首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
成体哺乳动物中枢神经损伤后早期轴突再生失败的一个主要原因是由于髓磷脂抑制分子的存在。Nogo、髓磷脂相关糖蛋白以及少突胶质细胞髓磷脂糖蛋白等神经再生抑制因子的发现,大大促进了中枢神经再生分子机制的研究。它们均能独立通过Nogo-66受体产生对轴突再生的抑制效应,髓磷脂抑制分子及其信号转导机制的研究日益成为中枢神经再生的研究热点,髓磷脂及其信号转导分子特别是Nogo-66受体、p75神经营养素受体成为损伤后促进轴突再生、抑制生长锥塌陷的主要治疗靶点。抑制上述抑制因子及相关受体NgR或p75NTR可能有助于中枢神经损伤的修复,围绕这些抑制因子及其相关受体介导的信号转导途径,人们提出了多种治疗中枢神经损伤的新思路,其中免疫学方法尤其受到关注。  相似文献   

2.
Ephrins and Eph receptor tyrosine kinases are cell‐surface molecules that serve a multitude of functions in cell–cell communication in development, physiology, and disease. EphA4 is a promiscuous member of the EphA subclass of Eph receptors and can bind to both EphrinAs and EphrinBs. In addition to its well‐established roles in guiding the development of neuronal connectivity, EphA4 has been implicated for a role in synaptic plasticity, vascular formation, axon regeneration, and central nervous system repair following injury. However, the study of its role in the adult stage has been hampered by confounding developmental defects in EphA4 germline mutants. Here, we report the generation and molecular characterization of an EphA4 conditional allele along with a novel null allele with a knockin fluorescent reporter gene (mCFP). The conditional allele will be useful in ascertaining postdevelopmental and/or cell type‐specific function of EphA4 in physiology, injury, and disease. genesis 48:101–105, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
中枢神经系统轴突再生抑制蛋白   总被引:1,自引:0,他引:1  
Hu JG  Lu PH  Xu XM 《生理科学进展》2004,35(4):311-315
中枢神经系统 (CNS)轴突再生的主要障碍之一是存在抑制再生的蛋白 ,迄今 ,已在少突胶质细胞 /髓鞘中相继发现至少三个重要的轴突再生抑制蛋白 ,即髓鞘相关糖蛋白 (MAG)、Nogo A和少突胶质细胞 /髓鞘糖蛋白 (OMgp)。最近的研究又证实 ,这三个不同的抑制成分可能主要通过与一个共同的受体Nogo6 6受体 (NgR)结合而发挥作用。这些研究成果扩充了对CNS损伤后轴突再生障碍的理解 ,也为探讨CNS损伤的治疗新策略提供了新的思路。  相似文献   

4.
The Cre/lox and FLP/FRT recombination systems have been used extensively for both conditional knockout and cell lineage analysis in mice. Here we report a new multifunctional Cre/FLP dual reporter allele (R26NZG) that exhibits strong and apparently ubiquitous marker expression in embryos and adults. The reporter construct, which is driven by the CAG promoter, was knocked into the ROSA26 locus providing an open chromatin domain for consistent expression and avoiding site‐of‐integration effects often observed with transgenic reporters. R26NZG directs Cre‐dependent nuclear‐localized β‐galactosidase (β‐gal) expression, and can be converted into a Cre‐dependent EGFP reporter (R26NG) by germline excision of the FRT‐flanked nlslacZ cassette. Alternatively, germline excision of the floxed PGKNEO cassette in R26NZG generates an FLP‐dependent EGFP reporter (R26ZG) that expresses β‐gal in FLP‐nonexpressing cells. Finally, by the simultaneous use of both Cre and FLP deleters, R26NZG allows lineage relationships to be interrogated with greater refinement than is possible with single recombinase reporter systems. genesis 47:107–114, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
At least three proteins present in CNS myelin, Nogo, MAG and OMgp are capable of causing growth cone collapse and inhibiting neurite outgrowth in vitro. Surprisingly, Nogo and OMgp are also strongly expressed by many neurons (including neocortical projection cells). Nogo expression is increased by some cells at the borders of CNS lesion sites and by cells in injured peripheral nerves, but Nogo and CNS myelin are largely absent from spinal cord injury sites, which are none the less strongly inhibitory to axonal regeneration. Nogo is found on growing axons during development, suggesting possible functions for neuronal Nogo in axon guidance. Although Nogo, MAG and OMgp lack sequence homologies, they all bind to the Nogo receptor (NgR), a GPI-linked cell surface molecule which, in turn, binds p75 to activate RhoA. NgR is strongly expressed by cerebral cortical neurons but many other neurons express NgR weakly or not at all. Some neurons, such as DRG cells, respond to Nogo and CNS myelin in vitro although they express little or no NgR in vivo which, with other data, indicates that other receptors are available for NgR ligands. NgR