首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
A triple-site variant (W17Q N90A L129F) of mannose-6-phosphate isomerase from Geobacillus thermodenitrificans was obtained by combining variants with residue substitutions at different positions after random and site-directed mutagenesis. The specific activity and catalytic efficiency (k(cat)/K(m)) for L-ribulose isomerization of this variant were 3.1- and 7.1-fold higher, respectively, than those of the wild-type enzyme at pH 7.0 and 70°C in the presence of 1 mM Co(2+). The triple-site variant produced 213 g/liter l-ribose from 300 g/liter L-ribulose for 60 min, with a volumetric productivity of 213 g liter(-1) h(-1), which was 4.5-fold higher than that of the wild-type enzyme. The k(cat)/K(m) and productivity of the triple-site variant were approximately 2-fold higher than those of the Thermus thermophilus R142N variant of mannose-6-phosphate isomerase, which exhibited the highest values previously reported.  相似文献   

2.
Glutathione transferase (GST) A3-3 is the most efficient human steroid double-bond isomerase known. The activity with Delta(5)-androstene-3,17-dione is highly dependent on the phenolic hydroxyl group of Tyr-9 and the thiolate of glutathione. Removal of these groups caused an 1.1 x 10(5)-fold decrease in k(cat); the Y9F mutant displayed a 150-fold lower isomerase activity in the presence of glutathione and a further 740-fold lower activity in the absence of glutathione. The Y9F mutation in GST A3-3 did not markedly decrease the activity with the alternative substrate 1-chloro-2,4-dinitrobenzene. Residues Phe-10, Leu-111, and Ala-216 selectively govern the activity with the steroid substrate. Mutating residue 111 into phenylalanine caused a 25-fold decrease in k(cat)/K(m) for the steroid isomerization. The mutations A216S and F10S, separate or combined, affected the isomerase activity only marginally, but with the additional L111F mutation k(cat)/K(m) was reduced to 0.8% of that of the wild-type value. In contrast, the activities with 1-chloro-2,4-dinitrobenzene and phenethylisothiocyanate were not largely affected by the combined mutations F10S/L111F/A216S. K(i) values for Delta(5)-androstene-3,17-dione and Delta(4)-androstene-3,17-dione were increased by the triple mutation F10S/L111F/A216S. The pK(a) of the thiol group of active-site-bound glutathione, 6.1, increased to 6.5 in GST A3-3/Y9F. The pK(a) of the active-site Tyr-9 was 7.9 for the wild-type enzyme. The pH dependence of k(cat)/K(m) of wild-type GST A3-3 for the isomerase reaction displays two kinetic pK(a) values, 6.2 and 8.1. The basic limb of the pH dependence of k(cat) and k(cat)/K(m) disappears in the Y9F mutant. Therefore, the higher kinetic pK(a) reflects ionization of Tyr-9, and the lower one reflects ionization of glutathione. We propose a reaction mechanism for the double-bond isomerization involving abstraction of a proton from C4 in the steroid accompanied by protonation of C6, the thiolate of glutathione serving as a base and Tyr-9 assisting by polarizing the 3-oxo group of the substrate.  相似文献   

3.
L-Ribulose is a rare and expensive sugar that can be used as a precursor for the production of other rare sugars of high market value such as L-ribose. In this work we describe a production process for L-ribulose using L-arabinose, a common component of polymers of lignocellulosic materials, as the starting material. A ribulokinase-deficient mutant of the heterofermentative lactic acid bacterium Lactobacillus plantarum NCIMB8826 was constructed. Expression of araA, which encodes the critical enzyme L-arabinose isomerase, was repressed by high glucose concentrations in batch cultivations. A fed-batch cultivation strategy was therefore used to maximize L-arabinose isomerase production during growth. Resting cells of the ribulokinase-deficient mutant were used for the production of L-ribulose. The isomerization of L-arabinose to L-ribulose was very unfavorable for L-ribulose formation. However, high L-ribulose yields were obtained by complexing the produced L-ribulose with borate. The process for L-ribulose production in borate buffer by resting cells was optimized using central composite designs. The experiment design suggested that the process has an optimal operation point around an L-arabinose concentration of 100 g liter(-1), a borate concentration of 500 mM, and a temperature of 48 degrees C, where the statistical software predicted an initial L-ribulose production rate of 29.1 g liter(-1) h(-1), a best-achievable process productivity of 14.8 g liter(-1) h(-1), and a conversion of L-arabinose to L-ribulose of 0.70 mol mol(-1).  相似文献   

