首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.

Background  

Wolbachia are obligate endosymbiotic bacteria maternally transmitted through the egg cytoplasm that are responsible for several reproductive disorders in their insect hosts, such as cytoplasmic incompatibility (CI) in infected mosquitoes. Species in the Culex pipiens complex display an unusually high number of Wolbachia-induced crossing types, and based on present data, only the wPip strain is present.  相似文献   

2.

Background  

Figs and fig-pollinating wasp species usually display a highly specific one-to-one association. However, more and more studies have revealed that the "one-to-one" rule has been broken. Co-pollinators have been reported, but we do not yet know how they evolve. They may evolve from insect speciation induced or facilitated by Wolbachia which can manipulate host reproduction and induce reproductive isolation. In addition, Wolbachia can affect host mitochondrial DNA evolution, because of the linkage between Wolbachia and associated mitochondrial haplotypes, and thus confound host phylogeny based on mtDNA. Previous research has shown that fig wasps have the highest incidence of Wolbachia infection in all insect taxa, and Wolbachia may have great influence on fig wasp biology. Therefore, we look forward to understanding the influence of Wolbachia on mitochondrial DNA evolution and speciation in fig wasps.  相似文献   

3.

Background  

Bacteria of the genus Wolbachia are reproductive parasites widespread among arthropods. The most common effect arising from the presence of Wolbachia in a population is Cytoplasmic Incompatibility (CI), whereby postmating reproductive isolation occurs in crosses between an infected male and an uninfected female, or when a male is infected with a different strain of Wolbachia to that of the female (bidirectional CI). Previous theoretical models have demonstrated that bidirectional CI can contribute to the genetic divergence of populations in haploid and diploid organisms. However, haplodiploid organisms were not considered in these models even though they include Nasonia parasitoid wasps – the best example of the implication of Wolbachia in ongoing speciation. Moreover, previous work did not investigate inbreeding mating systems, which are frequently observed in arthropod species.  相似文献   

4.

Background  

Wolbachia are endosymbiotic bacteria that commonly infect numerous arthropods. Despite their broad taxonomic distribution, the transmission patterns of these bacteria within and among host species are not well understood. We sequenced a portion of the wsp gene from the Wolbachia genome infecting 138 individuals from eleven geographically distributed native populations of the fire ant Solenopsis invicta. We then compared these wsp sequence data to patterns of mitochondrial DNA (mtDNA) variation of both infected and uninfected host individuals to infer the transmission patterns of Wolbachia in S. invicta.  相似文献   

5.

Background  

The maternally inherited, bacterial symbiont, parthenogenesis inducing (PI) Wolbachia, causes females in some haplodiploid insects to produce daughters from both fertilized and unfertilized eggs. The symbionts, with their maternal inheritance, benefit from inducing the production of exclusively daughters, however the optimal sex ratio for the nuclear genome is more male-biased. Here we examine through models how an infection with PI-Wolbachia in a previously uninfected population leads to a genomic conflict between PI-Wolbachia and the nuclear genome. In most natural populations infected with PI-Wolbachia the infection has gone to fixation and sexual reproduction is impossible, specifically because the females have lost their ability to fertilize eggs, even when mated with functional males.  相似文献   

6.

Background  

Although closely related, the alpha-proteobacteria Wolbachia and the Rickettsiacae (Rickettsia and Ehrlichia), employ different evolutionary life history strategies. Wolbachia are obligate endocellular symbionts that infect an extraordinary host range and, in contrast to the infectious and pathogenic Rickettsia and Ehrlichia, profoundly influence host reproductive biology.  相似文献   

7.

Background  

The interaction between the Blue Moon butterfly, Hypolimnas bolina, and Wolbachia has attracted interest because of the high prevalence of male-killing achieved within the species, the ecological consequences of this high prevalence, the intensity of selection on the host to suppress the infection, and the presence of multiple Wolbachia infections inducing different phenotypes. We examined diversity in the co-inherited marker, mtDNA, and the partitioning of this between individuals of different infection status, as a means to investigate the population biology and evolutionary history of the Wolbachia infections.  相似文献   

8.

