首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Energetically competent binary recognition of the cofactor S-adenosyl-L-methionine (AdoMet) and the product S-adenosyl-L-homocysteine (AdoHcy) by the DNA (cytosine C-5) methyltransferase (M.HhaI) is demonstrated herein. Titration calorimetry reveals a dual mode, involving a primary dominant exothermic reaction followed by a weaker endothermic one, for the recognition of AdoMet and AdoHcy by M.HhaI. Conservation of the bimodal recognition in W41I and W41Y mutants of M.HhaI excludes the cation-pi interaction between the methylsulfonium group of AdoMet and the pi face of the Trp(41) indole ring from a role in its origin. Small magnitude of temperature-independent heat capacity changes upon AdoMet or AdoHcy binding by M.HhaI preclude appreciable conformational alterations in the reacting species. Coupled osmotic-calorimetric analyses of AdoMet and AdoHcy binding by M.HhaI indicate that a net uptake of nearly eight and 10 water molecules, respectively, assists their primary recognition. A change in water activity at constant temperature and pH is sufficient to engender and conserve enthalpy-entropy compensation, consistent with a true osmotic effect. The results implicate solvent reorganization in providing the major contribution to the origin of this isoequilibrium phenomenon in AdoMet and AdoHcy recognition by M.HhaI. The observations provide unequivocal evidence for the binding of AdoMet as well as AdoHcy to M.HhaI in solution state. Isotope partitioning analysis and preincubation studies favor a random mechanism for M.HhaI-catalyzed reaction. Taken together, the results clearly resolve the issue of cofactor recognition by free M.HhaI, specifically in the absence of DNA, leading to the formation of an energetically and catalytically competent binary complex.  相似文献   

2.
Kinetic and binding studies involving a model DNA cytosine-5-methyltransferase, M.HhaI, and a 37-mer DNA duplex containing a single hemimethylated target site were applied to characterize intermediates on the reaction pathway. Stopped-flow fluorescence studies reveal that cofactor S-adenosyl-l-methionine (AdoMet) and product S-adenosyl-l-homocysteine (AdoHcy) form similar rapidly reversible binary complexes with the enzyme in solution. The M.HhaI.AdoMet complex (k(off) = 22 s(-)1, K(D) = 6 microm) is partially converted into products during isotope-partitioning experiments, suggesting that it is catalytically competent. Chemical formation of the product M.HhaI.(Me)DNA.AdoHcy (k(chem) = 0.26 s(-)1) is followed by a slower decay step (k(off) = 0.045 s(-)1), which is the rate-limiting step in the catalytic cycle (k(cat) = 0.04 s(-)1). Analysis of reaction products shows that the hemimethylated substrate undergoes complete (>95%) conversion into fully methylated product during the initial burst phase, indicating that M.HhaI exerts high binding selectivity toward the target strand. The T250N, T250D, and T250H mutations, which introduce moderate perturbation in the catalytic site, lead to substantially increased K(D)(DNA(ternary)), k(off)(DNA(ternary)), K(M)(AdoMet(ternary)) values but small changes in K(D)(DNA(binary)), K(D)(AdoMet(binary)), k(chem), and k(cat). When the target cytosine is replaced with 5-fluorocytosine, the chemistry step leading to an irreversible covalent M.HhaI.DNA complex is inhibited 400-fold (k(chem)(5FC) = 0.7 x 10(-)3 s(-)1), and the Thr-250 mutations confer further dramatic decrease of the rate of the covalent methylation k(chem). We suggest that activation of the pyrimidine ring via covalent addition at C-6 is a major contributor to the rate of the chemistry step (k(chem)) in the case of cytosine but not 5-fluorocytosine. In contrast to previous reports, our results imply a random substrate binding order mechanism for M.HhaI.  相似文献   

