首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: In motile cells, protrusion of the lamellipodium (a type of cell margin) requires assembly of actin monomers into actin filaments at the tip of the lamellipodium. The importance of actin-filament disassembly in this process is less well understood, and is assessed here using the actin drug jasplakinolide, which has two known activities - inhibition of filament disassembly and induction of an increase in actin polymer. RESULTS: In cells the two activities of jasplakinolide were found to be separable; 1 microM jasplakinolide could permeate cells, bind cellular filamentous actin (F-actin) and inhibit filament disassembly within 3.5 minutes, but significant increase in actin polymer was not detected until 60 minutes of treatment. In live, permeabilised cells, jasplakinolide did not inhibit filament assembly from supplied, purified actin monomers. In migrating chick fibroblasts, lamellipodium protrusion was blocked within 1-5 minutes of treatment with 1 microM jasplakinolide, without any perturbation of actin organisation. In non-migrating chick fibroblasts, there was a delay in the onset of jasplakinolide-induced inhibition of lamellipodium protrusion, during which lamellipodium length increased linearly with no increase in protrusion rate. Motility of the bacterium Listeria in infected PtK2 cells was reduced 2.3-fold within 3 minutes of treatment with 1 microM jasplakinolide. CONCLUSIONS: Actin-filament disassembly is tightly coupled to lamellipodium protrusion in migrating chick fibroblasts and motility of Listeria in PtK2 cells. One simple interpretation of these data is a situation whereby ongoing actin-filament assembly uses free actin monomer derived from filament disassembly, in preference to stored monomer.  相似文献   

2.
Although actin filaments can form by oligomer annealing in vitro, they are assumed to assemble exclusively from actin monomers in vivo. In this study, we show that a pool of actin resistant to the monomer-sequestering drug latrunculin A (lat A) contributes to filament assembly in vivo. Furthermore, we show that the cofilin accessory protein Aip1 is important for establishment of normal actin monomer concentration in cells and efficiently converts cofilin-generated actin filament disassembly products into monomers and short oligomers in vitro. Additionally, in aip1Δ mutant cells, lat A–insensitive actin assembly is significantly enhanced. We conclude that actin oligomer annealing is a physiologically relevant actin filament assembly pathway in vivo and identify Aip1 as a crucial factor for shifting the distribution of short actin oligomers toward monomers during disassembly.  相似文献   

3.
Cofilin is a key regulator of the actin cytoskeleton. It can sever actin filaments, accelerate filament disassembly, act as a nucleation factor, recruit or antagonize other actin regulators, and control the pool of polymerization-competent actin monomers. In cells these actions have complex functional outputs. The timing and localization of cofilin activity are carefully regulated, and thus global, long-term perturbations may not be sufficient to probe its precise function. To better understand cofilin''s spatiotemporal action in cells, we implemented chromophore-assisted laser inactivation (CALI) to instantly and specifically inactivate it. In addition to globally inhibiting actin turnover, CALI of cofilin generated several profound effects on the lamellipodia, including an increase of F-actin, a rearward expansion of the actin network, and a reduction in retrograde flow speed. These results support the hypothesis that the principal role of cofilin in lamellipodia at steady state is to break down F-actin, control filament turnover, and regulate the rate of retrograde flow.  相似文献   

4.
Cofilin mediates lamellipodium extension and polarized cell migration by accelerating actin filament dynamics at the leading edge of migrating cells. Cofilin is inactivated by LIM kinase (LIMK)-1-mediated phosphorylation and is reactivated by cofilin phosphatase Slingshot (SSH)-1L. In this study, we show that cofilin activity is temporally and spatially regulated by LIMK1 and SSH1L in chemokine-stimulated Jurkat T cells. The knockdown of LIMK1 suppressed chemokine-induced lamellipodium formation and cell migration, whereas SSH1L knockdown produced and retained multiple lamellipodial protrusions around the cell after cell stimulation and impaired directional cell migration. Our results indicate that LIMK1 is required for cell migration by stimulating lamellipodium formation in the initial stages of cell response and that SSH1L is crucially involved in directional cell migration by restricting the membrane protrusion to one direction and locally stimulating cofilin activity in the lamellipodium in the front of the migrating cell. We propose that LIMK1- and SSH1L-mediated spatiotemporal regulation of cofilin activity is critical for chemokine-induced polarized lamellipodium formation and directional cell movement.  相似文献   