4.
L-Arabinose isomerase (E.C. 5.3.1.14) catalyzes the reversible isomerization between L-arabinose and L-ribulose and is highly selective towards L-arabinose. By using a directed evolution approach, enzyme variants with altered substrate specificity were created and screened in this research. More specifically, the screening was directed towards the identification of isomerase mutants with L-ribose isomerizing activity. Random mutagenesis was performed on the Escherichia coli L-arabinose isomerase gene (araA) by error-prone polymerase chain reaction to construct a mutant library. To enable screening of this library, a selection host was first constructed in which the mutant genes were transformed. In this selection host, the genes encoding for L-ribulokinase and L-ribulose-5-phosphate-4-epimerase were brought to constitutive expression and the gene encoding for the native L-arabinose isomerase was knocked out. L-Ribulokinase and L-ribulose-5-phosphate-4-epimerase are necessary to ensure the channeling of the formed product, L-ribulose, to the pentose phosphate pathway. Hence, the mutant clones could be screened on a minimal medium with L-ribose as the sole carbon source. Through the screening, two first-generation mutants were isolated, which expressed a small amount of L-ribose isomerase activity.  相似文献   

5.
A newly isolated bacterium, Cohnella laevoribosii RI-39, could grow in a defined medium with L-ribose as the sole carbon source. A 21-kDa protein isomerizing L-ribose to L-ribulose, as well as D-lyxose to D-xylulose, was purified to homogeneity from this bacterium. Based on the N-terminal and internal amino acid sequences of the purified enzyme obtained by N-terminal sequencing and quantitative time of flight mass spectrometry-mass spectrometry analyses, a 549-bp gene (lyxA) encoding D-lyxose (L-ribose) isomerase was cloned and expressed in Escherichia coli. The purified endogenous enzyme and the recombinant enzyme formed homodimers that were activated by Mn(2+). C. laevoribosii D-lyxose (L-ribose) isomerase (CLLI) exhibits maximal activity at pH 6.5 and 70 degrees C in the presence of Mn(2+) for D-lyxose and L-ribose, and its isoelectric point (pI) is 4.2 (calculated pI, 4.9). The enzyme is specific for D-lyxose, L-ribose, and D-mannose, with apparent K(m) values of 22.4 +/- 1.5 mM, 121.7 +/- 10.8 mM, and 34.0 +/- 1.1 mM, respectively. The catalytic efficiencies (k(cat)/K(m)) of CLLI were 84.9 +/- 5.8 mM(-1) s(-1) for D-lyxose (V(max), 5,434.8 U mg(-1)), 0.2 mM(-1) s(-1) for L-ribose (V(max), 75.5 +/- 6.0 U mg(-1)), and 1.4 +/- 0.1 mM(-1) s(-1) for D-mannose (V(max), 131.8 +/- 7.4 U mg(-1)). The ability of lyxA to permit E. coli cells to grow on D-lyxose and L-ribose and homology searches of other sugar-related enzymes, as well as previously described sugar isomerases, suggest that CLLI is a novel type of rare sugar isomerase.  相似文献   

6.
Phosphoglucose isomerase (EC 5.3.1.9) catalyzes the interconversion of D-glucopyranose-6-phosphate and D-fructofuranose-6-phosphate by promoting an intrahydrogen transfer between C1 and C2. A conserved histidine exists throughout all phosphoglucose isomerases and was hypothesized to be the base catalyzing the isomerization reaction. In the present study, this conserved histidine, His311, of the enzyme from Bacillus stearothermophilus was subjected to mutational analysis, and the mutational effect on the inactivation kinetics by N-bromoacetylethanolamine phosphate was investigated. The substitution of His311 with alanine, asparagine, or glutamine resulted in the decrease of activity, in k(cat)/K(M), by a factor of 10(3), indicating the importance of this residue. N-bromoacetylethanolamine phosphate inactivated irreversibly the activity of wild-type phosphoglucose isomerase; however, His311 --> Ala became resistant to this inhibitor, indicating that His311 is located in the active site and is responsible for the inactivation of the enzyme by this active site-directed inhibitor. The pKa of His311 was estimated to be 6.31 according to the pH dependence of the inactivation. The proximity of this value with the pKa value of 6.35, determined from the pH dependence of k(cat)/K(M), supports a role of His311 as a general base in the catalysis.  相似文献   

