首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 216 毫秒
1.

Background

Mast cell secretory granules accommodate a large number of components, many of which interact with highly sulfated serglycin proteoglycan (PG) present within the granules. Polyamines (putrescine, spermidine and spermine) are absolutely required for the survival of the vast majority of living cells. Given the reported ability of polyamines to interact with PGs, we investigated the possibility that polyamines may be components of mast cell secretory granules.

Methodology/Principal Findings

Spermidine was released by mouse bone marrow derived mast cells (BMMCs) after degranulation induced by IgE/anti-IgE or calcium ionophore A23187. Additionally, both spermidine and spermine were detected in isolated mouse mast cell granules. Further, depletion of polyamines by culturing BMMCs with α-difluoromethylornithine (DFMO) caused aberrant secretory granule ultrastructure, impaired histamine storage, reduced serotonin levels and increased β-hexosaminidase content. A proteomic approach revealed that DFMO-induced polyamine depletion caused an alteration in the levels of a number of proteins, many of which are connected either with the regulated exocytosis or with the endocytic system.

Conclusions/Significance

Taken together, our results show evidence that polyamines are present in mast cell secretory granules and, furthermore, indicate an essential role of these polycations during the biogenesis and homeostasis of these organelles.  相似文献   

2.
Polyamines are ubiquitous molecules with multiple intracellular functions. Cells tightly regulate their levels through feedback mechanisms affecting synthesis, intracellular conversion, and transport. Because polyamines have an important role in regulating cell growth, they are a target for cancer therapeutic development. However, to effectively inhibit cell growth through polyamine depletion one needs to inhibit both polyamine synthesis and import. Although the mammalian polyamine transporter has not been cloned, we have identified ORI 1202, an N(1)-spermine-L-lysinyl amide, as an effective polyamine transport inhibitor. ORI 1202 prevents the cellular accumulation of [(3)H]spermidine over a 20-h test period. ORI 1202 (30-100 microM) effectively inhibits cell growth when used in conjunction with the polyamine synthesis inhibitor alpha-difluoromethylornithine (DFMO; > or =230 microM). Human breast, prostate, and bladder carcinoma cell lines and melanoma cell lines show ORI 1202 EC(50) values in the low micromolar range when tested in conjunction with DFMO. This cytostatic effect correlates with a reduction in the intracellular levels of putrescine and spermidine. When ORI 1202 (45 mg/kg, i.p., tidx5) and DFMO (1% in drinking water) were delivered over 14 days, MDA-MB-231 breast tumor xenografts in nude mice showed 50% growth inhibition. Polyamine depletion therapy provides a cytostatic therapy that could be useful against cancer and other diseases resulting from uncontrolled cell growth.  相似文献   

3.
4.
In order to study the effect of polyamine depletion on growth and proliferation of untransformed and chemically transformed cells, α-difluoromethyl-ornithine (DFMO) was added to cultures of 3T3 cells and their benzo[a]pyrene derivative BP-3T3. Both types of cells stopped their proliferation after 72 hr of treatment with the inhibitor. When DFMO was removed and cells were cultivated afterwards in fresh medium without the drug, untransformed cells resumed growth after a lag period, whereas transformed cells were unable to proliferate unless exogenous polyamine was added. These alterations showed a strict correlation with intracellular polyamine pools, since after removal of DFMO from the culture medium, polyamine concentrations increased to almost normal values in 3T3 cells, but remained at low levels or decreased even more in the transformed cells BP-3T3. The analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of labeled proteins of both cell extracts has indicated that the described control of cell proliferation by intracellular polyamine levels might be related to the synthesis of at least two proteins with molecular weights of about 36,000 and 55,000 daltons.  相似文献   

