首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The zinc-dependent disintegrin metalloproteinases (a disintegrin and metalloproteinases (ADAMs) have been implicated in several disease processes, including human cancer. Previously, we demonstrated that the expression of a catalytically active member of the ADAM family, ADAM15, is associated with the progression of prostate and breast cancer. The accumulation of the soluble ectodomain of E-cadherin in human serum has also been associated with the progression of prostate and breast cancer and is thought to be mediated by metalloproteinase shedding. Utilizing two complementary models, overexpression and stable short hairpin RNA-mediated knockdown of ADAM15 in breast cancer cells, we demonstrated that ADAM15 cleaves E-cadherin in response to growth factor deprivation. We also demonstrated that the extracellular shedding of E-cadherin was abrogated by a metalloproteinase inhibitor and through the introduction of a catalytically inactive mutation in ADAM15. We have made the novel observation that this soluble E-cadherin fragment was found in complex with the HER2 and HER3 receptors in breast cancer cells. These interactions appeared to stabilize HER2 heterodimerization with HER3 and induced receptor activation and signaling through the Erk pathway, supporting both cell migration and proliferation. In this study, we provide evidence that ADAM15 catalyzes the cleavage of E-cadherin to generate a soluble fragment that in turn binds to and stimulates ErbB receptor signaling.  相似文献   

3.
This work aimed to investigate the role of the disintegrin domain of the human ADAM9 (ADAM9D) on the adhesion of breast tumor cells and platelets to collagen I, in a dynamic flow assay to simulate in vivo shear conditions. Recombinant ADAM9D was able to support tumor cell adhesion through binding to the β1 integrin subunit and also to inhibit the invasion through matrigel in vitro. In a dynamic flow assay ADAM9D inhibited about 75% and 65% of MDA-MB-231 tumor cells and platelet adhesion to collagen I, respectively. In addition, it was demonstrated that αVβ3 integrin is new interacting partner for ADAM9D. In conclusion, these results suggest a role for the disintegrin domain of ADAM9 in the metastatic process. Also, ADAM9D may be a tool for investigating the role of ADAMs in metastasis and cancer progression and for the design of selective inhibitors against the adhesion and extravasation of cancer cells.  相似文献   

4.
ADAM 23 (a disintegrin and metalloproteinase domain)/MDC3 (metalloprotease, disintegrin, and cysteine-rich domain) is a member of the disintegrin family of proteins expressed in fetal and adult brain. In this work we show that the disintegrin-like domain of ADAM 23 produced in Escherichia coli and immobilized on culture dishes promotes attachment of different human cells of neural origin, such as neuroblastoma cells (NB100 and SH-S(y)5(y)) or astrocytoma cells (U373 and U87 MG). Analysis of ADAM 23 binding to integrins revealed a specific interaction with alphavbeta3, mediated by a short amino acid sequence present in its putative disintegrin loop. This sequence lacks any RGD motif, which is a common structural determinant supporting alphavbeta3-mediated interactions of diverse proteins, including other disintegrins. alphavbeta3 also supported adhesion of HeLa cells transfected with a full-length cDNA for ADAM 23, extending the results obtained with the recombinant protein containing the disintegrin domain of ADAM 23. On the basis of these results, we propose that ADAM 23, through its disintegrin-like domain, may function as an adhesion molecule involved in alphavbeta3-mediated cell interactions occurring in normal and pathological processes, including progression of malignant tumors from neural origin.  相似文献   