Background  

Many insects, including ants, are infected by maternally inherited Wolbachia endosymbiotic bacteria though other secondary endosymbionts have not been reported in ants. It has been suggested that the ability of Wolbachia to invade and remain in an ant population depends on the number of coexisting queens in a colony. We study the genetic and social structure of populations in the ant Formica cinerea which is known to have populations with either monogynous or polygynous colonies. We screen populations for several endosymbiotic bacteria to evaluate the presence of different endosymbionts, possible association between their prevalence and the social structure, and the association between endosymbiont prevalence and genetic differentiation of ant populations.  相似文献   

9.

Background  

Patterns of mtDNA variation within a species reflect long-term population structure, but may also be influenced by maternally inherited endosymbionts, such as Wolbachia. These bacteria often alter host reproductive biology and can drive particular mtDNA haplotypes through populations. We investigated the impacts of Wolbachia infection and geography on mtDNA variation in the diamondback moth, a major global pest whose geographic distribution reflects both natural processes and transport via human agricultural activities.  相似文献   

10.

Background  

Outer membrane proteins (OMPs) of Gram-negative bacteria are key players in the biology of bacterial-host interactions. However, while considerable attention has been given to OMPs of vertebrate pathogens, relatively little is known about the role of these proteins in bacteria that primarily infect invertebrates. One such OMP is found in the intracellular bacteria Wolbachia, which are widespread symbionts of arthropods and filarial nematodes. Recent experimental studies have shown that the Wolbachia surface protein (WSP) can trigger host immune responses and control cell death programming in humans, suggesting a key role of WSP for establishment and persistence of the symbiosis in arthropods.  相似文献   

11.

Background  

The endosymbiont Wolbachia pipientis infects a broad range of arthropod and filarial nematode hosts. These diverse associations form an attractive model for understanding host:symbiont coevolution. Wolbachia 's ubiquity and ability to dramatically alter host reproductive biology also form the foundation of research strategies aimed at controlling insect pests and vector-borne disease. The Wolbachia strains that infect nematodes are phylogenetically distinct, strictly vertically transmitted, and required by their hosts for growth and reproduction. Insects in contrast form more fluid associations with Wolbachia. In these taxa, host populations are most often polymorphic for infection, horizontal transmission occurs between distantly related hosts, and direct fitness effects on hosts are mild. Despite extensive interest in the Wolbachia system for many years, relatively little is known about the molecular mechanisms that mediate its varied interactions with different hosts. We have compared the genomes of the Wolbachia that infect Drosophila melanogaster, w Mel and the nematode Brugia malayi, w Bm to that of an outgroup Anaplasma marginale to identify genes that have experienced diversifying selection in the Wolbachia lineages. The goal of the study was to identify likely molecular mechanisms of the symbiosis and to understand the nature of the diverse association across different hosts.  相似文献   

12.
Rasgon JL 《PloS one》2012,7(3):e30381

Background

Wolbachia are maternally inherited endosymbionts that infect a diverse range of invertebrates, including insects, arachnids, crustaceans and filarial nematodes. Wolbachia are responsible for causing diverse reproductive alterations in their invertebrate hosts that maximize their transmission to the next generation. Evolutionary theory suggests that due to maternal inheritance, Wolbachia should evolve toward mutualism in infected females, but strict maternal inheritance means there is no corresponding force to select for Wolbachia strains that are mutualistic in males.

Methodology/Principal findings

Using cohort life-table analysis, we demonstrate that in the mosquito Culex pipiens (LIN strain), Wolbachia-infected females show no fitness costs due to infection. However, Wolbachia induces up to a 30% reduction in male lifespan.

Conclusions/significance

These results indicate that the Wolbachia infection of the Culex pipiens LIN strain is virulent in a sex-specific manner. Under laboratory situations where mosquitoes generally mate at young ages, Wolbachia strains that reduce male survival could evolve by drift because increased mortality in older males is not a significant selective force.  相似文献   

13.

Background  

Inherited bacteria have come to be recognised as important components of arthropod biology. In addition to mutualistic symbioses, a range of other inherited bacteria are known to act either as reproductive parasites or as secondary symbionts. Whilst the incidence of the α-proteobacterium Wolbachia is relatively well established, the current knowledge of other inherited bacteria is much weaker. Here, we tested 136 arthropod species for a range of inherited bacteria known to demonstrate reproductive parasitism, sampling each species more intensively than in past surveys.  相似文献   

14.

