rate, time‐to‐maturity, female age‐at‐first‐reproduction and longevity of O. australis using a mark–recapture study of more than 5 years based upon more than 3800 free‐ranging individuals from three isolated cave streams in the south‐eastern United States. 3. The results of our study indicate that accurate estimates of the longevity of O. australis are ≤22 years, with only a small proportion of individuals (<5%) exceeding this age. Our estimates for female time‐to‐maturity (4–5 years) and age‐at‐first‐reproduction (5–6 years) are also substantially lower than earlier estimates. 4. These new data indicate that the age thresholds for life history events of O. australis are comparable to other estimates for a modest assemblage of cave and surface species of crayfish for which credible age estimate exists, suggesting that a cave environment per se is not required for the evolution of extreme longevity in crayfish. 相似文献
10.
The transition between ontogenetic stages, from juvenile to reproductive adult, is an important moment in the life history of individuals in a plant population, since the persistence of their genes depends on it. The size of an individual is recognized as a predictor for this transition, but little is known about what determines the minimum size to become a reproductive adult, or if a higher growth rate can anticipate or not that transition. In addition, the relationship between size and ontogeny have not yet been studied for woody species. To verify whether the change in ontogenetic stage in woody plants is dependent on plant size, we followed the development of even‐aged cultivated seedlings of 53 native species of the Brazilian savanna, Assis State Forest, State of São Paulo, up to their first reproductive event. In 83% of the species the tallest individual – the fastest growing in height – was the first to bloom. Our results support previous studies that consider plant size as one of the most important factors driving certain demographic processes, and allow inferences about the importance of size and growth rate on plant fitness and community assembly. Individuals with higher growth rates during the juvenile stage are the first to reach maturity. Consequently, among individuals of the same cohort, those growing faster will take ecological and evolutionary advantage since they can reproduce precociously and leave descendants prior to their smaller conspecifics, increasing the expression of their genes in the community. It is therefore expected that, along the evolutionary scale, growth rate of Brazilian savanna woody species should continuously increase. 相似文献
11.
Ontogenetic changes in learning capability were studied in jack mackerel Trachurus japonicus juveniles ranging from 20 to 95 mm standard length (L(S)) collected from either pelagic or coastal habitats. Simple spatial and reversal learning tasks were used to estimate learning capability. There was no size dependence in the scores of simple reward conditioning using a Y-maze, whereas the scores of reversal learning tasks showed a clear sigmoidal curve of increase with an inflexion point at 51·7 mm L(S). The increase in this learning capability coincided with the size at which juveniles recruit from offshore pelagic to coastal rocky habitats. 相似文献
12.
We used horn measurements from natural and hunted mortalities of male thinhorn sheep Ovis dalli from Yukon Territory, Canada, to examine the relationship between rapid growth early in life and longevity. We found that rapid growth was associated with reduced longevity for sheep aged 5 years and older for both the hunted and natural mortality data sets. The negative relationship between growth rate and longevity in hunted sheep can at least partially be explained by morphologically biased hunting regulations. The same trend was evident from natural mortalities from populations that were not hunted or underwent very limited hunting, suggesting a naturally imposed mortality cost directly or indirectly associated with rapid growth. Age and growth rate were both positively associated with horn size at death for both data sets, however of the two growth rate appeared to be a better predictor. Large horn size can be achieved both by individuals that grow horns rapidly and by those that have greater longevity, and the trade-off between growth rate and longevity could limit horn size evolution in this species. The similarity in the relationship between growth rate and longevity for hunted and natural mortalities suggests that horn growth rate should not respond to artificial selection. Our study highlights the need for the existence and study of protected populations to properly assess the impacts of selective harvesting. 相似文献
13.