5.
Adamalysins [a disintegrin and metalloproteinase (ADAM)] are a family of cell surface transmembrane proteins that have broad biological functions encompassing proteolysis, adhesion, and cell signal regulation. We previously showed that the cytoplasmic domain of ADAM-15 interacts with Src family protein tyrosine kinases and the adaptor protein growth factor receptor binding protein 2 (Grb2). In the present study, we have cloned and characterized four alternatively spliced forms of ADAM-15, which differ only in their cytoplasmic domains. We show that the four ADAM-15 variants were differentially expressed in human mammary carcinoma tissues compared with normal breast. The expression of the individual isoforms did not correlate with age, menopausal status, tumor size or grade, nodal status, Nottingham Prognostic Index, or steroid hormone receptor status. However, higher levels of two isoforms (ADAM-15A and ADAM-5B) were associated with poorer relapse-free survival in node-negative patients, whereas elevated ADAM-15C correlated with better relapse-free survival in node-positive, but not in node-negative, patients. The expression of ADAM-15A and ADAM-15B variants in MDA-MB-435 cells had differential effects on cell morphology, with adhesion, migration, and invasion enhanced by expression of ADAM-15A, whereas ADAM-15B led to reduced adhesion. Using glutathione S-transferase pull-down assays, we showed that the cytoplasmic domains of ADAM-15A, ADAM-15B, and ADAM-15C show equivalent abilities to interact with extracellular signal-regulated kinase and the adaptor molecules Grb2 and Tks5/Fish, but associate in an isoform-specific fashion with Nck and the Src and Brk tyrosine kinases. These data indicate that selective expression of ADAM-15 variants in breast cancers could play an important role in determining tumor aggressiveness by interplay with intracellular signaling pathways.  相似文献   

6.
The proteolytic activities of a disintegrin and metalloproteinase (ADAM); a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), and matrix metalloproteinase (MMP) families play important roles in normal and multiple pathological conditions. These metalloproteases have potential roles in the degradation of the ECM and in the processing of bioactive molecules. In the present study, RNA was isolated from multiple normal fibroblast and metastatic melanoma cell lines, as well as the isogenic normal tissue and tumor samples, and the gene expression levels of six ADAMs, eight MMPs, and four ADAMTSs were analyzed by real-time PCR. This approach allowed for detected changes in mRNA expression of the individual metalloproteinase genes to be compared between normal and metastatic states and also between tissue and cultured cells. Increased gene expression of several ADAM and MMP family members (MMP1, MMP8, MMP15, and ADAM15) occurred in melanoma tissue and was replicated in tissue cultures. In general, the level of ADAM and MMP mRNA expression was several-fold higher in cultured cells compared with the isogenic tissue from which they were derived. Passage-dependent expression patterns were observed for MMP8 and MMP9 in in-house-derived metastatic melanoma cell lines. This reiterates earlier suggestions that experiments using cells that have been maintained in culture should be interpreted with great care.  相似文献   

7.
Cross-talk between G protein-coupled receptor (GPCR) and epidermal growth factor receptor (EGFR) signaling systems is widely established in a variety of normal and transformed cell types. Here, we demonstrate that the EGFR transactivation signal requires metalloproteinase cleavage of epidermal growth factor-like growth factor precursors in fibroblasts, ACHN kidney, and TccSup bladder carcinoma cells. Furthermore, we present evidence that blockade of the metalloproteinase-disintegrin tumor necrosis factor-alpha-converting enzyme (TACE/ADAM17) by a dominant negative ADAM17 mutant prevents angiotensin II-stimulated pro-HB-EGF cleavage, EGFR activation, and cell proliferation in ACHN tumor cells. Moreover, we found that in TccSup cancer cells, the lysophosphatidic acid-induced transactivation signal is mediated by ADAM15, demonstrating that distinct combinations of growth factor precursors and ADAMs (a disintegrin and metalloproteinases) regulate GPCR-EGFR cross-talk pathways in cell lines derived from urogenital cancer. Our data show further that activation of ADAMs results in discrete cellular responses; whereas GPCR agonists promote activation of the Ras/MAPK pathway and cell proliferation via the EGFR in fibroblasts and ACHN cells, EGFR transactivation pathways regulate activation of the survival mediator Akt/protein kinase B and the susceptibility of fibroblasts and TccSup bladder carcinoma cells to proapoptotic signals such as serum deprivation, death receptor stimulation, and the chemotherapeutic drug doxorubicin. Thus, ADAM15 and -17 function as effectors of GPCR-mediated signaling and define critical characteristics of cancer cells.  相似文献   