Background

The bacterial endosymbiont Wolbachia blocks the transmission of dengue virus by its vector mosquito Aedes aegypti, and is currently being evaluated for control of dengue outbreaks. Wolbachia induces cytoplasmic incompatibility (CI) that results in the developmental failure of offspring in the cross between Wolbachia-infected males and uninfected females. This increases the relative success of infected females in the population, thereby enhancing the spread of the beneficial bacterium. However, Wolbachia spread via CI will only be feasible if infected males are sufficiently competitive in obtaining a mate under field conditions. We tested the effect of Wolbachia on the competitiveness of A. aegypti males under semi-field conditions.

Methodology/Principal Findings

In a series of experiments we exposed uninfected females to Wolbachia-infected and uninfected males simultaneously. We scored the competitiveness of infected males according to the proportion of females producing non-viable eggs due to incompatibility. We found that infected males were equally successful to uninfected males in securing a mate within experimental tents and semi-field cages. This was true for males infected by the benign wMel Wolbachia strain, but also for males infected by the virulent wMelPop (popcorn) strain. By manipulating male size we found that larger males had a higher success than smaller underfed males in the semi-field cages, regardless of their infection status.

Conclusions/Significance

The results indicate that Wolbachia infection does not reduce the competitiveness of A. aegypti males. Moreover, the body size effect suggests a potential advantage for lab-reared Wolbachia-males during a field release episode, due to their better nutrition and larger size. This may promote Wolbachia spread via CI in wild mosquito populations and underscores its potential use for disease control.  相似文献   

15.

Background  

Wolbachia (wBm) is an obligate endosymbiotic bacterium of Brugia malayi, a parasitic filarial nematode of humans and one of the causative agents of lymphatic filariasis. There is a pressing need for new drugs against filarial parasites, such as B. malayi. As wBm is required for B. malayi development and fertility, targeting wBm is a promising approach. However, the lifecycle of neither B. malayi nor wBm can be maintained in vitro. To facilitate selection of potential drug targets we computationally ranked the wBm genome based on confidence that a particular gene is essential for the survival of the bacterium.  相似文献   

16.

Background

Wolbachia are intriguing symbiotic endobacteria with a peculiar host range that includes arthropods and a single nematode family, the Onchocercidae encompassing agents of filariases. This raises the question of the origin of infection in filariae. Wolbachia infect the female germline and the hypodermis. Some evidences lead to the theory that Wolbachia act as mutualist and coevolved with filariae from one infection event: their removal sterilizes female filariae; all the specimens of a positive species are infected; Wolbachia are vertically inherited; a few species lost the symbiont. However, most data on Wolbachia and filaria relationships derive from studies on few species of Onchocercinae and Dirofilariinae, from mammals.

Methodology/Principal Findings

We investigated the Wolbachia distribution testing 35 filarial species, including 28 species and 7 genera and/or subgenera newly screened, using PCR, immunohistochemical staining, whole mount fluorescent analysis, and cocladogenesis analysis. (i) Among the newly screened Onchocercinae from mammals eight species harbour Wolbachia but for some of them, bacteria are absent in the hypodermis, or in variable density. (ii) Wolbachia are not detected in the pathological model Monanema martini and in 8, upon 9, species of Cercopithifilaria. (iii) Supergroup F Wolbachia is identified in two newly screened Mansonella species and in Cercopithifilaria japonica. (iv) Type F Wolbachia infect the intestinal cells and somatic female genital tract. (v) Among Oswaldofilariinae, Waltonellinae and Splendidofilariinae, from saurian, anuran and bird respectively, Wolbachia are not detected.

Conclusions/Significance

The absence of Wolbachia in 63% of onchocercids, notably in the ancestral Oswaldofilariinae estimated 140 mya old, the diverse tissues or specimens distribution, and a recent lateral transfer in supergroup F Wolbachia, modify the current view on the role and evolution of the endosymbiont and their hosts. Further genomic analyses on some of the newly sampled species are welcomed to decipher the open questions.  相似文献   

17.

Background

The mosquito Aedes aegypti was recently transinfected with a life-shortening strain of the endosymbiont Wolbachia pipientis (wMelPop) as the first step in developing a biocontrol strategy for dengue virus transmission. In addition to life-shortening, the wMelPop-infected mosquitoes also exhibit increased daytime activity and metabolic rates. Here we sought to quantify the blood-feeding behaviour of Wolbachia-infected females as an indicator of any virulence or energetic drain associated with Wolbachia infection.