7.
Mouse thymidylate synthase R209K (a mutation corresponding to R218K in Lactobacillus casei), overexpressed in thymidylate synthase-deficient Escherichia coli strain, was poorly soluble and with only feeble enzyme activity. The mutated protein, incubated with FdUMP and N(5,10)-methylenetetrahydrofolate, did not form a complex stable under conditions of SDS/polyacrylamide gel electrophoresis. The reaction catalyzed by the R209K enzyme (studied in a crude extract), compared to that catalyzed by purified wild-type recombinant mouse thymidylate synthase, showed the K(m) value for dUMP 571-fold higher and V(max) value over 50-fold (assuming that the mutated enzyme constituted 20% of total crude extract protein) lower. Thus the ratios k(cat, R209K)/k(cat, 'wild') and (k(cat, R209K)/K(m, R209K)(dUMP))/( k(cat, 'wild')/K(m, 'wild')(dUMP)) were 0.019 and 0.000032, respectively, documenting that mouse thymidylate synthase R209, similar to the corresponding L. casei R218, is essential for both dUMP binding and enzyme reaction.  相似文献   

8.
Pichia stipitis NAD(+)-dependent xylitol dehydrogenase (XDH), a medium-chain dehydrogenase/reductase, is one of the key enzymes in ethanol fermentation from xylose. For the construction of an efficient biomass-ethanol conversion system, we focused on the two areas of XDH, 1) change of coenzyme specificity from NAD(+) to NADP(+) and 2) thermostabilization by introducing an additional zinc atom. Site-directed mutagenesis was used to examine the roles of Asp(207), Ile(208), Phe(209), and Asn(211) in the discrimination between NAD(+) and NADP(+). Single mutants (D207A, I208R, F209S, and N211R) improved 5 approximately 48-fold in catalytic efficiency (k(cat)/K(m)) with NADP(+) compared with the wild type but retained substantial activity with NAD(+). The double mutants (D207A/I208R and D207A/F209S) improved by 3 orders of magnitude in k(cat)/K(m) with NADP(+), but they still preferred NAD(+) to NADP(+). The triple mutant (D207A/I208R/F209S) and quadruple mutant (D207A/I208R/F209S/N211R) showed more than 4500-fold higher values in k(cat)/K(m) with NADP(+) than the wild-type enzyme, reaching values comparable with k(cat)/K(m) with NAD(+) of the wild-type enzyme. Because most NADP(+)-dependent XDH mutants constructed in this study decreased the thermostability compared with the wild-type enzyme, we attempted to improve the thermostability of XDH mutants by the introduction of an additional zinc atom. The introduction of three cysteine residues in wild-type XDH gave an additional zinc-binding site and improved the thermostability. The introduction of this mutation in D207A/I208R/F209S and D207A/I208R/F209S/N211R mutants increased the thermostability and further increased the catalytic activity with NADP(+).  相似文献   

9.
Hirano N  Haruki M  Morikawa M  Kanaya S 《Biochemistry》2000,39(43):13285-13294
A genetic method for isolating a mutant enzyme of ribonuclease HI (RNase HI) from Thermus thermophilus HB8 with enhanced activity at moderate temperatures was developed. T. thermophilus RNase HI has an ability to complement the RNase H-dependent temperature-sensitive (ts) growth phenotype of Escherichia coli MIC3001. However, this complementation ability was greatly reduced by replacing Asp(134), which is one of the active site residues, with His, probably due to a reduction in the catalytic activity. Random mutagenesis of the gene encoding the resultant D134H enzyme, followed by screening for second-site revertants, allowed us to isolate three single mutations (Ala(12) --> Ser, Lys(75) --> Met, and Ala(77) --> Pro) that restore the normal complementation ability to the D134H enzyme. These mutations were individually or simultaneously introduced into the wild-type enzyme, and the kinetic parameters of the resultant mutant enzymes for the hydrolysis of a DNA-RNA-DNA/DNA substrate were determined at 30 degrees C. Each mutation increased the k(cat)/K(m) value of the wild-type enzyme by 2.1-4.8-fold. The effects of the mutations on the enzymatic activity were roughly cumulative, and the combination of these three mutations increased the k(cat)/K(m) value of the wild-type enzyme by 40-fold (5.5-fold in k(cat)). Measurement of thermal stability of the mutant enzymes with circular dichroism spectroscopy in the presence of 1 M guanidine hydrochloride and 1 mM dithiothreitol showed that the T(m) value of the triple mutant enzyme, in which all three mutations were combined, was comparable to that of the wild-type enzyme (75.0 vs 77.4 degrees C). These results demonstrate that the activity of a thermophilic enzyme can be improved without a cost of protein stability.  相似文献   