5.
Turnover of actin filaments in cells requires rapid actin disassembly in a cytoplasmic environment that thermodynamically favors assembly because of high concentrations of polymerizable monomers. We here image the disassembly of single actin filaments by cofilin, coronin, and actin-interacting protein 1, a purified protein system that reconstitutes rapid, monomer-insensitive disassembly (Brieher, W.M., H.Y. Kueh, B.A. Ballif, and T.J. Mitchison. 2006. J. Cell Biol. 175:315-324). In this three-component system, filaments disassemble in abrupt bursts that initiate preferentially, but not exclusively, from both filament ends. Bursting disassembly generates unstable reaction intermediates with lowered affinity for CapZ at barbed ends. CapZ and cytochalasin D (CytoD), a barbed-end capping drug, strongly inhibit bursting disassembly. CytoD also inhibits actin disassembly in mammalian cells, whereas latrunculin B, a monomer sequestering drug, does not. We propose that bursts of disassembly arise from cooperative separation of the two filament strands near an end. The differential effects of drugs in cells argue for physiological relevance of this new disassembly pathway and potentially explain discordant results previously found with these drugs.  相似文献   

6.
Cofilin is the major mediator of actin filament turnover in vivo. However, the molecular mechanism of cofilin recruitment to actin networks during dynamic actin-mediated processes in living cells and cofilin's precise in vivo functions have not been determined. In this study, we analyzed the dynamics of fluorescently tagged cofilin and the role of cofilin-mediated actin turnover during endocytosis in Saccharomyces cerevisiae. In living cells, cofilin is not necessary for actin assembly on endocytic membranes but is recruited to molecularly aged adenosine diphosphate actin filaments and is necessary for their rapid disassembly. Defects in cofilin function alter the morphology of actin networks in vivo and reduce the rate of actin flux through actin networks. The consequences of decreasing actin flux are manifested by decreased but not blocked endocytic internalization at the plasma membrane and defects in late steps of membrane trafficking to the vacuole. These results suggest that cofilin-mediated actin filament flux is required for the multiple steps of endocytic trafficking.  相似文献   

7.
Cofilin is essential for cell viability and for actin-based motility. Cofilin severs actin filaments, which enhances the dynamics of filament assembly. We investigated the mechanism of filament severing by cofilin with direct fluorescence microscopy observation of single actin filaments in real time. In cells, actin filaments are likely to be attached at multiple points along their length, and we found that attaching filaments in such a manner greatly increased the efficiency of filament severing by cofilin. Cofilin severing increased and then decreased with increasing concentration of cofilin. Together, these results indicate that cofilin severs the actin filament by a mechanism of allosteric and cooperative destabilization. Severing is more efficient when relaxation of this cofilin-induced instability of the actin filament is inhibited by restricting the flexibility of the filament. These conclusions have particular relevance to cofilin function during actin-based motility in cells and in synthetic systems.  相似文献   

8.
E Nishida  S Maekawa  H Sakai 《Biochemistry》1984,23(22):5307-5313
Cofilin, a 21 000 molecular weight protein of porcine brain, reacts stoichiometrically with actin in a 1:1 molar ratio. Upon binding of cofilin, the fluorescence of pyrene-labeled actin under polymerizing conditions is changed into the monomer form, irrespective of whether cofilin is added to actin before or after polymerization. Cofilin decreases the viscosity of actin filaments but increases the light-scattering intensity of the filaments. The centrifugation assay and the DNase I inhibition assay demonstrate that cofilin binds to actin filaments in a 1:1 molar ratio of cofilin to actin monomer in the filament and that cofilin increases the monomeric actin to a limited extent (up to 1.1-1.5 microM monomer) in the presence of physiological concentrations of Mg2+ and KCl. Cofilin is also able to bind to monomeric actin, as demonstrated by gel filtration. Electron microscopy showed that actin filaments are shortened and slightly thickened in the presence of cofilin. No bundle formation was observed in the presence of various concentrations of cofilin. The gel point assay using an actin cross-linking protein and the nucleation assay also suggested that cofilin shortens the actin filaments and hence increases the filament number. Cofilin blocks the binding of tropomyosin to actin filaments. Tropomyosin is dissociated from actin filaments by the binding of cofilin to actin filaments. Cofilin was found to inhibit the superprecipitation of actin-myosin mixtures as well as the actin-activated myosin ATPase. All these results suggest that cofilin is a new type of actin-associated protein.  相似文献   