3.
Ten M.HhaI residues were replaced with alanine to probe the importance of distal protein elements to substrate/cofactor binding, methyl transfer, and product release. The substitutions, ranging from 6-20 A from the active site were evaluated by thermodynamic analysis, pre-steady and steady-state kinetics, to obtain Kd(AdoMet), Kd(DNA), kcat/Km(DNA), kcat, and kmethyltransfer values. For the wild-type M.HhaI, product release steps dominate catalytic turnover while the 4-fold faster internal microscopic constant kmethyltransfer presents an upper limit. The methyl transfer reaction has DeltaH and DeltaS values of 10.3 kcal/mol and -29.4 cal/(mol K), respectively, consistent with a compressed transition state similar to that observed in the gas phase. Although the ten mutants remained largely unperturbed in methyl transfer, long-range effects influencing substrate/cofactor binding and product release were observed. Positive enhancements were seen in Asp73Ala, which showed a 25-fold improvement in AdoMet affinity and in Val282Ala, which showed a 4-fold improvement in catalytic turnover. Based on an analysis of the positional probability within the C5-cytosine DNA methyltransferase family we propose that certain conserved distal residues may be important in mediating long-range effects.  相似文献   

4.
We have determined a structure for a complex formed between HhaI methyltransferase (M.HhaI) and S-adenosyl-L-methionine (AdoMet) in the presence of a non-specific short oligonucleotide. M.HhaI binds to the non-specific short oligonucleotides in solution. Although no DNA is incorporated in the crystal, AdoMet binds in a primed orientation, identical with that observed in the ternary complex of the enzyme, cognate DNA, and AdoMet or S-adenosyl-L-homocysteine (AdoHcy). This orientation differs from the previously observed unprimed orientation in the M.HhaI-AdoMet binary complex, where the S+-CH3 unit of AdoMet is protected by a favorable cation-pi interaction with Trp41. The structure suggests that the presence of DNA can guide AdoMet into the primed orientation. These results shed new light on the proposed ordered mechanism of binding and explains the stable association between AdoMet and M.HhaI.  相似文献   

5.
S-adenosyl-L-methionine- (AdoMet-) dependent methyltransferases are widespread, play critical roles in diverse biological pathways, and are antibiotic and cancer drug targets. Presently missing from our understanding of any AdoMet-dependent methyl-transfer reaction is a high-resolution structure of a precatalytic enzyme/AdoMet/DNA complex. The catalytic mechanism of DNA cytosine methylation was studied by structurally and functionally characterizing several active site mutants of the bacterial enzyme M.HhaI. The 2.64 A resolution protein/DNA/AdoMet structure of the inactive C81A M.HhaI mutant suggests that active site water, an approximately 13 degree tilt of the target base toward the active site nucleophile, and the presence or absence of the cofactor methylsulfonium are coupled via a hydrogen-bonding network involving Tyr167. The active site in the mutant complex is assembled to optimally align the pyrimidine for nucleophilic attack and subsequent methyl transfer, consistent with previous molecular dynamics ab initio and quantum mechanics/molecular mechanics calculations. The mutant/DNA/AdoHcy structure (2.88 A resolution) provides a direct comparison to the postcatalytic complex. A third C81A ternary structure (2.22 A resolution) reveals hydrolysis of AdoMet to adenosine in the active site, further validating the coupling between the methionine portion of AdoMet and ultimately validating the structural observation of a prechemistry/postchemistry water network. Disruption of this hydrogen-bonding network by a Tyr167 to Phe167 mutation does not alter the kinetics of nucleophilic attack or methyl transfer. However, the Y167F mutant shows detectable changes in kcat, caused by the perturbed kinetics of AdoHcy release. These results provide a basis for including an extensive hydrogen-bonding network in controlling the rate-limiting product release steps during cytosine methylation.  相似文献   

6.
HhaI DNA methyltransferase belongs to the C5-cytosine methyltransferase family, which is characterized by the presence of a set of highly conserved amino acids and motifs present in an invariant order. HhaI DNA methyltransferase has been subjected to a lot of biochemical and crystallographic studies. A number of issues, especially the role of the conserved amino acids in the methyltransferase activity, have not been addressed. Using sequence comparison and structural data, a structure-guided mutagenesis approach was undertaken, to assess the role of conserved amino acids in catalysis. Site-directed mutagenesis was performed on amino acids involved in cofactor S-adenosyl-L-methionine (AdoMet) binding (Phe18, Trp41, Asp60 and Leu100). Characterization of these mutants, by in vitro /in vivo restriction assays and DNA/AdoMet binding studies, indicated that most of the residues present in the AdoMet-binding pocket were not absolutely essential. This study implies plasticity in the recognition of cofactor by HhaI DNA methyltransferase.  相似文献   