10.
Random PCR mutagenesis was applied to the Thermus thermophilus xylA gene encoding xylose isomerase. Three cold-adapted mutants were isolated with the following amino-acid substitutions: E372G, V379A (M-1021), E372G, F163L (M-1024) and E372G (M-1026). The wild-type and mutated xylA genes were cloned and expressed in Escherichia coli HB101 using the vector pGEM-T Easy, and their physicochemical and catalytic properties were determined. The optimum pH for xylose isomerization activity for the mutants was approximately 7.0, which is similar to the wild-type enzyme. Compared with the wild-type, the mutants were active over a broader pH range. The mutants exhibited up to nine times higher catalytic rate constants (k(cat)) for d-xylose compared with the wild-type enzyme at 60 degrees C, but they did not show any increase in catalytic efficiency (k(cat)/K(m)). For d-glucose, both the k(cat) and the k(cat)/K(m) values for the mutants were increased compared with the wild-type enzyme. Furthermore, the mutant enzymes exhibited up to 255 times higher inhibition constants (K(i)) for xylitol than the wild-type, indicating that they are less inhibited by xylitol. The thermal stability of the mutated enzymes was poorer than that of the wild-type enzyme. The results are discussed in terms of increased molecular flexibility of the mutant enzymes at low temperatures.  相似文献   

11.
Zhang S  Wilson DB  Ganem B 《Biochemistry》2000,39(16):4722-4728
The Escherichia coli bifunctional P-protein, which plays a central role in L-phenylalanine (Phe) biosynthesis, contains distinct chorismate mutase (CM) and prephenate dehydratase (PDT) domains as well as a regulatory (R) domain for feedback control by Phe. To elucidate the catalytic mechanism of PDT in the P-protein, 24 mutations of 15 conserved residues in the PDT domain were created, expressed in the pheA(-)E. coli strain NK6024, and studied for their effect on PDT activity. Fourteen mutant enzymes were purified to homogeneity, tested for feedback inhibition by Phe, and characterized by kinetic analysis and circular dichroism spectroscopy. Selected mutant enzymes were further studied by gel filtration, fluorescence emission, and microcalorimetry. In addition, a monofunctional PDT domain (PDT20, residues 101-285) was cloned and overexpressed in plasmid pET with expression levels up to 200-250 mg/L. PDT20 retained full PDT activity, lacked CM activity, and was insensitive to feedback inhibition by Phe. Four residues (T278, N160, Q215, and S208) were shown to be important for PDT catalysis. The values of k(cat)/K(m) for the S208A/C and T278S mutant enzymes were 100-fold lower, and 500-fold lower for the N160A and Q215A mutant enzymes than the wild-type (WT) protein. The T278A and T278V mutant enzymes displayed no measurable catalytic activity, yet bound both prephenate and a competitive inhibitor (S-DNBA) comparably to the WT protein. These data, taken together with the normal CD spectra of the mutant enzymes, strongly suggested that T278 was involved in the catalytic mechanism. To establish whether acidic residues were involved in catalysis, all the conserved Glu and Asp residues in the PDT domain were mutated to Ala. None of these mutations significantly reduced PDT activity, indicating that the acidic residues of the PDT domain are not directly involved in catalysis. However, two mutant enzymes (E159A and E232A) displayed higher levels of PDT activity (2.2- and 3.5-fold, respectively), which was due to enhanced substrate binding. For the double mutant enzyme (E159A-E232A), k(cat)/K(m) was ca. 7-fold higher than for the WT enzyme, while its K(m) was 4.6-fold lower.  相似文献   