9.
Cofilin regulates actin filament dynamics by stimulating actin filament disassembly and plays a critical role in cytokinesis and chemotactic migration. Aip1 (actin-interacting protein 1), also called WDR1 (WD-repeat protein 1), is a highly conserved WD-repeat protein in eukaryotes and promotes cofilin-mediated actin filament disassembly in vitro; however, little is known about the mechanisms by which Aip1 functions in cytokinesis and cell migration in mammalian cells. In the present study, we investigated the roles of Aip1 in cytokinesis and chemotactic migration of human cells by silencing the expression of Aip1 using siRNA (small interfering RNA). Knockdown of Aip1 in HeLa cells increased the percentage of multinucleate cells; this effect was reversed by expression of an active form of cofilin. In Aip1-knockdown cells, the cleavage furrow ingressed normally from anaphase to early telophase; however, an excessive accumulation of actin filaments was observed on the contractile ring in late telophase. These results suggest that Aip1 plays a crucial role in the completion of cytokinesis by promoting cofilin-mediated actin filament disassembly in telophase. We have also shown that Aip1 knockdown significantly suppressed chemokine-induced chemotactic migration of Jurkat T-lymphoma cells, and this was blocked by expression of an active form of cofilin. Whereas control cells mostly formed a single lamellipodium in response to chemokine stimulation, Aip1 knockdown cells abnormally exhibited multiple protrusions around the cells before and after cell stimulation. This indicates that Aip1 plays an important role in directional cell migration by restricting the stimulus-induced membrane protrusion to one direction via promoting cofilin activity.  相似文献   

10.
Cell migration is initiated by lamellipodia-membrane-enclosed sheets of cytoplasm containing densely packed actin filament networks. Although the molecular details of network turnover remain obscure, recent work points towards key roles in filament nucleation for Arp2/3 complex and its activator WAVE complex. Here, we combine fluorescence recovery after photobleaching (FRAP) of different lamellipodial components with a new method of data analysis to shed light on the dynamics of actin assembly/disassembly. We show that Arp2/3 complex is incorporated into the network exclusively at the lamellipodium tip, like actin, at sites coincident with WAVE complex accumulation. Capping protein likewise showed a turnover similar to actin and Arp2/3 complex, but was confined to the tip. In contrast, cortactin-another prominent Arp2/3 complex regulator-and ADF/cofilin-previously implicated in driving both filament nucleation and disassembly-were rapidly exchanged throughout the lamellipodium. These results suggest that Arp2/3- and WAVE complex-driven actin filament nucleation at the lamellipodium tip is uncoupled from the activities of both cortactin and cofilin. Network turnover is additionally regulated by the spatially segregated activities of capping protein at the tip and cofilin throughout the mesh.  相似文献   

11.
Actin binding proteins control actin assembly and disassembly by altering the critical concentration and by changing the kinetics of polymerization. All of these control mechanisms in some way or the other make use of the energy of hydrolysis of actin-bound ATP. Capping of barbed filament ends increases the critical concentration as long as ATP hydrolysis maintains a difference in the actin monomer binding constants of the two ends. A further increase in the critical concentration on adding a second cap, tropomodulin, to the other, pointed filament end also requires ATP hydrolysis as described by the model presented here. Changes in the critical concentration are amplified into much larger changes of the monomer pool by actin sequestering proteins, provided their actin binding equilibrium constants fall within a relatively narrow range around the values for the two critical concentrations of actin. Cofilin greatly speeds up treadmilling, which requires ATP hydroysis, by increasing the rate constant of depolymerization. Profilin increases the rate of elongation at the barbed filament end, coupled to a lowering of the critical concentration, only if ATP hydrolysis makes profilin binding to the barbed end independent of its binding constant for actin monomers.  相似文献   