7.
The presence of 5-azacytosine (ZCyt) residues in DNA leads to potent inhibition of DNA (cytosine-C5) methyltranferases (C5-MTases) in vivo and in vitro. Enzymatic methylation of cytosine in mammalian DNA is an epigenetic modification that can alter gene activity and chromosomal stability, influencing both differentiation and tumorigenesis. Thus, it is important to understand the critical mechanistic determinants of ZCyt's inhibitory action. Although several DNA C5-MTases have been reported to undergo essentially irreversible binding to ZCyt in DNA, there is little agreement as to the role of AdoMet and/or methyl transfer in stabilizing enzyme interactions with ZCyt. Our results demonstrate that formation of stable complexes between HhaI methyltransferase (M.HhaI) and oligodeoxyribonucleotides containing ZCyt at the target position for methylation (ZCyt-ODNs) occurs in both the absence and presence of co-factors, AdoMet and AdoHcy. Both binary and ternary complexes survive SDS-PAGE under reducing conditions and take on a compact conformation that increases their electrophoretic mobility in comparison to free M.HhaI. Since methyl transfer can occur only in the presence of AdoMet, these results suggest (1) that the inhibitory capacity of ZCyt in DNA is based on its ability to induce a stable, tightly closed conformation of M.HhaI that prevents DNA and co-factor release and (2) that methylation of ZCyt in DNA is not required for inhibition of M.HhaI.  相似文献   

8.
4'-Thio-2'-deoxycytidine was synthesized as a 5'- protected phosphoramidite compatible with solid phase DNA synthesis. When incorporated as the target cytosine (C*) in the GC*GC recognition sequence for the DNA methyltransferase M. HhaI, methyl transfer was strongly inhibited. In contrast, these same oligonucleotides were normal substrates for the cognate restriction endonuclease R. HhaI and its isoschizomer R. Hin P1I. M. HhaI was able to bind both 4'-thio-modified DNA and unmodified DNA to equivalent extents under equilibrium conditions. However, the presence of 4'-thio-2'-deoxycytidine decreased the half-life of the complex by >10-fold. The crystal structure of a ternary complex of M. HhaI, AdoMet and DNA containing 4'-thio-2'-deoxycytidine was solved at 2.05 A resolution with a crystallographic R-factor of 0.186 and R-free of 0.231. The structure is not grossly different from previously solved ternary complexes containing M. HhaI, DNA and AdoHcy. The difference electron density suggests partial methylation at C5 of the flipped target 4'-thio-2'-deoxycytidine. The inhibitory effect of the 4'sulfur atom on enzymatic activity may be traced to perturbation of a step in the methylation reaction after DNA binding but prior to methyl transfer. This inhibitory effect can be partially overcome after a considerably long time in the crystal environment where the packing prevents complex dissociation and the target is accurately positioned within the active site.  相似文献   

9.
The crystal structure of the Escherichia coli DNA adenine methyltransferase (EcoDam) in a binary complex with the cofactor product S-adenosyl-L-homocysteine (AdoHcy) unexpectedly showed the bound AdoHcy in two alternative conformations, extended or folded. The extended conformation represents the catalytically competent conformation, identical to that of EcoDam-DNA-AdoHcy ternary complex. The folded conformation prevents catalysis, because the homocysteine moiety occupies the target Ade binding pocket. The largest difference between the binary and ternary structures is in the conformation of the N-terminal hexapeptide ((9)KWAGGK(14)). Cofactor binding leads to a strong change in the fluorescence of Trp(10), whose indole ring approaches the cofactor by 3.3A(.) Stopped-flow kinetics and AdoMet cross-linking studies indicate that the cofactor prefers binding to the enzyme after preincubation with DNA. In the presence of DNA, AdoMet binding is approximately 2-fold stronger than AdoHcy binding. In the binary complex the side chain of Lys(14) is disordered, whereas Lys(14) stabilizes the active site in the ternary complex. Fluorescence stopped-flow experiments indicate that Lys(14) is important for EcoDam binding of the extrahelical target base into the active site pocket. This suggests that the hexapeptide couples specific DNA binding (Lys(9)), AdoMet binding (Trp(10)), and insertion of the flipped target base into the active site pocket (Lys(14)).  相似文献   