expression is unaffected by injury to the nervous system, and there is no clear correlation between NgR expression by neurons and lack of regenerative ability. In the injured spinal cord, interactions between NgR and its ligands are most likely to be important for limiting regeneration of corticospinal and some other descending tracts; other receptors may be more important for ascending tracts. Antibodies to Nogo, mainly the poorly-characterised IN-1 or its derivatives, have been shown to enhance recovery from partial transections of the spinal cord. They induce considerable plasticity from the axons of corticospinal neurons, including sprouting across the midline and, to a limited extent, regeneration around the lesion. Regeneration of corticospinal axons induced by Nogo antibodies has not yet been demonstrated after complete transections or contusion injuries of the spinal cord. It is not clear whether antibodies against Nogo act on oligodendrocytes/myelin or by binding to neuronal Nogo, or whether they can stimulate regeneration of ascending axons in the spinal cord, most of which express little or no NgR. Despite these uncertainties, however, NgR and its ligands offer important new targets for enhancing plasticity and regeneration in the nervous system.  相似文献   

6.
Nogo on the go   总被引:22,自引:0,他引:22  
McKerracher L  Winton MJ 《Neuron》2002,36(3):345-348
Growth inhibition in the central nervous system (CNS) is a major barrier to axon regeneration. Recent findings indicate that three distinct myelin proteins, myelin-associated glycoprotein (MAG), Nogo, and oligodendrocyte-myelin glycoprotein (OMgp), inhibit axon growth by binding a common receptor, the Nogo66 receptor (NgR), and likely converge on a common signaling cascade.  相似文献   

7.
WTX/AMER1 is an important developmental regulator, mutations in which have been identified in a proportion of patients suffering from the renal neoplasm Wilms' tumor and in the bone malformation syndrome Osteopathia Striata with Cranial Sclerosis (OSCS). Its cellular functions appear complex and the protein can be found at the membrane, within the cytoplasm and the nucleus. To understand its developmental and cellular function an allelic series for Wtx in the mouse is crucial. Whereas mice carrying a conditional knock out allele for Wtx have been previously reported, a gain‐of‐function mouse model that would allow studying the molecular, cellular and developmental role of Wtx is still missing. Here we describe the generation of a novel mouse strain that permits the conditional activation of WTX expression. Wtx fused to GFP was introduced downstream a stop cassette flanked by loxP sites into the Rosa26 locus by gene targeting. Ectopic WTX expression is reported after crosses with several Cre transgenic mice in different embryonic tissues. Further, functionality of the fusion protein was demonstrated in the context of a Wtx null allele.  相似文献   

8.
We developed a conditional and inducible gene knockout methodology that allows effective gene deletion in mouse cardiomyocytes. This transgenic mouse line was generated by coinjection of two transgenes, a “reverse” tetracycline‐controlled transactivator (rtTA) directed by a rat cardiac troponin T (Tnnt2) promoter and a Cre recombinase driven by a tetracycline‐responsive promoter (TetO). Here, Tnnt2‐rtTA activated TetO‐Cre expression takes place in cardiomyocytes following doxycycline treatment. Using two different mouse Cre reporter lines, we demonstrated that expression of Cre recombinase was specifically and robustly induced in the cardiomyocytes of embryonic or adult hearts following doxycycline induction, thus, allowing cardiomyocyte‐specific gene disruption and lineage tracing. We also showed that rtTA expression and doxycycline treatment did not compromise cardiac function. These features make the Tnnt2‐rtTA;TetO‐Cre transgenic line a valuable genetic tool for analysis of spatiotemporal gene function and cardiomyocyte lineage tracing during developmental and postnatal periods. genesis 48:63–72, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
10.