12.
The actin cytoskeleton powers organelle movements, orchestrates responses to abiotic stresses, and generates an amazing array of cell shapes. Underpinning these diverse functions of the actin cytoskeleton are several dozen accessory proteins that coordinate actin filament dynamics and construct higher-order assemblies. Many actin-binding proteins from the plant kingdom have been characterized and their function is often surprisingly distinct from mammalian and fungal counterparts. The adenylyl cyclase-associated protein (CAP) has recently been shown to be an important regulator of actin dynamics in vivo and in vitro. The disruption of actin organization in cap mutant plants indicates defects in actin dynamics or the regulated assembly and disassembly of actin subunits into filaments. Current models for actin dynamics maintain that actin-depolymerizing factor (ADF)/cofilin removes ADP-actin subunits from filament ends and that profilin recharges these monomers with ATP by enhancing nucleotide exchange and delivery of subunits onto filament barbed ends. Plant profilins, however, lack the essential ability to stimulate nucleotide exchange on actin, suggesting that there might be a missing link yet to be discovered from plants. Here, we show that Arabidopsis thaliana CAP1 (AtCAP1) is an abundant cytoplasmic protein; it is present at a 1:3 M ratio with total actin in suspension cells. AtCAP1 has equivalent affinities for ADP- and ATP-monomeric actin (Kd approximately 1.3 microM). Binding of AtCAP1 to ATP-actin monomers inhibits polymerization, consistent with AtCAP1 being an actin sequestering protein. However, we demonstrate that AtCAP1 is the first plant protein to increase the rate of nucleotide exchange on actin. Even in the presence of ADF/cofilin, AtCAP1 can recharge actin monomers and presumably provide a polymerizable pool of subunits to profilin for addition onto filament ends. In turnover assays, plant profilin, ADF, and CAP act cooperatively to promote flux of subunits through actin filament barbed ends. Collectively, these results and our understanding of other actin-binding proteins implicate CAP1 as a central player in regulating the pool of unpolymerized ATP-actin.  相似文献   

13.
The actin cytoskeleton is a vital component of several key cellular and developmental processes in eukaryotes. Many proteins that interact with filamentous and/or monomeric actin regulate the structure and dynamics of the actin cytoskeleton. Actin-filament-binding proteins control the nucleation, assembly, disassembly and crosslinking of actin filaments, whereas actin-monomer-binding proteins regulate the size, localization and dynamics of the large pool of unpolymerized actin in cells. In this article, we focus on recent advances in understanding how the six evolutionarily conserved actin-monomer-binding proteins - profilin, ADF/cofilin, twinfilin, Srv2/CAP, WASP/WAVE and verprolin/WIP - interact with actin monomers and regulate their incorporation into filament ends. We also present a model of how, together, these ubiquitous actin-monomer-binding proteins contribute to cytoskeletal dynamics and actin-dependent cellular processes.  相似文献   

14.
Protrusion of the leading edge of migrating epithelial cells requires precise regulation of two actin filament (F-actin) networks, the lamellipodium and the lamella. Cofilin is a downstream target of Rho GTPase signaling that promotes F-actin cycling through its F-actin-nucleating, -severing, and -depolymerizing activity. However, its function in modulating lamellipodium and lamella dynamics, and the implications of these dynamics for protrusion efficiency, has been unclear. Using quantitative fluorescent speckle microscopy, immunofluorescence, and electron microscopy, we establish that the Rac1/Pak1/LIMK1 signaling pathway controls cofilin activity within the lamellipodium. Enhancement of cofilin activity accelerates F-actin turnover and retrograde flow, resulting in widening of the lamellipodium. This is accompanied by increased spatial overlap of the lamellipodium and lamella networks and reduced cell-edge protrusion efficiency. We propose that cofilin functions as a regulator of cell protrusion by modulating the spatial interaction of the lamellipodium and lamella in response to upstream signals.  相似文献   