10.
DNA methyltransferases catalyse the transfer of a methyl group from the ubiquitous cofactor S-adenosyl-L-methionine (AdoMet) onto specific target sites on DNA and play important roles in organisms from bacteria to humans. AdoMet analogs with extended propargylic side chains have been chemically produced for methyltransferase-directed transfer of activated groups (mTAG) onto DNA, although the efficiency of reactions with synthetic analogs remained low. We performed steric engineering of the cofactor pocket in a model DNA cytosine-5 methyltransferase (C5-MTase), M.HhaI, by systematic replacement of three non-essential positions, located in two conserved sequence motifs and in a variable region, with smaller residues. We found that double and triple replacements lead to a substantial improvement of the transalkylation activity, which manifests itself in a mild increase of cofactor binding affinity and a larger increase of the rate of alkyl transfer. These effects are accompanied with reduction of both the stability of the product DNA–M.HhaI–AdoHcy complex and the rate of methylation, permitting competitive mTAG labeling in the presence of AdoMet. Analogous replacements of two conserved residues in M.HpaII and M2.Eco31I also resulted in improved transalkylation activity attesting a general applicability of the homology-guided engineering to the C5-MTase family and expanding the repertoire of sequence-specific tools for covalent in vitro and ex vivo labeling of DNA.  相似文献   

11.
Abstract

Ten M.HhaI residues were replaced with alanine to probe the importance of distal protein elements to substrate/cofactor binding21,methyl transfer, and product release. The substitutions, ranging from 6–20 Å from the active site were evaluated by thermodynamic analysis, pre-steady and steady-state kinetics, to obtain Kd AdoMet, Kd DNA, kcat/Km DNA, kcat, and kmethyltransfer values. For the wild-type M.HhaI, product release steps dominate catalytic turnover while the 4-fold faster internal microscopic constant kmethyltransfer presents an upper limit. The methyl transfer reaction has δH? and δS? values of 10.3 kcal/mol and—29.4 cal/(mol K), respectively, consistent with a compressed transition state similar to that observed in the gas phase. Although the ten mutants remained largely unperturbed in methyl transfer, long-range effects influencing substrate/cofactor binding and product release were observed. Positive enhancements were seen in Asp73Ala, which showed a 25fold improvement in AdoMet affinity and in Val282Ala, which showed a 4-fold improvement in catalytic turnover. Based on an analysis of the positional probability within the C5- cytosine DNA methyltransferase family we propose that certain conserved distal residues may be important in mediating long-range effects.  相似文献   

12.
Kinetic and catalytic mechanism of HhaI methyltransferase   总被引:53,自引:0,他引:53  
Kinetic and catalytic properties of the DNA (cytosine-5)-methyltransferase HhaI are described. With poly(dG-dC) as substrate, the reaction proceeds by an equilibrium (or processive) ordered Bi-Bi mechanism in which DNA binds to the enzyme first, followed by S-adenosylmethionine (AdoMet). After methyl transfer, S-adenosylhomocysteine (AdoHcy) dissociates followed by methylated DNA. AdoHcy is a potent competitive inhibitor with respect to AdoMet (Ki = 2.0 microM) and its generation during reactions results in non-linear kinetics. AdoMet and AdoHcy significantly interact with only the substrate enzyme-DNA complex; they do not bind to free enzyme and bind poorly to the methylated enzyme-DNA complex. In the absence of AdoMet, HhaI methylase catalyzes exchange of the 5-H of substrate cytosines for protons of water at about 7-fold the rate of methylation. The 5-H exchange reaction is inhibited by AdoMet or AdoHcy. In the enzyme-DNA-AdoHcy complex, AdoHcy also suppresses dissociation of DNA and reassociation of the enzyme with other substrate sequences. Our studies reveal that the catalytic mechanism of DNA (cytosine-5)-methyltransferases involves attack of the C6 of substrate cytosines by an enzyme nucleophile and formation of a transient covalent adduct. Based on precedents of other enzymes which catalyze similar reactions and the susceptibility of HhaI to inactivation by N-ethylmaleimide, we propose that the sulfhydryl group of a cysteine residue is the nucleophilic catalyst. Furthermore, we propose that Cys-81 is the active-site catalyst in HhaI. This residue is found in a Pro-Cys doublet which is conserved in all DNA (cytosine-5)-methyltransferases whose sequences have been determined to date and is found in related enzymes. Finally, we discuss the possibility that covalent adducts between C6 of pyrimidines and nucleophiles of proteins may be important general components of protein-nucleic acid interactions.  相似文献   