Evidence for sexual dimorphism is extremely limited in the non‐avian dinosaurs despite their high diversity and disparity, and despite the fact that dimorphism is very common in vertebrate lineages of all kinds. Using body‐size data from both Alligator mississippiensis and Rhea americana, which phylogenetically bracket the dinosaurs, we demonstrate that even when there is strong dimorphism in a species, random sampling of populations of individuals characterized by sustained periods of growth (as in the alligator and most dinosaurs) can result in the loss of this signal. Dimorphism may be common in fossil taxa but very hard to detect without ontogenetic age control and large sample sizes, both of which are hampered by the limitations of the fossil record. Signal detection may be further hindered by Type III survivorship, whereby increased mortality among the young favours the likelihood that they will be sampled (unless predation or taphonomic bias against small size acts against this). These, and other considerations relating to behaviour and ecology, provide powerful reasons to suggest that sexual dimorphism in dinosaurs may be very difficult to detect in almost all currently available samples. Similar issues are likely also to be applicable to many fossil reptiles, or animals more generally. 相似文献
14.
15.
JANET L. LEONARD JOHN S. PEARSE ALICE BRYANT HARPER 《Invertebrate reproduction & development.》2013,57(1-3):83-93
Summary Traits which differ among species in a genus are considered to be the product of relatively rapid evolution. Laboratory studies indicate that copulation differs between two species of the banana slug Ariolimax with A. dolichophallus having a pattern of a single, long duration (typically greater than 1 h) intromission which is simultaneously reciprocal, and A. californicus having mating encounters typically involving a bout of brief (typically 10–20 min) unilateral intromissions. Reciprocal apophallation was observed for both species. Field observations confirm simultaneously reciprocal copulation and apophallation in A. dolichophallus. Mating was more frequent in the spring and summer months. In laboratory studies the two species also differed in life history parameters; mean growth rate was greater in A. californicus than A. dolichophallus, whereas eggs are larger in A. dolichophallus (range = 0.33–0.5 g; n=59) than in A. californicus (range= 0.08–0.27 g; n=164). 相似文献
16.
Turbill C Bieber C Ruf T 《Proceedings. Biological sciences / The Royal Society》2011,278(1723):3355-3363
Survival probability is predicted to underlie the evolution of life histories along a slow-fast continuum. Hibernation allows a diverse range of small mammals to exhibit seasonal dormancy, which might increase survival and consequently be associated with relatively slow life histories. We used phylogenetically informed GLS models to test for an effect of hibernation on seasonal and annual survival, and on key attributes of life histories among mammals. Monthly survival was in most cases higher during hibernation compared with the active season, probably because inactivity minimizes predation. Hibernators also have approximately 15 per cent higher annual survival than similar sized non-hibernating species. As predicted, we found an effect of hibernation on the relationships between life history attributes and body mass: small hibernating mammals generally have longer maximum life spans (50% greater for a 50 g species), reproduce at slower rates, mature at older ages and have longer generation times compared with similar-sized non-hibernators. In accordance with evolutionary theories, however, hibernating species do not have longer life spans than non-hibernators with similar survival rates, nor do they have lower reproductive rates than non-hibernators with similar maximum life spans. Thus, our combined results suggest that (i) hibernation is associated with high rates of overwinter and annual survival, and (ii) an increase in survival in hibernating species is linked with the coevolution of traits indicative of relatively slow life histories. 相似文献
17.
G. Ljungström M. Stjernstedt E. Wapstra M. Olsson 《Journal of evolutionary biology》2016,29(5):979-990
The trade‐off between offspring size and number is a central component of life‐history theory, postulating that larger investment into offspring size inevitably decreases offspring number. This trade‐off is generally discussed in terms of genetic, physiological or morphological constraints; however, as among‐individual differences can mask individual trade‐offs, the underlying mechanisms may be difficult to reveal. In this study, we use multivariate analyses to investigate whether there is a trade‐off between offspring size and number in a population of sand lizards by separating among‐ and within‐individual patterns using a 15‐year data set collected in the wild. We also explore the ecological and evolutionary causes and consequences of this trade‐off by investigating how a female's resource (condition)‐ vs. age‐related size (snout‐vent length) influences her investment into offspring size vs. number (OSN), whether these traits are heritable and under selection and whether the OSN trade‐off has a genetic component. We found a negative correlation between offspring size and number within individual females and physical constraints (size of body cavity) appear to limit the number of eggs that a female can produce. This suggests that the OSN trade‐off occurs due to resource constraints as a female continues to grow throughout life and, thus, produces larger clutches. In contrast to the assumptions of classic OSN theory, we did not detect selection on offspring size; however, there was directional selection for larger clutch sizes. The repeatabilities of both offspring size and number were low and we did not detect any additive genetic variance in either trait. This could be due to strong selection (past or current) on these life‐history traits, or to insufficient statistical power to detect significant additive genetic effects. Overall, the findings of this study are an important illustration of how analyses of within‐individual patterns can reveal trade‐offs and their underlying causes, with potential evolutionary and ecological consequences that are otherwise hidden by among‐individual variation. 相似文献
18.