5.
Abstract. Combined administration of methylglyoxal-bis-guanylhydrazone (MGBG) (25 mg/kg) with difluoromethylornithine (DFMO), or MGBG alone at a higher dose (50 mg/kg), to mice resulted in a decreased white cell count (WBC) in the peripheral blood while DFMO or MGBG alone at a lower dose (25 mg/kg) had no effect. As expected, DFMO alone increased the number of colony forming units spleen (CFU-s), colony forming units diffusion chamber granulocyte (CFU-dg) and colony forming units culture (CFU-c) in the bone marrow. MGBG treatment led to an increase in CFU-dg alone. Combined treatment seemingly had no effect on marrow stem cells. Total tibial and differential counts were not affected by any of the treatments. Cell proliferation in diffusion chamber cultures, as judged by CFU-dg colony formation, was impaired by MGBG alone or in combination with DFMO, at dose levels which had no effect or increased the precursor cell number in the bone marrow. This effect was partially reversed with either putrescine or spermidine. Determination of intra-cellular polyamine concentrations, demonstrated decreased putrescine and spermidine levels after DFMO administration. As expected, MGBG treatment resulted in decreased spermidine and spermine levels, concomitant with an increase in putrescine. In mice which received both agents, rather than only MGBG, after 3 days higher intracellular polyamine concentrations were observed. After 11 days, however, there was no significant difference between the two groups.  相似文献   

6.
We show herein that lipopolysaccharides (LPS), in vitro, synergize with GM-CSF to increase histamine synthesis by murine bone marrow cells. LPS has no effect on its own and does not potentiate histamine synthesis promoted by IL-3, the only other cytokine sharing this biological activity with GM-CSF. Despite the fact that GM-CSF and LPS synergistically increase PGE2 levels, the potentiating effect of LPS does not require PGE2 that have been previously shown to enhance GM-CSF-induced histamine synthesis. We provide evidence that this effect of LPS on histamine production by bone marrow cells is mediated by the intracellular cAMP transduction signal. In addition, LPS and cAMP enhance GM-CSF-induced histidine decarboxylase activity, showing that both substances act on histamine synthesis. Contrary to in vitro results, LPS injection into mice induces an increase in both intracellular histamine and HDC activity in bone marrow cells. Our results support the conclusion that this effect is mediated by GM-CSF. In conclusion, LPS appears to be a powerful HDC inducer in hematopoietic organs because of its ability, on one hand, to induce circulating GM-CSF and, on the other hand, to potentiate GM-CSF induction of HDC.  相似文献   

7.
The efficiency of in vitro mesenchymal stem cell (MSC) differentiation into the myocardial lineage is generally poor. In order to improve cardiac commitment, bone marrow GFP+MSCs obtained from transgenic rats were cultured with adult wild type rat cardiomyocytes for 5 days in the presence of difluoromethylornithine (DFMO), an inhibitor of polyamine synthesis and cell proliferation. The percentage of GFP+MSCs showing cardiac myofibril proteins (cMLC2, cTnI) was about threefold higher after DFMO addition (3%) relative to the untreated control (1%). Another set of experiments was performed with cardiomyocytes incubated for 1 day in the absence of glucose and serum and under hypoxic conditions (pO2 < 1%), in order to simulate severe ischemia. The percentage of cardiac committed GFP+MSCs was about 5% when cultured with the hypoxic/starved cardiomyocytes and further increased to 7% after DFMO addition. The contemporary presence of putrescine in DFMO-treated cells markedly blunted differentiation, while the cytostatic mitomycin C was not able to induce cardiac commitment. The involvement of histone acetylation in DFMO-induced differentiation was evidenced by the strong attenuation of cardiac commitment exerted by anacardic acid, an inhibitor of histone acetylase. Moreover, the percentage of acetylated histone H3 significantly increased in bone marrow MSCs obtained from wild type rats and treated with DFMO. These results suggest that polyamine depletion can represent a useful strategy to improve MSC differentiation into the cardiac lineage, especially in the presence of cardiomyocytes damaged by an ischemic environment.  相似文献   