Gastric pit cells are high‐turnover epithelial cells of the gastric mucosa. They secrete mucus to protect the gastric epithelium from acid and pepsin. To investigate the genetic mechanisms underlying the physiological functions of gastric pit cells, we generated a transgenic mouse line, namely, Capn8‐Cre, in which the expression of Cre recombinase was controlled by the promoter of the intracellular Ca2+‐regulated cysteine protease calpain‐8. To test the tissue distribution and excision activity of Cre recombinase, the Capn8‐Cre transgenic mice were bred with the ROSA26 reporter strain and a mouse strain that carries Smad4 conditional alleles (Smad4Co/Co). Multiple‐tissue PCR and LacZ staining demonstrated that Capn8‐Cre transgenic mouse expressed Cre recombinase in the gastric pit cells. Cre recombinase activity was also detected in the liver and skin tissues. These data suggest that the Capn8‐Cre mouse line described here could be used to dissect gene function in gastric pit cells. genesis 47:674–679, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
The albCre transgene, having Cre recombinase driven by the serum albumin (alb) gene promoter, is commonly used to generate adult mice having reliable hepatocyte‐specific recombination of loxP‐flanked (“floxed”) alleles. Based on previous studies, it has been unclear whether albCre transgenes are also reliable in fetal and juvenile mice. Perinatal liver undergoes a dynamic transition from being predominantly hematopoietic to predominantly hepatic. We evaluated Cre activity during this transition in albCre mice using a sensitive two‐color fluorescent reporter system. From fetal through adult stages, in situ patterns of Cre‐dependent recombination of the reporter closely matched expression of endogenous Alb mRNA or protein, indicating most or all hepatocytes, including those in fetal and juvenile livers, had expressed Cre and recombined the reporter. Our results indicate the albCre transgene is effective in converting simple floxed alleles in fetal and neonatal mice and is an appropriate tool for studies on hepatocyte development. genesis 47:789–792, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Post‐translational modifications to residues in core histones convey epigenetic information. Their function can be evaluated in amino acid substitution mutants, although to date this method has not been used in mice. To this end, we have evaluated gene targeting vectors designed for Cre recombinase‐mediated conditional allelic replacement at the two unlinked genes encoding the histone variant H3.3. The conditional alleles consist of an uninterrupted wild‐type H3.3 coding sequence upstream of a desired alternative or proxy coding sequence. The arrangement of two loxP sites allows Cre‐mediated replacement of the wild‐type coding sequence with the proxy. To demonstrate proof of principle, at each locus we replaced the wild‐type coding sequence with a fluorescent reporter. This produced null alleles that will be useful to analyse the effects of H3.3 deficiency in development. Each targeting vector can readily be retrofitted with a proxy coding sequence encoding a modified H3.3 protein. Such vectors will allow for the conditional substitution of specific residues in order to dissect the roles of H3.3 post‐translational modifications in development and disease. genesis, 51:142?146, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
The developing limb is a useful model for studying organogenesis and developmental processes. Although Cre alleles exist for conditional loss‐ or gain‐of‐function in limbs, Cre alleles targeting specific limb subdomains are desirable. Here we report on the generation of the Hoxa13:Cre line, in which the Cre gene is inserted in the endogenous Hoxa13 gene. We provide evidence that the Cre is active in embryonic tissues/regions where the endogenous Hoxa13 gene is expressed. Our results show that cells expressing Hoxa13 in developing limb buds contribute to the entire autopod (hand/feet) skeleton and validate Hoxa13 as a distal limb marker as far as the skeleton is concerned. In contrast, in the limb musculature, Cre‐based fate mapping shows that almost all muscle masses of the zeugopod (forearm) and part of the triceps contain Hoxa13‐expressing cells and/or their descendants. Besides the limb, the activity of the Cre is detectable in the urogenital system and the hindgut, primarily in the epithelium and smooth muscles. Together our data show that the Hoxa13:Cre allele is a useful tool for conditional gene manipulation in the urogenital system, posterior digestive tract, autopod and part of the limb musculature. genesis 53:366–376, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