12.
The deacetoxycephalosporin C synthase (DAOCS) from Streptomyces clavuligerus was engineered with the aim of enhancing the conversion of penicillin G into phenylacetyl-7-aminodeacetoxycephalosporanic acid, a precursor of 7-aminodeacetoxycephalosporanic acid, for industrial application. A single round of random mutagenesis followed by the screening of 5,500 clones identified three mutants, G79E, V275I, and C281Y, that showed a two- to sixfold increase in the k(cat)/K(m) ratio compared to the wild-type enzyme. Site-directed mutagenesis to modify residues surrounding the substrate resulted in three mutants, N304K, I305L, and I305M, with 6- to 14-fold-increased k(cat)/K(m) values. When mutants containing all possible combinations of these six sites were generated to optimize the ring expansion activity for penicillin G, the double mutant, YS67 (V275I, I305M), showed a significant 32-fold increase in the k(cat)/K(m) ratio and a 5-fold increase in relative activity for penicillin G, while the triple mutant, YS81 (V275I, C281Y, I305M), showed an even greater 13-fold increase in relative activity toward penicillin G. Our results demonstrate that this is a robust approach to the modification of DAOCS for an optimized DAOCS-penicillin G reaction.  相似文献   

13.
Y Yin  N S Sampson  A Vrielink  P I Lario 《Biochemistry》2001,40(46):13779-13787
Cholesterol oxidase catalyzes the oxidation and isomerization of cholesterol to cholest-4-en-3-one. An asparagine residue (Asn485) at the active site is believed to play an important role in catalysis. To test the precise role of Asn485, we mutated it to a leucine and carried out kinetic and crystallographic studies. Steady-state kinetic analysis revealed a 1300-fold decrease in the oxidation k(cat)/K(m) for the mutant enzyme whereas the k(cat)/K(m) for isomerization is only 60-fold slower. The primary kinetic isotope effect in the mutant-catalyzed reaction indicates that 3alpha-H transfer remains the rate-determining step. Measurement of the reduction potentials for the wild-type and N485L enzymes reveals a 76 mV decrease in the reduction potential of the FAD for the mutant enzyme relative to wild type. The crystal structure of the mutant, determined to 1.5 A resolution, reveals a repositioning of the side chain of Met122 near Leu485 to form a hydrophobic pocket. Furthermore, the movement of Met122 facilitates the binding of an additional water molecule, possibly mimicking the position of the equatorial hydroxyl group of the steroid substrate. The wild-type enzyme shows a novel N-H...pi interaction between the side chain of Asn485 and the pyrimidine ring of the cofactor. The loss of this interaction in the N485L mutant destabilizes the reduced flavin and accounts for the decreased reduction potential and rate of oxidation. Thus, the observed structural rearrangement of residues at the active site, as well as the kinetic data and thermodynamic data for the mutant, suggests that Asn485 is important for creating an electrostatic potential around the FAD cofactor enhancing the oxidation reaction.  相似文献   

14.
l-Aspartase was modified by directed evolution. After four rounds of error-prone PCR and three rounds of DNA shuffling, an evolved enzyme purified from the final round showed a 28-fold increased k(cat)/K(m) and 4.6-fold decreased K(m). The thermostability and stable pH range were also enhanced. The DNA sequence of the evolved aspartase gene showed seven base changes, resulting in three amino acid changes from the native enzyme: N217K, T233R, V367G. The mechanism of the enhancement of activity was analyzed.  相似文献   

