首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
The outcome of male–male contest competition is known to affect male mating success and is believed to confer fitness benefits to females through preference for dominant males. However, by mating with contest winners, females can incur significant costs spanning from decreased fecundity to negative effects on offspring. Hence, identifying costs and benefits of male dominance on female fitness is crucial to unravel the potential for a conflict of interests between the sexes. Here, we investigated males' pre‐ and post‐copulatory reproductive investment and its effect on female fitness after a single contest a using the field cricket Gryllus bimaculatus. We allowed males to fight and immediately measured their mating behaviour, sperm quality and offspring viability. We found that males experiencing a fight, independently of the outcome, delayed matings, but their courtship effort was not affected. However, winners produced sperm of lower quality (viability) compared to losers and to males that did not experience fighting. Results suggest a trade‐off in resource allocation between pre‐ and post‐mating episodes of sexual selection. Despite lower ejaculate quality, we found no fitness costs (fecundity and viability of offspring) for females mated to winners. Overall, our findings highlight the importance of considering fighting ability when assessing male reproductive success, as winners may be impaired in their competitiveness at a post‐mating level.  相似文献   

2.
3.
    
Reproductive competition generates episodes of both pre‐ and postcopulatory sexual selection. Theoretical models of sperm competition predict that as the fitness gains from expenditure on the weapons of male combat increase, males should increase their expenditure on weapons and decrease their expenditure on traits that contribute to competitive fertilization success. Although traits subject to sexual selection are known to have accelerated evolutionary rates of phenotypic divergence, it is not known whether the competing demands of investment into pre‐ and postcopulatory traits affect their relative rates of evolutionary divergence. We use a comparative approach to estimate the rates of divergence in pre‐ and postcopulatory traits among onthophagine dung beetles. Weapons evolved faster than body size while testes mass and sperm length evolved more slowly than body size, suggesting that precopulatory competition is the stronger episode of sexual selection acting on these beetles. Although horns evolved faster than testes, evolutionary increases in horn length were not associated with evolutionary reductions in testes mass. Our data for onthophagines support the notion that in taxa where males are unable to monopolize paternity, expenditure on both weapons and testes should both be favored.  相似文献   

4.
    
Communication signals are key regulators of social networks and are thought to be under selective pressure to honestly reflect social status, including dominance status. The odours of dominants and nondominants differentially influence behaviour, and identification of the specific pheromones associated with, and predictive of, dominance status is essential for understanding the mechanisms of network formation and maintenance. In mice, major urinary proteins (MUPs) are excreted in extraordinary large quantities and expression level has been hypothesized to provide an honest signal of dominance status. Here, we evaluate whether MUPs are associated with dominance in wild‐derived mice by analysing expression levels before, during and after competition for reproductive resources over 3 days. During competition, dominant males have 24% greater urinary MUP expression than nondominants. The MUP darcin, a pheromone that stimulates female attraction, is predictive of dominance status: dominant males have higher darcin expression before competition. Dominants also have a higher ratio of darcin to other MUPs before and during competition. These differences appear transient, because there are no differences in MUPs or darcin after competition. We also find MUP expression is affected by sire dominance status: socially naive sons of dominant males have lower MUP expression, but this apparent repression is released during competition. A requisite condition for the evolution of communication signals is honesty, and we provide novel insight into pheromones and social networks by showing that MUP and darcin expression is a reliable signal of dominance status, a primary determinant of male fitness in many species.  相似文献   

5.
    