Delayed costs of growth and compensatory growth rates 总被引:3,自引:1,他引:3
19.
The evolution of growth trajectories: what limits growth rate? 总被引:1,自引:0,他引:1
According to life‐history theory, growth rates are subject to strong directional selection due to reproductive and survival advantages associated with large adult body size. Yet, growth is commonly observed to occur at rates lower than the maximum that is physiologically possible and intrinsic growth rates often vary among populations. This implies that slower growth is favoured under certain conditions. Realized growth rate is thus the result of a compromise between the costs and advantages of growing rapidly, and the optimal rate of growth is not equivalent to the fundamental maximum rate. The ecological and evolutionary factors influencing growth rate are reviewed, with particular emphasis on how growth might be constrained by direct fitness costs. Costs of accelerating growth might contribute to the variance in fitness that is not attributable to age or size at maturity, as well as to the variation in life‐history strategies observed within and among species. Two main approaches have been taken to study the fitness trade‐offs relating to growth rate. First, environmental manipulations can be used to produce treatment groups with different rates of growth. Second, common garden experiments can be used to compare fitness correlates among populations with different intrinsic growth rates. Data from these studies reveal a number of potential costs for growth over both the short and long term. In order to acquire the energy needed for faster growth, animals must increase food intake. Accordingly, in many taxa, the major constraint on growth rate appears to arise from the trade‐off between predation risk and foraging effort. However, growth rates are also frequently observed to be submaximal in the absence of predation, suggesting that growth trajectories also impact fitness via other channels, such as the reallocation of finite resources between growth and other traits and functions. Despite the prevalence of submaximal growth, even when predators are absent, there is surprisingly little evidence to date demonstrating predator‐independent costs of growth acceleration. Evidence that does exist indicates that such costs may be most apparent under stressful conditions. Future studies should examine more closely the link between patterns of resource allocation to traits in the adult organism and lifetime fitness. Changes in body composition at maturation, for example, may determine the outcome of trade‐offs between reproduction and survival or between early and late reproduction. A number of design issues for studies investigating costs of growth that are imposed over the long term are discussed, along with suggestions for alternative approaches. Despite these issues, identifying costs of growth acceleration may fill a gap in our understanding of life‐history evolution: the relationships between growth rate, the environment, and fitness may contribute substantially to the diversification of life histories in nature. 相似文献
20.
During direct development the butterfly Lycaena tityrus was previously found to display sex-related reaction norms in response to temperature. Based on selection for protandry in males and fecundity selection for larger females, males favoured early emergence over large size, leading to a dramatic weight loss at higher temperatures, whereas females maintained similar weights throughout. Because males were able to avoid a weight reduction relative to females in spite of their shorter development at lower temperatures, sexual size dimorphism existed at higher temperatures only. In the present paper we compare sexual differences in life-history traits in L. tityrus between direct and diapause development at 25 °C. We demonstrate that, regardless of developmental pathway, protandry persisted and relative sexual size dimorphism, with females being larger, remained unchanged. Although diapausing individuals were less time-constrained, allowing them to grow to considerably higher final weights in both sexes, males were not able to reduce their weight loss relative to females. This is explained by the pressure to gain a developmental advantage solely during post-diapause development, whereas direct developing males may spread the burden over the whole larval period. Our results highlight the importance of considering sexual differences in selective pressures, which may influence central life-history traits in manifold ways. 相似文献