15.
Epoxide hydrolase from Agrobacterium radiobacter catalyzes the hydrolysis of epoxides to their diols via an alkyl-enzyme intermediate. The recently solved X-ray structure of the enzyme shows that two tyrosine residues (Tyr152 and Tyr215) are positioned close to the nucleophile Asp107 in such a way that they can serve as proton donor in the alkylation reaction step. The role of these tyrosines, which are conserved in other epoxide hydrolases, was studied by site-directed mutagenesis. Mutation of Tyr215 to Phe and Ala and mutation of Tyr152 to Phe resulted in mutant enzymes of which the k(cat) values were only 2-4-fold lower than for wild-type enzyme, whereas the K(m) values for the (R)-enantiomers of styrene oxide and p-nitrostyrene oxide were 3 orders of magnitude higher than the K(m) values of wild-type enzyme, showing that the alkylation half-reaction is severely affected by the mutations. Pre-steady-state analysis of the conversion of (R)-styrene oxide by the Y215F and Y215A mutants showed that the 1000-fold elevated K(m) values were mainly caused by a 15-40-fold increase in K(S) and a 20-fold reduction in the rate of alkylation. The rates of hydrolysis of the alkyl-enzyme intermediates were not significantly affected by the mutations. The double mutant Y152F+Y215F showed only a low residual activity for (R)-styrene oxide, with a k(cat)/K(m) value that was 6 orders of magnitude lower than with wild-type enzyme and 3 orders of magnitude lower than with the single tyrosine mutants. This indicates that the effects of the mutations were cumulative. The side chain of Gln134 is positioned in the active site of the X-ray structure of epoxide hydrolase. Mutation of Gln134 to Ala resulted in an active enzyme with slightly altered steady-state kinetic parameters compared to wild-type enzyme, indicating that Gln134 is not essential for catalysis and that the side chain of Gln134 mimics bound substrate. Based upon this observation, the inhibitory potential of various unsubstituted amides was tested, resulting in the identification of phenylacetamide as a competitive inhibitor with an inhibition constant of 30 microM.  相似文献   

16.
A substrate specificity study of the recombinant D-ribose-5-phosphate isomerase (RpiB) from Clostridium thermocellum was performed. Among all aldopentoses and aldohexoses, the RpiB enzyme displayed activity with L-talose, D-ribose, D-allose, L-allose, L-ribose, and D-talose in decreasing order. The products released were L-tagatose, D-ribulose, D-psicose, L-psicose, L-ribulose, and D-tagatose, respectively. The enzyme showed specificity for aldose substrates possessing hydroxyl groups oriented in the same direction at the C2, C3, and C4 positions. Molecular modeling of the enzyme suggests that the novel substrate specificity may be explained by substrate interactions with residues Tyr42, His98, and His9, which interact with the hydroxyl groups of C2, C3, and C4, respectively, oriented in the same direction. L-Talose and D-ribulose exhibited the highest activity among the aldoses and ketoses, respectively. Ribose 5-phosphate isomerase catalyzed the conversion of L-talose to L-tagatose with an 89% conversion yield after approximately 90 min, while D-ribulose was converted to D-ribose with a 38% conversion yield.  相似文献   

17.
The roles of particular amino acids in substrate and coenzyme binding and catalysis of glucose-6-phosphate dehydrogenase of Leuconostoc mesenteroides have been investigated by site-directed mutagenesis, kinetic analysis, and determination of binding constants. The enzyme from this species has functional dual NADP(+)/NAD(+) specificity. Previous investigations in our laboratories determined the three-dimensional structure. Kinetic studies showed an ordered mechanism for the NADP-linked reaction while the NAD-linked reaction is random. His-240 was identified as the catalytic base, and Arg-46 was identified as important for NADP(+) but not NAD(+) binding. Mutations have been selected on the basis of the three-dimensional structure. Kinetic studies of 14 mutant enzymes are reported and kinetic mechanisms are reported for 5 mutant enzymes. Fourteen substrate or coenzyme dissociation constants have been measured for 11 mutant enzymes. Roles of particular residues are inferred from k(cat), K(m), k(cat)/K(m), K(d), and changes in kinetic mechanism. Results for enzymes K182R, K182Q, K343R, and K343Q establish Lys-182 and Lys-343 as important in binding substrate both to free enzyme and during catalysis. Studies of mutant enzymes Y415F and Y179F showed no significant contribution for Tyr-415 to substrate binding and only a small contribution for Tyr-179. Changes in kinetics for T14A, Q47E, and R46A enzymes implicate these residues, to differing extents, in coenzyme binding and discrimination between NADP(+) and NAD(+). By the same measure, Lys-343 is also involved in defining coenzyme specificity. Decrease in k(cat) and k(cat)/K(m) for the D374Q mutant enzyme defines the way Asp-374, unique to L. mesenteroides G6PD, modulates stabilization of the enzyme during catalysis by its interaction with Lys-182. The greatly reduced k(cat) values of enzymes P149V and P149G indicate the importance of the cis conformation of Pro-149 in accessing the correct transition state.  相似文献   