13.
We carried out a steady state kinetic analysis of the bacteriophage T4 DNA-[N6-adenine]methyltransferase (T4 Dam) mediated methyl group transfer reaction from S-adenosyl-l-methionine (AdoMet) to Ade in the palindromic recognition sequence, GATC, of a 20-mer oligonucleotide duplex. Product inhibition patterns were consistent with a steady state-ordered bi-bi mechanism in which the order of substrate binding and product (methylated DNA, DNA(Me) and S-adenosyl-l-homocysteine, AdoHcy) release was AdoMet downward arrow DNA downward arrow DNA(Me) upward arrow AdoHcy upward arrow. A strong reduction in the rate of methylation was observed at high concentrations of the substrate 20-mer DNA duplex. In contrast, increasing substrate AdoMet concentration led to stimulation in the reaction rate with no evidence of saturation. We propose the following model. Free T4 Dam (initially in conformational form E) randomly interacts with substrates AdoMet and DNA to form a ternary T4 Dam-AdoMet-DNA complex in which T4 Dam has isomerized to conformational state F, which is specifically adapted for catalysis. After the chemical step of methyl group transfer from AdoMet to DNA, product DNA(Me) dissociates relatively rapidly (k(off) = 1.7 x s(-1)) from the complex. In contrast, dissociation of product AdoHcy proceeds relatively slowly (k(off) = 0.018 x s(-1)), indicating that its release is the rate-limiting step, consistent with kcat = 0.015 x s(-1). After AdoHcy release, the enzyme remains in the F conformational form and is able to preferentially bind AdoMet (unlike form E, which randomly binds AdoMet and DNA), and the AdoMet-F binary complex then binds DNA to start another methylation cycle. We also propose an alternative pathway in which the release of AdoHcy is coordinated with the binding of AdoMet in a single concerted event, while T4 Dam remains in the isomerized form F. The resulting AdoMet-F binary complex then binds DNA, and another methylation reaction ensues. This route is preferred at high AdoMet concentrations.  相似文献   

14.
The role of Glu119 in S-adenosyl-L-methionine-dependent DNA methyltransferase M.HhaI-catalyzed DNA methylation was studied. Glu119 belongs to the highly conserved Glu/Asn/Val motif found in all DNA C5-cytosine methyltransferases, and its importance for M.HhaI function remains untested. We show that formation of the covalent intermediate between Cys81 and the target cytosine requires Glu119, since conversion to Ala, Asp or Gln lowers the rate of methyl transfer 10(2)-10(6) fold. Further, unlike the wild-type M.HhaI, these mutants are not trapped by the substrate in which the target cytosine is replaced with the mechanism-based inhibitor 5-fluorocytosine. The DNA binding affinity for the Glu119Asp mutant is decreased 10(3)-fold. Thus, the ability of the enzyme to stabilize the extrahelical cytosine is coupled directly to tight DNA binding. The structures of the ternary protein/DNA/AdoHcy complexes for both the Glu119Ala and Glu119Gln mutants (2.70 A and 2.75 A, respectively) show that the flipped base is positioned nearly identically with that observed in the wild-type M.HhaI complex. A single water molecule in the Glu119Ala structure between Ala119 and the extrahelical cytosine N3 is lacking in the Glu119Gln and wild-type M.HhaI structures, and most likely accounts for this mutant's partial activity. Glu119 has essential roles in activating the target cytosine for nucleophilic attack and contributes to tight DNA binding.  相似文献   