15.
Actin filament severing is critical for the dynamic turnover of cellular actin networks. Cofilin severs filaments, but additional factors may be required to increase severing efficiency in vivo. Srv2/cyclase-associated protein (CAP) is a widely expressed protein with a role in binding and recycling actin monomers ascribed to domains in its C-terminus (C-Srv2). In this paper, we report a new biochemical and cellular function for Srv2/CAP in directly catalyzing cofilin-mediated severing of filaments. This function is mediated by its N-terminal half (N-Srv2), and is physically and genetically separable from C-Srv2 activities. Using dual-color total internal reflection fluorescence microscopy, we determined that N-Srv2 stimulates filament disassembly by increasing the frequency of cofilin-mediated severing without affecting cofilin binding to filaments. Structural analysis shows that N-Srv2 forms novel hexameric star-shaped structures, and disrupting oligomerization impairs N-Srv2 activities and in vivo function. Further, genetic analysis shows that the combined activities of N-Srv2 and Aip1 are essential in vivo. These observations define a novel mechanism by which the combined activities of cofilin and Srv2/CAP lead to enhanced filament severing and support an emerging view that actin disassembly is controlled not by cofilin alone, but by a more complex set of factors working in concert.  相似文献   

16.
Cofilin mediates lamellipodium extension and polarized cell migration by stimulating actin filament dynamics at the leading edge of migrating cells. Cofilin is inactivated by phosphorylation at Ser-3 and reactivated by cofilin-phosphatase Slingshot-1L (SSH1L). Little is known of signaling mechanisms of cofilin activation and how this activation is spatially regulated. Here, we show that cofilin-phosphatase activity of SSH1L increases approximately 10-fold by association with actin filaments, which indicates that actin assembly at the leading edge per se triggers local activation of SSH1L and thereby stimulates cofilin-mediated actin turnover in lamellipodia. We also provide evidence that 14-3-3 proteins inhibit SSH1L activity, dependent on the phosphorylation of Ser-937 and Ser-978 of SSH1L. Stimulation of cells with neuregulin-1beta induced Ser-978 dephosphorylation, translocation of SSH1L onto F-actin-rich lamellipodia, and cofilin dephosphorylation. These findings suggest that SSH1L is locally activated by translocation to and association with F-actin in lamellipodia in response to neuregulin-1beta and 14-3-3 proteins negatively regulate SSH1L activity by sequestering it in the cytoplasm.  相似文献   

17.
Summary Although it is known that actin polymerizes rapidly at the plasma membrane during the ingestion phase of phagocytosis, not yet fully understood are the mechanisms by which actin is recruited to form a phagoeytic cup and subsequently is dissociated from the phagosome. The aim of this study was to identify actin-binding proteins that mediated actin filament dynamics during phagosome formation and processing. We report that profilins I and II, which promote filament assembly, and cofilin, which stimulates filament disassembly, were constituents of phagosomes isolated fromDictyostelium discoideum fed latex beads, and associated with actin. Biochemical analyses detected one isoform only of cofilin, which bound actin in unstimulated cells as well as in cells engaged in phagocytosis, subjected to various stress treatments, and through development. At membranes of young phagosomes, profilins I and II colocalized with monomeric actin labeled with fluorescent DNase I, and cofilin colocalized with filamentous actin labeled with rhodamine phalloidin. Both immunocytochemical and quantitative immunoblotting data indicated that the kinetic loss of profilins I, II, and cofilin of maturing phagosomes closely followed the falling levels of actin associated with the vesicles. As evidence of vesicle processing,D. discoideum crystal protein (an esterase) was recruited rapidly to phagosomes and its levels increased while those of actin, profilins I, II, and cofilin jointly decreased. The localization data and concurrent losses of profilins and cofilin with actin from phagosomes are consistent with the roles of these actin-binding proteins in filament dynamics and indicated that they were involved in regulating the assembly and disassembly of the actin coat of phagosomes.Abbreviations DNase deoxyribonuclease - FITC fluorescein isothiocyanate - NEpHGE nonequilibrium pH gradient gel electrophoresis - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