Methodology/Principal Findings

In a series of blood-feeding trials in response to humans, we have shown that Wolbachia-infected mosquitoes do not differ in their response time to humans, but that as they age they obtain fewer and smaller blood meals than Wolbachia-uninfected controls. Lastly, we observed a behavioural characteristic in the Wolbachia infected mosquitoes best described as a “bendy” proboscis that may explain the decreased biting success.

Conclusions/Significance

Taken together the evidence suggests that wMelPop infection may be causing tissue damage in a manner that intensifies with mosquito age and that leads to reduced blood-feeding success. These behavioural changes require further investigation with respect to a possible physiological mechanism and their role in vectorial capacity of the insect. The selective decrease of feeding success in older mosquitoes may act synergistically with other Wolbachia-associated traits including life-shortening and viral protection in biocontrol strategies.  相似文献   

18.
The endosymbiont Wolbachia has been detected in a few parthenogenetic collembolans sampled in Europe and America, including three species of Poduromorpha, two species of Entomobryomorpha, and two species of Neelipleona. Based on 16S rRNA and ftsZ gene sequences, most of the Wolbachia infecting parthenogenetic collembolans were characterized as members of supergroup E and showed concordant phylogeny with their hosts. However, the two neelipleonan symbionts form another unique group, indicating that Wolbachia has infected parthenogenetic collembolans multiple times. In this study, five parthenogenetic collembolan species were identified as hosts of Wolbachia, and four new Wolbachia strains were reported for four collembolan species sampled in China, respectively, including a neelipleonan strain from Megalothorax incertus (wMinc). Our results demonstrated that the Wolbachia multilocus sequence typing (MLST) system is superior to the 16S rRNA + ftsZ approach for phylogenetic analyses of collembolan Wolbachia. The MLST system assigned these Wolbachia of parthenogenetic collembolans to supergroup E as a unique clade, which included wMinc, supporting the monophyletic origin of Wolbachia in parthenogenetic collembolan species. Moreover, our data suggested supergroup E as one of the most divergent lineages in Wolbachia and revealed the discrepancy between the phylogenies of Wolbachia from parthenogenetic collembolans and their hosts, which may result from the high level of genetic divergence between collembolan Wolbachia, in association with the geographic differentiation of their hosts, or the possible horizontal transmission of Wolbachia between different collembolan species.  相似文献   

19.

Background  

Selfish genetic elements that distort the sex ratio are found widely. Notwithstanding the number of records of sex ratio distorters, their incidence is poorly understood. Two factors can prevent a sex ratio distorter from invading: inability of the sex ratio distorter to function (failure of mechanism or transmission), and lack of drive if they do function (inappropriate ecology for invasion). There has been no test to date on factors causing variation in the incidence of sex ratio distorting cytoplasmic bacteria. We therefore examined whether absence of the male-killing Wolbachia infection in D. bifasciata in Hokkaido island of Japan, in contrast to the presence of infection on the proximal island of Honshu, was associated with failure of the infection to function properly on the Hokkaido genetic background.  相似文献   

20.

Background

The two-spotted spider mite, Tetranychus urticae, is infected with Wolbachia, which have the ability to manipulate host reproduction and fitness. MicroRNAs (miRNAs) are small non-coding RNAs that are involved in many biological processes such as development, reproduction and host-pathogen interactions. Although miRNA was observed to involve in Wolbachia-host interactions in the other insect systems, its roles have not been fully deciphered in the two-spotted spider mite.

Results

Small RNA libraries of infected and uninfected T. urticae for both sexes (in total four libraries) were constructed. By integrating the mRNA data originated from the same samples, the target genes of the differentially expressed miRNAs were predicted. Then, GO and pathway analyses were performed for the target genes. Comparison of libraries showed that Wolbachia infection significantly regulated 91 miRNAs in females and 20 miRNAs in males, with an overall suppression of miRNAs in Wolbachia-infected libraries. A comparison of the miRNA and mRNA data predicted that the differentially expressed miRNAs negatively regulated 90 mRNAs in females and 9 mRNAs in males. An analysis of target genes showed that Wolbachia-responsive miRNAs regulated genes with function in sphingolipid metabolism, lysosome function, apoptosis and lipid transporting in both sexes, as well as reproduction in females.

Conclusion

Comparisons of the miRNA and mRNA data can help to identify miRNAs and miRNA target genes involving in Wolbachia-host interactions. The molecular targets identified in this study should be useful in further functional studies.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1122) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号