15.
Kinetic mechanism of the EcoRI DNA methyltransferase   总被引:4,自引:0,他引:4  
N O Reich  N Mashhoon 《Biochemistry》1991,30(11):2933-2939
We present a kinetic analysis of the EcoRI DNA N6-adenosine methyltransferase (Mtase). The enzyme catalyzes the S-adenosylmethionine (AdoMet)-dependent methylation of a short, synthetic 14 base pair DNA substrate and plasmid pBR322 DNA substrate with kcat/Km values of 0.51 X 10(8) and 4.1 X 10(8) s-1 M-1, respectively. The Mtase is thus one of the most efficient biocatalysts known. Our data are consistent with an ordered bi-bi steady-state mechanism in which AdoMet binds first, followed by DNA addition. One of the reaction products, S-adenosylhomocysteine (AdoHcy), is an uncompetitive inhibitor with respect to DNA and a competitive inhibitor with respect to AdoMet. Thus, initial DNA binding followed by AdoHcy binding leads to formation of a ternary dead-end complex (Mtase-DNA-AdoHcy). We suggest that the product inhibition patterns and apparent order of substrate binding can be reconciled by a mechanism in which the Mtase binds AdoMet and noncanonical DNA randomly but that recognition of the canonical site requires AdoMet to be bound. Pre-steady-state and isotope partition analyses starting with the binary Mtase-AdoMet complex confirm its catalytic competence. Moreover, the methyl transfer step is at least 10 times faster than catalytic turnover.  相似文献   

16.
We studied the kinetics of methyl group transfer by the BamHI DNA-(cytosine-N(4)-)-methyltransferase (MTase) from Bacillus amyloliquefaciens to a 20-mer oligodeoxynucleotide duplex containing the palindromic recognition site GGATCC. Under steady state conditions the BamHI MTase displayed a simple kinetic behavior toward the 20-mer duplex. There was no apparent substrate inhibition at concentrations much higher than the K(m) for either DNA (100-fold higher) or S-adenosyl-l-methionine (AdoMet) (20-fold higher); this indicates that dead-end complexes did not form in the course of the methylation reaction. The DNA methylation rate was analyzed as a function of both substrate and product concentrations. It was found to exhibit product inhibition patterns consistent with a steady state random bi-bi mechanism in which the dominant order of substrate binding and product release (methylated DNA, DNA(Me), and S-adenosyl-l-homocysteine, AdoHcy) was Ado-Met DNA DNA(Me) AdoHcy. The M.BamHI kinetic scheme was compared with that for the T4 Dam (adenine-N(6)-)-MTase. The two differed with respect to an effector action of substrates and in the rate-limiting step of the reaction (product inhibition patterns are the same for the both MTases). From this we conclude that the common chemical step in the methylation reaction, methyl transfer from AdoMet to a free exocyclic amino group, is not sufficient to dictate a common kinetic scheme even though both MTases follow the same reaction route.  相似文献   

17.
Svedruzić ZM  Reich NO 《Biochemistry》2004,43(36):11460-11473
We measured the tritium exchange reaction on cytosine C(5) in the presence of AdoMet analogues to investigate the catalytic mechanism of the bacterial DNA cytosine methyltransferase M.HhaI. Poly(dG-dC) and poly(dI-dC) substrates were used to investigate the function of the active site loop (residues 80-99), stability of the extrahelical base, base flipping mechanism, and processivity on DNA substrates. On the basis of several experimental approaches, we show that methyl transfer is the rate-limiting pre-steady-state step. Further, we show that the active site loop opening contributes to the rate-limiting step during multiple cycles of catalysis. Target base activation and nucleophilic attack by cysteine 81 are fast and readily reversible. Thus, the reaction intermediates involving the activated target base and the extrahelical base are in equilibrium and accumulate prior to the slow methyl transfer step. The stability of the activated target base depends on the active site loop closure, which is dependent on the hydrogen bond between isoleucine 86 and the guanine 5' to the target cytosine. These interactions prevent the premature release of the extrahelical base and uncontrolled solvent access; the latter modulates the exchange reaction and, by implication, the mutagenic deamination reaction. The processive catalysis by M.HhaI is also regulated by the interaction between isoleucine 86 and the DNA substrate. Nucleophilic attack by cysteine 81 is partially rate limiting when the target base is not fully stabilized in the extrahelical position, as observed during the reaction with the Gln(237)Trp mutant or in the cytosine C(5) exchange reaction in the absence of the cofactor.  相似文献   