Sexual signalling is predicted to shape the evolution of sex‐specific ornamentation, and establishing the costs and benefits of ornamentation and the information that ornamentation provides to receivers is necessary to evaluating this adaptive function. Here, we assessed the adaptive function of a common colour ornament in insects, melanin wing ornamentation, using the dragonfly Pachydiplax longipennis. We hypothesized that greater ornamentation would improve territory‐holding success by decreasing aggression that males receive from territorial rivals, but that more ornamented males may have shorter lifespans. Using mark–recapture field observations, we found that more ornamented males had greater territory‐holding success and that viability selection did not act on wing melanization. We then compared the aggression of territorial rivals to decoy males before and after experimentally augmenting wing melanization, finding that males significantly reduced aggression following the manipulation. We next hypothesized that wing melanization would signal fighting ability to territorial rivals by reflecting condition via investment in the costly melanin synthesis pathway. We observed a positive relationship between ornamentation and the likelihood of winning territorial disputes, suggesting that wing melanization provides information about fighting ability to rivals. We also found a positive relationship between melanin‐based immune defence and ornamentation, supporting a link between the signal and condition. We conclude that wing melanization is a condition‐related signal of fighting ability and suggest that this may be a common mechanism promoting the evolution of melanin ornamentation.  相似文献   

6.
    
Sperm competition theory has traditionally focused on how male allocation responds to female promiscuity, when males compete to fertilize a single clutch of eggs. Here, we develop a model to ask how female sperm use and storage across consecutive reproductive events affect male ejaculate allocation and patterns of mating and paternity. In our model, sperm use (a single parameter under female control) is the main determinant of sperm competition, which alters the effect of female promiscuity on male success and, ultimately, male reproductive allocation. Our theory reproduces the general pattern predicted by existing theory that increased sperm competition favors increased allocation to ejaculates. However, our model predicts a negative correlation between male ejaculate allocation and female promiscuity, challenging the generality of a prevailing expectation of sperm competition theory. Early models assumed that the energetic costs of precopulatory competition and the level of sperm competition are both determined by female promiscuity, which leads to an assumed covariation between these two processes. By modeling precopulatory costs and sperm competition independently, our theoretical framework allows us to examine how male allocation should respond independently to variation in sperm competition and energetic trade‐offs in mating systems that have been overlooked in the past.  相似文献   

7.
    
Costly sexually selected weapons are predicted to trade off with postcopulatory traits, such as testes. Although weapons can be important for achieving access to females, individuals of some species can permanently drop (i.e. autotomize) their weapons, without regeneration, to escape danger. We capitalized on this natural behavior to experimentally address whether the loss of a sexually selected weapon leads to increased testes investment in the leaf‐footed cactus bug, Narnia femorata Stål (Hemiptera: Coreidae). In a second experiment, we measured offspring production for males that lost a weapon during development. As predicted, males that dropped a hind limb during development grew significantly larger testes than the control treatments. Hind‐limb autotomy did not result in the enlargement of other nearby traits. Our results are the first to experimentally demonstrate that males compensate for natural weapon loss by investing more in testes. In a second experiment we found that females paired with males that lost a hind limb had 40% lower egg hatching success than females paired with intact males, perhaps because of lower mating receptivity to males with a lost limb. Importantly, in those cases where viable offspring were produced, males missing a hind limb produced 42% more offspring than males with intact limbs. These results suggest that the loss of a hind‐limb weapon can, in some cases, lead to greater fertilization success.  相似文献   

8.
9.
    
A mechanism commonly suggested to explain the persistence of color polymorphisms in animals is negative frequency‐dependent selection. It could result from a social dominance advantage to rare morphs. We tested for this in males of red and blue color morphs of the Lake Victoria cichlid, Pundamilia. Earlier work has shown that males preferentially attack the males of their own morph, while red males are more likely to win dyadic contests with blue males. In order to study the potential contribution of both factors to the morph co‐existence, we manipulated the proportion of red and blue males in experimental assemblages and studied its effect on social dominance. We then tried to disentangle the effects of the own‐morph attack bias and social dominance of red using simulations. In the experiment, we found that red males were indeed socially dominant to the blue ones, but only when rare. However, blue males were not socially dominant when rare. The simulation results suggest that an own‐morph attack bias reduces the social dominance of red males when they are more abundant. Thus, there is no evidence of symmetric negative frequency‐dependent selection acting on social dominance, suggesting that additional fitness costs to the red morph must explain their co‐existence.  相似文献   

10.
    