8.
Cultures of mast cells of more than 95% purity were grown from bone marrow of BALB/c mice, and examined with various morphological methods. The presence of elongated, reticular cells was documented in the adherent layer on day 7 of the culture. The committed stem cells as well as immature bone marrow-derived mast cells (BMMCs) growing in clusters over the reticular cells were observed. After 14 days of cultivation BMMC harvested from the medium showed extensive plasma membrane ridges and numerous immature granules in their cytoplasm. These BMMCs increased their histamine to 0.7-1.1 pg/cell as compared to 0.1-0.2 pg/cell on the day 7. In the adherent layer BMMCs were seen in close apposition to the reticular cells. Their microvilli interdigitated with one another, forming end-to-end contracts. Our findings provide the evidence that for differentiation and proliferation of BMMCs in vitro close contacts with reticular cells in the adherent layer are necessary.  相似文献   

9.
Combined administration of methylglyoxal-bis-guanylhydrazone (MGBG) (25 mg/kg) with difluoromethylornithine (DFMO), or MGBG alone at a higher dose (50 mg/kg), to mice resulted in a decreased white cell count (WBC) in the peripheral blood while DFMO or MGBG alone at a lower dose (25 mg/kg) had no effect. As expected, DFMO alone increased the number of colony forming units spleen (CFU-s), colony forming units diffusion chamber granulocyte (CFU-dg) and colony forming units culture (CFU-c) in the bone marrow. MGBG treatment led to an increase in CFU-dg alone. Combined treatment seemingly had no effect on marrow stem cells. Total tibial and differential counts were not affected by any of the treatments. Cell proliferation in diffusion chamber cultures, as judged by CFU-dg colony formation, was impaired by MGBG alone or in combination with DFMO, at dose levels which had no effect or increased the precursor cell number in the bone marrow. This effect was partially reversed with either putrescine or spermidine. Determination of intracellular polyamine concentrations, demonstrated decreased putrescine and spermidine levels after DFMO administration. As expected, MGBG treatment resulted in decreased spermidine and spermine levels, concomitant with an increase in putrescine. In mice which received both agents, rather than only MGBG, after 3 days higher intracellular polyamine concentrations were observed. After 11 days, however, there was no significant difference between the two groups.  相似文献   

10.
11.
Increasing number of data suggests that locally produced histamine is involved in regulation of hematopoiesis. In this study the granulocyte/macrophage (CFU-GM) colony formation by normal murine or human bone marrow cells, leukaemic colony formation (CFU-L) by a murine leukemia cell line (WEHI 3B), and colony formation by bone marrow cells from patients with chronic myeloid leukemia (CML) have been examined. We detected mRNA and protein expression of histidine decarboxylase (HDC), the only enzyme responsible for histamine synthesis both in normal bone marrow progenitor cells and in leukaemic progenitors. The significance of in situ generated histamine was shown on colony formation by inhibitory action of alphaFMH (blocking HDC activity, i.e. de novo histamine formation) and by N,N-diethyl-2-[4-(phenylmethyl)phenoxy]-ethanamine-HCl (DPPE) disturbing the interference of histamine with intracellular binding sites. These data provide further confirmation of the role of histamine in development and colony formation of bone marrow derived cells.  相似文献   

12.
Abstract We studied the effects of the ornithine decarboxylase inhibitors (2R,5R)-6-heptyne-2,5-diamine (R,R,-MAP) and α-difluoromethylornithine (DFMO) on cell proliferation and polyamine metabolism in 9L rat brain tumour cells. Treatment with 5 μM R,R-MAP inhibited cell proliferation to the same extent as did treatment with 1 mM DFMO. Both inhibitors depleted putrescine and spermidine concentrations to less than detectable levels within 24 h and 48 h of drug treatment, respectively; spermine levels were not affected significantly by either inhibitor. The effects of DFMO on 9L cell cycle kinetics were similar to those of R,R-MAP. During the first 3 days of treatment, both drugs caused an accumulation of cells in G1 and a reduction of cells in S phase, as compared with control cells with a slowing in the rate of cell cycle traverse. In cultures seeded at low (1 × 105), medium (5 × 105), or high (2 × 106) cell densities in a 25 cm2 flask, inhibition of cell proliferation and polyamine depletion by both R,R-MAP and DFMO was more pronounced at the lower densities relative to the density-matched control cells. Thus, R,R-MAP was a more potent inhibitor of ornithine decarboxylase than was DFMO in 9L cells, and the inhibitory effects of both compounds on cell proliferation and polyamine biosynthesis were greater in actively proliferating cells.  相似文献   