18.
Val(121) is positioned immediately above the extrahelical cytosine in HhaI DNA C(5)-cytosine methyltransferase, and replacement with alanine dramatically interferes with base flipping and catalysis. DNA binding and k(cat) are decreased 10(5)-fold for the Val(121) --> Ala mutant that has a normal circular dichroism spectrum and AdoMet affinity. The magnitude of this loss of function is comparable with removal of the essential catalytic Cys(81). Surprisingly, DNA binding is completely recovered (increase of 10(5)-fold) with a DNA substrate lacking the target cytosine base (abasic). Thus, interfering with the base flipping transition results in a dramatic loss of binding energy. Our data support an induced fit mechanism in which tight DNA binding is coupled to both base flipping and protein loop rearrangement. The importance of the proximal protein segment (His(127)-Thr(132)) in maintaining this critical interaction between Val(121) and the flipped cytosine was probed with single site alanine substitutions. None of these mutants are significantly altered in secondary structure, AdoMet or DNA affinity, k(methylation), k(inactivation), or k(cat). Although Val(121) plays a critical role in both extrahelical base stabilization and catalysis, its position and mobility are not influenced by individual residues in the adjacent peptide region. Structural comparisons with other DNA methyltransferases and DNA repair enzymes that stabilize extrahelical nucleotides reveal a motif that includes a positively charged or polar side chain and a hydrophobic residue positioned adjacent to the target DNA base and either the 5'- or 3'-phosphate.  相似文献   

19.
The DNA methyltransferase of bacteriophage T4 (T4 Dam MTase) recognizes the palindromic sequence GATC, and catalyzes transfer of the methyl group from S:-adenosyl-L-methionine (AdoMet) to the N(6)-position of adenine [generating N(6)-methyladenine and S:-adenosyl-L-homocysteine (AdoHcy)]. Pre-steady state kinetic analysis revealed that the methylation rate constant k(meth) for unmethylated and hemimethylated substrates (0.56 and 0.47 s(-1), respectively) was at least 20-fold larger than the overall reaction rate constant k(cat) (0.023 s(-1)). This indicates that the release of products is the rate-limiting step in the reaction. Destabilization of the target-base pair did not alter the methylation rate, indicating that the rate of target nucleoside flipping does not limit k(meth). Preformed T4 Dam MTase-DNA complexes are less efficient than preformed T4 Dam MTase-AdoMet complexes in the first round of catalysis. Thus, this data is consistent with a preferred route of reaction for T4 Dam MTase in which AdoMet is bound first; this preferred reaction route is not observed with the DNA-[C5-cytosine]-MTases.  相似文献   

20.
The target cytosines of (cytosine-5)-DNA methyltransferases in prokaryotic and eukaryotic DNA show increased rates of C-->T transition mutations compared to non-target cytosines. These mutations are induced either by the spontaneous deamination of 5-mC-->T generating inefficiently repaired G:T rather than G:U mismatches, or by the enzyme-induced C-->U deamination which occurs under conditions of reduced levels of S-adenosylmethionine (AdoMet) and S-adenosylhomocysteine (AdoHcy). We tested whether various inhibitors of (cytosine-5)-DNA methyltransferases analogous to AdoMet and AdoHcy would affect the rate of enzyme-induced deamination of the target cytosine by M.HpaII and M.SssI. Interestingly, we found two compounds, sinefungin and 5'-amino-5'-deoxyadenosine, that increased the rate of deamination 10(3)-fold in the presence and 10(4)-fold in the absence of AdoMet and AdoHcy. We have therefore identified the first mutagenic compounds specific for the target sites of (cytosine-5)-DNA methyltransferases. A number of analogs of AdoMet and AdoHcy have been considered as possible antiviral, anticancer, antifungal and antiparasitic agents. Our findings show that chemotherapeutic agents with affinities to the cofactor binding pocket of (cytosine-5)-DNA methyltransferase should be tested for their potential mutagenic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号