Abstract Polyandry reflected in multiple mating with different mates is regarded as favoured by natural selection in males but not necessarily in females, where conflicting effects on fitness components can occur. The present study aims to provide empirical evidence to predict which fitness components may be affected in this sexual conflict using a species that demonstrates potential between‐population variation in their resolution: the cowpea weevil Callosobruchus maculatus. Two strains showing contrasting competition outcomes (scramble × contest) and contrasting life‐history strategies based on trade‐offs between longevity and fecundity are crossed for subsequent selection based on larval‐competition strategy, expecting the production of a correlated response to multiple (polyandrous) mating. Such a response is expected because the scramble strain shows high fecundity (and lower longevity) and would benefit from multiple mating, in contrast with the contest strain, which shows high juvenile mortality. The scramble‐selected lines would evolve a response of increased fecundity and reduced longevity under multiple and potentially polyandrous mating but the contest‐selected lines would not respond to multiple (polyandrous) mating. Instead, both scramble‐ and contest‐selected lines show increased fecundity and reduced longevity with multiple (polyandrous) matings, which did not affect egg weight. Indirect benefits of multiple (polyandrous) mating appear to be relevant for lines showing contest competition among juveniles.  相似文献   

11.
    
Sexual selection arises from competition among individuals for access to mates, resulting in the evolution of conspicuous sexually selected traits, especially when inter‐sexual competition is mediated by mate choice. Different sexual selection regimes may occur among populations/subspecies within the same species. This is particularly the case when mate choice is based on multiple sexually selected traits. However, empirical evidence supporting this hypothesis at the among‐populations level is scarce. We conducted a meta‐analysis of the intensity of sexual selection on the largest database to date for a single species, the barn swallow (Hirundo rustica), relying on quantitative estimates of sexual selection. The intensity of sexual selection was expressed as the strength (effect size) of the relationships between six plumage ornaments (tail length, tail asymmetry, size of white spots on tail, ventral plumage colour, throat plumage colour and throat patch size) and several fitness proxies related to reproduction, parental care, offspring quality, arrival date from spring migration, and survival. The data were gathered for four geographically separated subspecies (H. r. rustica, H. r. erythrogaster, H. r. gutturalis, H. r. transitiva). The overall mean effect size (Zr = 0.214; 95% confidence interval = 0.175–0.254; N = 329) was of intermediate magnitude, with intensity of sexual selection being stronger in males than in females. Effect sizes varied during the breeding cycle, being larger before egg deposition, when competition for access to mates reaches its maximum (i.e. in the promiscuous part of the breeding cycle), and decreasing thereafter. In addition, effect sizes from experiments were not significantly larger than those from correlative studies. Finally, sexual selection on different sexually dimorphic traits varied among subspecies. This last result suggests that morphological divergence among populations has partly arisen from divergent sexual selection, which may eventually lead to speciation.  相似文献   

12.
    
Sexual selection may contribute to the evolution of plant sexual dimorphism by favoring architectural traits in males that improve pollen dispersal to mates. In both sexes, larger individuals may be favored by allowing the allocation of more resources to gamete production (a “budget” effect of size). In wind‐pollinated plants, large size may also benefit males by allowing the liberation of pollen from a greater height, fostering its dispersal (a “direct” effect of size). To assess these effects and their implications for trait selection, we measured selection on plant morphology in both males and females of the wind‐pollinated dioecious herb Mercurialis annua in two separate experimental common gardens at contrasting density. In both gardens, selection strongly favored males that disperse their pollen further. Selection for pollen production was observed in the high‐density garden only, and was weak. In addition, male morphologies associated with increased mean pollen dispersal differed between the two gardens, as elongated branches were favored in the high‐density garden, whereas shorter plants with longer inflorescence stalks were favored in the low‐density garden. Larger females were selected in both gardens. Our results point to the importance of both a direct effect of selection on male traits that affect pollen dispersal, and, to a lesser extent, a budget effect of selection on pollen production.  相似文献   

13.
    