18.
Cofilin is an essential actin filament severing protein that accelerates the assembly dynamics and turnover of actin networks by increasing the number of filament ends where subunits add and dissociate. It binds filament subunits stoichiometrically and cooperatively, forming clusters of contiguously-bound cofilin at sub-saturating occupancies. Filaments partially occupied with cofilin sever at boundaries between bare and cofilin-decorated segments. Imaging studies concluded that bound clusters must reach a critical size (Cc) of 13–100 cofilins to sever filaments. In contrast, structural and modeling studies suggest that a few or even a single cofilin can sever filaments, possibly with different severing rate constants. How clusters grow through the cooperative incorporation of additional cofilin molecules, specifically if they elongate asymmetrically or uniformly from both ends and if they are modulated by filament shape and external force, also lacks consensus. Here, using hydrodynamic flow to visualize individual actin filaments with TIRF microscopy, we found that neither flow-induced filament bending, tension, nor surface attachment conditions substantially affected the kinetics of cofilin binding to actin filaments. Clusters of bound cofilin preferentially extended toward filament pointed ends and displayed severing competency at small sizes (Cc < 3), with no detectable severing dependence on cluster size. These data support models in which small clusters of cofilin introduce local, but asymmetric, structural changes in actin filaments that promote filament severing with a rate constant that depends weakly on the size of the cluster.  相似文献   

19.
Actin-based motility demands the spatial and temporal coordination of numerous regulatory actin-binding proteins (ABPs), many of which bind with affinities that depend on the nucleotide state of actin filament. Cofilin, one of three ABPs that precisely choreograph actin assembly and organization into comet tails that drive motility in vitro, binds and stochastically severs aged ADP actin filament segments of de novo growing actin filaments. Deficiencies in methodologies to track in real time the nucleotide state of actin filaments, as well as cofilin severing, limit the molecular understanding of coupling between actin filament chemical and mechanical states and severing. We engineered a fluorescently labeled cofilin that retains actin filament binding and severing activities. Because cofilin binding depends strongly on the actin-bound nucleotide, direct visualization of fluorescent cofilin binding serves as a marker of the actin filament nucleotide state during assembly. Bound cofilin allosterically accelerates P(i) release from unoccupied filament subunits, which shortens the filament ATP/ADP-P(i) cap length by nearly an order of magnitude. Real-time visualization of filament severing indicates that fragmentation scales with and occurs preferentially at boundaries between bare and cofilin-decorated filament segments, thereby controlling the overall filament length, depending on cofilin binding density.  相似文献   

20.
To migrate, normally a cell must establish morphological polarity and continuously protrude a single lamellipodium, polarized in the direction of migration. We have previously shown that actin filament disassembly is necessary for protrusion of the lamellipodium during fibroblast migration. As ADF/cofilin (AC) proteins are essential for the catalysis of filament disassembly in cells, we assessed their role in polarized lamellipodium protrusion in migrating fibroblasts. We compared the spatial distribution of AC and the inactive, phosphorylated AC (pAC) in migrating cells. AC, but not pAC, localized to the lamellipodium. To investigate a role for AC in cell polarity, we increased the proportion of pAC in migrating fibroblasts by overexpressing constitutively active (CA) LIM kinase 1. In 87% of cells expressing CA LIM kinase, cell polarity was abolished. In such cells, the single polarized lamellipodium was replaced by multiple nonpolarized lamellipodia, which, in contrast to nonexpressing migrating cells, stained for pAC. Cell polarity was rescued by coexpressing an active, nonphosphorylatable Xenopus AC (CA XAC) with the CA LIMK. Furthermore, overexpressing a pseudophosphorylated (less active) XAC by itself also abolished cell polarity. We conclude that locally maintaining ADF/cofilin in the active, nonphosphorylated state within the lamellipodium is necessary to maintain polarized protrusion during cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号