13.
14.
The role of histamine receptors in radiation-induced bone marrow (BM) regeneration was investigated with aspects of functional genomics. H1R and H2R mRNA expression increased during regeneration in both histidine decarboxylase knockout (HDC-/-) and wild type (HDC+/+) mice, though to a lesser extent in HDC-/- mice. H4R mRNA expression was downregulated in both groups. Mainly CD34+ cells were responsible for the elevation of intracellular histamine and HDC content in HDC+/+ BM cell populations. The differential changes in the expression of its receptors, and also its elevated levels in hematopoietic progenitors support the regulatory role of histamine in BM regeneration, that could be further explored by future gene expression studies.  相似文献   

15.
R. H. Davis  P. Lieu    J. L. Ristow 《Genetics》1994,138(3):649-655
Polyamines (spermidine and spermine) are required by living cells, but their functions are poorly understood. Mutants of Neurospora crassa with enhanced or diminished sensitivity to interference with polyamine synthesis, originally selected to study the regulation of the pathway, were found to have unexpected defects. A group of four non-allelic mutations, causing no interference with polyamine synthesis, each imparted spermidine auxotrophy to a genotype already partially impaired in spermidine synthesis. Strains carrying only the new mutations displayed unconditional delay or weakness at the onset of growth, but grew well thereafter and had a normal or overly active polyamine pathway. These mutants may have defects in vital macromolecular activities that are especially dependent upon the polyamines-activities that have not been identified with certainty in studies to date. Another group of mutants, selected as resistant to the polyamine inhibitor difluoromethylornithine (DFMO), had normal activity and regulation of ornithine decarboxylase, the target of the drug. All but one of thirty mutants were allelic, and were specifically deficient in the basic amino acid permease. This mechanism of DFMO resistance is unprecedented among the many DFMO-resistant cell types of other organisms and demonstrates that DFMO can be used for efficient genetic studies of this transport locus in N. crassa.  相似文献   

16.
Mast cell stimulation by Ag is followed by the opening of Ca(2+)-activated K(+) channels, which participate in the orchestration of mast cell degranulation. The present study has been performed to explore the involvement of the Ca(2+)-activated K(+) channel K(Ca)3.1 in mast cell function. To this end mast cells have been isolated and cultured from the bone marrow (bone marrow-derived mast cells (BMMCs)) of K(Ca)3.1 knockout mice (K(Ca)3.1(-/-)) and their wild-type littermates (K(Ca)3.1(+/+)). Mast cell number as well as in vitro BMMC growth and CD117, CD34, and FcepsilonRI expression were similar in both genotypes, but regulatory cell volume decrease was impaired in K(Ca)3.1(-/-) BMMCs. Treatment of the cells with Ag, endothelin-1, or the Ca(2+) ionophore ionomycin was followed by stimulation of Ca(2+)-activated K(+) channels and cell membrane hyperpolarization in K(Ca)3.1(+/+), but not in K(Ca)3.1(-/-) BMMCs. Upon Ag stimulation, Ca(2+) entry but not Ca(2+) release from intracellular stores was markedly impaired in K(Ca)3.1(-/-) BMMCs. Similarly, Ca(2+) entry upon endothelin-1 stimulation was significantly reduced in K(Ca)3.1(-/-) cells. Ag-induced release of beta-hexosaminidase, an indicator of mast cell degranulation, was significantly smaller in K(Ca)3.1(-/-) BMMCs compared with K(Ca)3.1(+/+) BMMCs. Moreover, histamine release upon stimulation of BMMCs with endothelin-1 was reduced in K(Ca)3.1(-/-) cells. The in vivo Ag-induced decline in body temperature revealed that IgE-dependent anaphylaxis was again significantly (by approximately 50%) blunted in K(Ca)3.1(-/-) mice. In conclusion, K(Ca)3.1 is required for Ca(2+)-activated K(+) channel activity and Ca(2+)-dependent processes such as endothelin-1- or Ag-induced degranulation of mast cells, and may thus play a critical role in anaphylactic reactions.  相似文献   