The rhombomere 4(r4)‐restricted expression of the mouse Hoxb2 gene is regulated by a 1.4‐kb enhancer‐containing fragment. Here, we showthat transgenic mouse lines expressing cre driven by this fragment (B2‐r4‐Cre), activated the R26R Cre reporter in rhombomere 4 and the second branchial arch, the epithelium of the first branchial arch, apical ectodermal ridge of the limb buds and the tail region. Of particular interest is Cre activity in the developing inner ear. Cre activity was found in the preotic field and otic placode at E8.5 and otocyst at E9.5–E12.5, in the cochleovestibular and facio‐acoustic ganglia at E10.5 and the vestibular and spiral ganglia and all the otic epithelia derived from the otocyst at E15.5 and P0. Our data suggest that the B2‐r4‐Cre transgenic mice provide an important tool for conditional gene manipulation and lineage tracing in the inner ear. In combination with other transgenic lines expressing cre exclusively in the otic vesicle, the relative contributions of the hindbrain, periotic mesenchyme and otic epithelium in otic development can be dissected. genesis 47:361–365, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
The recent widespread application of Cre/loxP technology has resulted in a new generation of conditional animal models that can better recapitulate many salient features of human disease. These models benefit from the ability to monitor the expression and functionality of Cre protein. We have generated a conditional (Cre/loxP dependent) LacZ reporter rat (termed the LacZ541 rat) to monitor Cre in transgenic rats. When LacZ541 rats were bred with another transgenic rat line expressing Cre recombinase under the control of the CAG promoter, LacZ/Cre double transgenic embryos displayed ubiquitous expression of LacZ, and when LacZ541 rats were bred with transgenic rats expressing Cre/loxP‐dependent oncogenic H‐ or K‐ras, LacZ was expressed in the lesions resulting from the activation of the oncogene. The LacZ541 rat enables evaluation of the performance of Cre‐expressing systems which are based upon transgenic rats or somatic gene transfer vectors and provides efficient and simple lineage marking. genesis 51:268–274. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
Gene trapping has emerged as a valuable tool to create conditional alleles in various model organisms. Here we report the FLEx‐based gene trap vector SAGFLEx that allows the generation of conditional mutations in zebrafish by gene‐trap mutagenesis. The SAGFLEx gene‐trap cassette comprises the rabbit β‐globin splice acceptor and the coding sequence of GFP, flanked by pairs of inversely oriented heterotypic target sites for the site‐specific recombinases Cre and Flp. Insertion of the gene‐trap cassette into endogenous genes can result in conditional mutations that are stably inverted by Cre and Flp, respectively. To test the functionality of this system we performed a pilot screen and analyzed the insertion of the gene‐trap cassette into the lima1a gene locus. In this lima1a allele, GFP expression faithfully recapitulated the endogenous lima1a expression and resulted in a complete knockout of the gene in homozygosity. Application of either Cre or Flp was able to mediate the stable inversion of the gene trap cassette and showed the ability to conditionally rescue or reintroduce the gene inactivation. Combined with pharmacologically inducible site specific recombinases the SAGFLEx vector insertions will enable precise conditional knockout studies in a spatial‐ and temporal‐controlled manner. genesis 54:19–28, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
18.
19.
The number of transgenic mouse lines expressing Cre in either type of pigment cells (melanocytes and retinal pigment epithelium, RPE) is limited, and the available lines do not always offer sufficient specificity. In this study, we addressed this issue and we report on the generation of a MART‐1::Cre BAC transgenic mouse line, in which the expression of Cre recombinase is controlled by regulatory elements of the pigment cell‐specific gene MART‐1 (mlana). When MART‐1::Cre BAC transgenic mice were bred with the ROSA26‐R reporter line, ß‐galactosidase expression was observed in RPE from E12.5 onwards, and in melanocyte precursors from E17.5, indicating that the MART‐1::Cre line provides Cre recombinase activity in pigment‐producing cells rather than in a particular lineage. In addition, breeding of this mouse line to mice carrying a conditional allele of RBP‐Jκ corroborated the reported phenotypes in both pigment cell lineages, inducing hair greying and microphthalmia. Our results thus suggest, that the MART‐1::Cre line may serve as a novel and useful tool for functional studies in melanocytes and the RPE.genesis 49:403–409, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

20.
Sickle tail (Skt) was originally identified by gene trap mutagenesis in mice, and the trapped gene is highly expressed in the notochord, intervertebral discs (IVD), and mesonephros. Here, we report the generation of Sktcre mice expressing Cre recombinase in the IVD due to target insertion of the cre gene into the Skt locus by recombinase‐mediated cassette exchange. Crossing a conditional lacZ Reporter (R26R), Cre expression from the Sktcre allele specifically activates β‐galactosidase expression in the whole notochord from E9.5 onwards. In E15.5 Sktcre;R26R embryos, reporter activity was detected in the nucleus pulposus and in a portion of the annulus fibrosus, resulting in expansion of Cre‐expressing cells in the adult IVD. Reporter activity was also seen in the Sktcre;R26R mesonephros at E15.5. These results suggest that Sktcre mice are useful for exploring the fate specification of notochordal cells and creating models for IVD‐related skeletal diseases. genesis 50:758–765, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号