Major histocompatibility complex genes (MHC), a gene cluster that controls the immune response to parasites, are regarded as an important determinant of mate choice. However, MHC‐based mate choice studies are especially rare for endangered animals. The giant panda (Ailuropoda melanoleuca), a flagship species, has suffered habitat loss and fragmentation. We investigated the genetic variation of three MHC class II loci, including DRB1, DQA1, and DQA2, for 19 mating‐pairs and 11 parent‐pairs of wild giant pandas based on long‐term field behavior observations and genetic samples. We tested four hypotheses of mate choice based on this MHC variation. We found no supporting evidence for the MHC‐based heterosis, genetic diversity, genetic compatibility and “good gene” hypotheses. These results suggest that giant pandas may not use MHC‐based signals to select mating partners, probably because limited mating opportunities or female‐biased natal dispersal restricts selection for MHC‐based mate choice, acknowledging the caveat of the small sample size often encountered in endangered animal studies. Our study provides insight into the mate choice mechanisms of wild giant pandas and highlights the need to increase the connectivity and facilitate dispersal among fragmented populations and habitats.  相似文献   

14.
Deleterious mutations can accumulate in the germline with age, decreasing the genetic quality of sperm and imposing a cost on female fitness. If these mutations also affect sperm competition ability or sperm production, then females will benefit from polyandry as it incites sperm competition and, consequently, minimizes the mutational load in the offspring. We tested this hypothesis in the guppy (Poecilia reticulata), a species characterized by polyandry and intense sperm competition, by investigating whether age affects post‐copulatory male traits and sperm competition success. Females did not discriminate between old and young males in a mate choice experiment. While old males produced longer and slower sperm with larger reserves of strippable sperm, compared to young males, artificial insemination did not reveal any effect of age on sperm competition success. Altogether, these results do not support the hypothesis that polyandry evolved in response to costs associated with mating with old males in the guppy.  相似文献   

15.
    
Sperm function and quality are primary determinants of male reproductive performance and hence fitness. The presence of rival males has been shown to affect ejaculate and sperm traits in a wide range of taxa. However, male physiological conditions may not only affect sperm phenotypic traits but also their genetic and epigenetic signatures, affecting the fitness of the resulting offspring. We investigated the effects of male‐male competition on sperm quality using TUNEL assays and geometric morphometrics in the zebrafish, Danio rerio. We found that the sperm produced by males exposed to high male–male competition had smaller heads but larger midpiece and flagellum than sperm produced by males under low competition. Head and flagella also appeared less sensitive to the osmotic stress induced by activation with water. In addition, more sperm showed signals of DNA damage in ejaculates of males under high competition. These findings suggest that the presence of a rival male may have positive effects on sperm phenotypic traits but negative effects on sperm DNA integrity. Overall, males facing the presence of rival males may produce faster swimming and more competitive sperm but this may come at a cost for the next generation.  相似文献   

16.
    
Phenotypic plasticity is important in the evolution of traits and facilitates adaptation to rapid environmental changes. However, variation in plasticity at the individual level, and the heritable basis underlying this plasticity is rarely quantified for behavioral traits. Alternative behavioral reproductive tactics are key components of mating systems but are not often considered within a phenotypic plasticity framework (i.e., as reaction norms). Here, using lines artificially selected for repeated mating rate, we test for genetic (G × E) sources of variation in reproductive behavior of male Nicrophorus vespilloides burying beetles (including signaling behavior), as well as the role of individual body size, in responsiveness to changes in social environment. The results show that body size influences the response of individuals’ signaling behavior to changes in the social environment. Moreover, there was G × E underlying the responses of males to variation in the quality of social environment experienced (relative size of focal male compared to his rival). This shows that individual variation in plasticity and social sensitivity of signaling behavior can evolve in response to selection on investment in mating behavior, with males selected for high mating investment having greater social sensitivity.  相似文献   