17.
The antiproliferative effects of the iron chelator O-trensox and the ornithine-decarboxylase (ODC) inhibitor alpha-difluoromethylornithine (DFMO) were characterized in the rat hepatoma cell line FAO, the rat liver epithelial cell line (RLEC) and the primary rat hepatocyte cultures stimulated by EGF. We observed that O-trensox and DFMO decreased cell viabilty and DNA replication in the three culture models. The cytostatic effect of O-trensox was correlated to a cytotoxicity, higher than for DFMO, and to a cell cycle arrest in G0/G1 or S phases. Moreover, O-trensox and DFMO decreased the intracellular concentration of spermidine in the three models without changing significantly the spermine level. We concluded that iron, but also polyamine depletion, decrease cell growth. However, the drop in cell proliferation obtained with O-trensox was stronger compared to DFMO effect. Altogether, our data provide insights that, in the three rat liver cell culture models, the cytostatic effect of the iron chelator O-trensox may be the addition of two mechanisms: iron and polyamine depletion.  相似文献   

18.
Effects of polyamine depletion by -difluoromethylornithine (DFMO) were studied on the GABA-agonist mediated enhancement of the morphological development of cultured rat cerebellar granule cells. An increase in the number of neurite extending cells and in the cytoplasmic density of organelles relevant for protein synthesis was observed upon culturing in the presence of 4,5,6,7-tetrahydro-isoxazolo[5,4-c]pyridin-3-ol (THIP) for 4 days. The intracellular concentrations of putrescine, spermadine, and spermine in these cultures were similar to the concentrations of the polyamines observed in cultures grown in a plain culture medium for 1, 2, 3 or 4 days, respectively. Upon culturing in the simultaneous presence of THIP and DFMO, the concentrations of putrescine and spermadine were reduced to less than 20% of the levels in the controls. This depletion was associated with a severely impaired morphological development of the granule cell cultures. Thus, the number of neurite extending cells was reduced to 50% of the number in the control cultures upon culturing in the presence of DFMO alone or in combination with THIP. Moreover, the THIP mediated increase in the cytoplasmic density of rough endoplasmic reticulum, Golgi apparatus and different types of vesicles was prevented by the exposure to DFMO.  相似文献   

19.
Intracellular polyamine synthesis is regulated by the enzyme ornithine decarboxylase (ODC), and its inhibition by -difluromethylornithine (DFMO), confers resistance to apoptosis. We have previously shown that DFMO leads to the inhibition of de novo polyamine synthesis, which in turn rapidly activates Src, STAT3 and NF-κB via integrin β3 in intestinal epithelial cells. One mechanism to explain these effects involves the activation of upstream growth factor receptors, such as the epidermal growth factor receptor (EGFR). We therefore hypothesized that EGFR phosphorylation regulates the early response to polyamine depletion. DFMO increased EGFR phosphorylation on tyrosine residues 1173 (pY1173) and 845 (pY845) within 5 min. Phosphorylation declined after 10 min and was prevented by the addition of exogenous putrescine to DFMO containing medium. Phosphorylation of EGFR was concomitant with the activation of ERK1/2. Pretreatment with either DFMO or EGF for 1 h protected cells from TNF-/CHX-induced apoptosis. Exogenous addition of polyamines prevented the protective effect of DFMO. In addition, inhibition of integrin β3 activity (with RGDS), Src activity (with PP2), or EGFR kinase activity (with AG1478), increased basal apoptosis and prevented protection conferred by either DFMO or EGF. Polyamine depletion failed to protect B82L fibroblasts lacking the EGFR (PRN) and PRN cells expressing either a kinase dead EGFR (K721A) or an EGFR (Y845F) mutant lacking the Src phosphorylation site. Conversely, expression of WT-EGFR (WT) restored the protective effect of polyamine depletion. Fibronectin activated the EGFR, Src, ERKs and protected cells from apoptosis. Taken together, our data indicate an essential role of EGFR kinase activity in MEK/ERK-mediated protection, which synergizes with integrin β3 leading to Src-mediated protective responses in polyamine depleted cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号