18.
The contributions to substrate binding and catalysis of 13 amino acid residues of the Caenorhabditis elegans diadenosine tetraphosphate pyrophosphohydrolase (Ap(4)A hydrolase) predicted from the crystal structure of an enzyme-inhibitor complex have been investigated by site-directed mutagenesis. Sixteen glutathione S-transferase-Ap(4)A hydrolase fusion proteins were expressed and their k(cat) and K(m) values determined after removal of the glutathione S-transferase domain. As expected for a Nudix hydrolase, the wild type k(cat) of 23 s(-1) was reduced by 10(5)-, 10(3)-, and 30-fold, respectively, by replacement of the conserved P(4)-phosphate-binding catalytic residues Glu(56), Glu(52), and Glu(103) by Gln. K(m) values were not affected, indicating a lack of importance for substrate binding. In contrast, mutating His(31) to Val or Ala and Lys(83) to Met produced 10- and 16-fold increases in K(m) compared with the wild type value of 8.8 microm. These residues stabilize the P(1)-phosphate. H31V and H31A had a normal k(cat) but K83M showed a 37-fold reduction in k(cat). Lys(36) also stabilizes the P(1)-phosphate and a K36M mutant had a 10-fold reduced k(cat) but a relatively normal K(m). Thus both Lys(36) and Lys(83) may play a role in catalysis. The previously suggested roles of Tyr(27), His(38), Lys(79), and Lys(81) in stabilizing the P(2) and P(3)-phosphates were not confirmed by mutagenesis, indicating the absence of phosphate-specific binding contacts in this region. Also, mutating both Tyr(76) and Tyr(121), which clamp one substrate adenosine moiety between them in the crystal structure, to Ala only increased K(m) 4-fold. It is concluded that interactions with the P(1)- and P(4)-phosphates are minimum and sufficient requirements for substrate binding by this class of enzyme, indicating that it may have a much wider substrate range then previously believed.  相似文献   

19.
Ketosteroid isomerase (KSI) from Pseudomonas putida biotype B is a homodimeric enzyme catalyzing an allylic isomerization of Delta(5)-3-ketosteroids at a rate of the diffusion-controlled limit. The dimeric interactions mediated by Arg72, Glu118, and Asn120, which are conserved in the homologous KSIs, have been characterized in an effort to investigate the roles of the conserved interface residues in stability, function and structure of the enzyme. The interface residues were replaced with alanine to generate the interface mutants R72A, E118A, N120A and E118A/N120A. Equilibrium unfolding analysis revealed that the DeltaG(U)(H(2)O) values for the R72A, E118A, N120A, and E118A/N120A mutants were decreased by about 3.8, 3.9, 7.8, and 9.5 kcal/mol, respectively, relative to that of the wild-type enzyme. The interface mutations not only decreased the k(cat)/K(M) value by about 8- to 96-fold, but also increased the K(D) value for d-equilenin, a reaction intermediate analogue, by about 7- to 17.5-fold. The crystal structure of R72A determined at 2.5 A resolution and the fluorescence spectra of all the mutants indicated that the interface mutations altered the active-site geometry and resulted in the decreases of the conformational stability as well as the catalytic activity of KSI. Taken together, our results strongly suggest that the conserved interface residues contribute to stabilization and structural integrity of the active site in the dimeric KSI.  相似文献   

20.
We used molecular dynamics simulations to study how a non-natural substrate, L-ribose, interacts with the active site of Actinoplanes missouriensis xylose isomerase. The simulations showed that L-ribose does not stay liganded in the active site in the same way as D-xylose, in which the oxygens O2 and O4 are liganded to the metal M1. The oxygen O4 of L-ribose moved away from the metal M1 to an upside down position. Furthermore, the distances of the carbons C1 and C2 of L-ribose to the catalytic metal M2 were higher than in the case of D-xylose. These findings explain the extremely low reaction rate of xylose isomerase with L-ribose. The mutation V135N close to the C5-OH of the substrate increased the reaction efficiency 2- to 4-fold with L-ribose. V135N did not affect the reaction with D-xylose and L-arabinose, whereas the reaction with D-glucose was impaired, probably due to a hydrogen bond between Asn-135 and the substrate. When L-ribose was the substrate, Asn-135 formed a hydrogen bond to Glu-181. As a consequence, O4 of L-ribose stayed liganded to the metal M1 in the V135N mutant in molecular dynamics simulations. This explains the decreased K(m) of the V135N mutant with L-ribose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号