17.
Variations in male body size are known to affect inter‐ and intrasexual selection outcomes in a wide range of animals. In mating systems involving sexual signaling before mating, body size often acts as a key factor affecting signal strength and mate choice. We evaluated the effect of male size on courtship displays and mating success of the olive fruit fly, Bactrocera oleae (Diptera: Tephritidae). Wing vibrations performed during successful and unsuccessful courtships by large and small males were recorded by high‐speed videos and analyzed through frame‐by‐frame analysis. Mating success of large and small males was investigated. The effect of male–male competition on mating success was evaluated. Male body size affected both male courtship signals and mating outcomes. Successful males showed wing‐borne signals with high frequencies and short interpulse intervals. Wing vibrations displayed by successful large males during copulation attempt had higher frequencies over smaller males and unsuccessful large males. In no‐competition conditions, large males achieved higher mating success with respect to smaller ones. Allowing large and small males to compete for a female, large males achieve more mating success over smaller ones. Mate choice by females may be based on selection of the larger males, able to produce high‐frequency wing vibrations. Such traits may be indicative of “good genes,” which under sexual selection could means good social‐interaction genes, or a good competitive manipulator of conspecifics.  相似文献   

18.
In polyandrous mating systems, male fitness depends on success in premating, post-copulatory and offspring viability episodes of selection. We tracked male success across all of these episodes simultaneously, using transgenic Drosophila melanogaster with ubiquitously expressed green fluorescent protein (i.e. GFP) in a series of competitive and noncompetitive matings. This approach permitted us to track paternity-specific viability over all life stages and to distinguish true competitive fertilization success from differential early offspring viability. Relationships between episodes of selection were generally not present when paternity was measured in eggs; however, positive correlations between sperm competitive success and offspring viability became significant when paternity was measured in adult offspring. Additionally, we found a significant male × female interaction on hatching success and a lack of repeatability of offspring viability across a focal male's matings, which may underlay the limited number of correlations found between episodes of selection.  相似文献   

19.
    
Sexual selection theory predicts a trade‐off between premating (ornaments and armaments) and postmating (testes and ejaculates) sexual traits, assuming that growing and maintaining these traits is costly and that total reproductive investments are limited. The number of males in competition, the reproductive gains from investing in premating sexual traits, and the level of sperm competition are all predicted to influence how males allocate their finite resources to these traits. Yet, empirical examination of these predictions is currently scarce. Here, we studied relative expenditure on pre‐ and postmating sexual traits among frog species varying in their population density, operational sex ratio, and the number of competing males for each clutch of eggs. We found that the intensifying struggle to monopolize fertilizations as more and more males clasp the same female to fertilize her eggs shifts male reproductive investment toward sperm production and away from male weaponry. This shift, which is mediated by population density and the associated level of male–male competition, likely also explains the trade‐off between pre‐ and postmating sexual traits in our much broader sample of anuran species. Our results highlight the power of such a multilevel approach in resolving the evolution of traits and allocation trade‐offs.  相似文献   

20.
The evolution of sperm quality and quantity is shaped by various selective processes, with sperm competition generally considered the primary selective agent. Particularly in external fertilizers, however, sperm limitation through gamete dispersal can also influence gamete investments, but empirical data examining this effect are limited. Here, we studied the relative importance of sperm competition and the spawning conditions in explaining the macroevolutionary patterns of sperm size and number within two taxa with external fertilization but differences in their reproductive biology. In frogs, sperm swim slowly but for up to hours as they penetrate the gelatinous egg coating, whereas fish sperm typically swim fast, are very short‐lived (seconds to minutes), and often face a relatively higher risk of being moved away from the ova by currents. Our phylogenetic models and path analyses revealed different trajectories of ejaculate evolution in these two taxa. Sperm size and number responded primarily to variation in sperm competition in the anurans, but more strongly to egg number and water turbulence in the fishes. Whereas the results across anurans align with the general expectation that sexual selection is the main driver of ejaculate evolution, our findings across the fishes suggest that sperm limitation has been underappreciated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号