8.
Human ADAM15 is unique among the A disintegrin and metalloprotease domain (ADAM) family because of the integrin binding motif Arg-Gly-Asp (RGD) within its disintegrin domain. Integrin alpha5beta1 has been reported to bind to ADAM15 in an RGD-dependent manner, but the biological significance of the interaction between ADAM15 and alpha5beta1 is unknown. To characterize the effects of ADAM15 on alpha5beta1-mediated cell adhesion and migration and elucidate the potential mechanism, CHO cells which express endogenous integrin alpha5beta1 were transfected with human ADAM15 cDNA. ADAM15 overexpression led to enhanced cell adhesion and decreased migration on fibronectin, which were suppressed by down-regulation of integrin alpha5. Overexpression of ADAM15 not only increased the cell surface expression of integrin alpha5 but also resulted in a more clustered staining of alpha5 on cell surface, while the beta1 subunit remained unchanged. Unexpectedly, results from immunoprecipitation and immunofluorescence indicated that ADAM15 and alpha5beta1 integrin did not interact directly in CHO cells. We found that ADAM15 expression decreased the phosphorylation of Erk1/2. Consistently, down-regulation of Erk1/2 phosphorylation by MEK inhibitor PD98059 or siRNA against Erk1/2 enhanced the expression of alpha5 on cell surface. By using a B16F10 pulmonary metastasis model, we revealed that overexpression of ADAM15 significantly reduced the number of metastatic nodules on the lung. Taken together, this study reveals for the first time that ADAM15 could drive alpha5 integrin expression on cell surface via down-regulation of phosphorylated Erk1/2. This presents a novel mechanism by which ADAM15 regulates cell-matrix adhesion and migration.  相似文献   

9.
One of the most important features of malignant cells is their capacity to invade adjacent tissues and metastasize to distant organs. This process involves the creation, by tumor and stroma cells, of a specific microenvironment, suitable for proliferation, migration and invasion of tumor cells. The ADAM family of proteins has been involved in these processes. This work aimed to investigate the role of the recombinant disintegrin domain of the human ADAM9 (rADAM9D) on the adhesive and mobility properties of DU145 prostate tumor cells. rADAM9D was able to support DU145 cell adhesion, inhibit the migration of DU145 cells, as well as the invasion of this cell line through matrigel in vitro. Overall this work demonstrates that rADAM9D induces specific cellular migratory properties when compared with different constructs having additional domains, specially those of metalloproteinase and cysteine-rich domains. Furthermore, we showed that rADAM9D was able to inhibit cell adhesion, migration and invasion mainly through interacting with α6β1 in DU145 tumor cell line. These results may contribute to the development of new therapeutic strategies for prostate cancer.  相似文献   

10.
One of the most important features of malignant cells is their capacity to invade adjacent tissues and metastasize to distant organs. This process involves the creation, by tumor and stroma cells, of a specific microenvironment, suitable for proliferation, migration and invasion of tumor cells. The ADAM family of proteins has been involved in these processes. This work aimed to investigate the role of the recombinant disintegrin domain of the human ADAM9 (rADAM9D) on the adhesive and mobility properties of DU145 prostate tumor cells. rADAM9D was able to support DU145 cell adhesion, inhibit the migration of DU145 cells, as well as the invasion of this cell line through matrigel in vitro. Overall this work demonstrates that rADAM9D induces specific cellular migratory properties when compared with different constructs having additional domains, specially those of metalloproteinase and cysteine-rich domains. Furthermore, we showed that rADAM9D was able to inhibit cell adhesion, migration and invasion mainly through interacting with α6β1 in DU145 tumor cell line. These results may contribute to the development of new therapeutic strategies for prostate cancer.  相似文献   

11.
Uveal melanoma (UM) is a rare ocular tumor that may lead to deadly metastases in 50% of patients. A disintegrin and metalloproteinase (ADAM)10, ADAM17, and the HGF‐receptor c‐Met support invasiveness in different tumors. Here, we report that high ADAM10, MET, and, to a lesser extent, ADAM17 gene expression correlates with poor progression‐free survival in UM patients (hazard ratio 2.7, 2.6, and 1.9, respectively). About 60% of primary UM expresses c‐Met and/or ADAM10 proteins. Four UM cell lines display high levels of ADAM10 and ADAM17, which constitutively cleave c‐Met, inducing the release of soluble c‐Met. ADAM10/17 pharmacological inhibition or gene silencing reduces c‐Met shedding, but has limited impact on surface c‐Met, which is overexpressed. Importantly, ADAM10 silencing inhibits UM cell invasion driven by FCS or HGF, while ADAM17 silencing has a limited effect. Altogether our data indicate that ADAM10 has a pro‐invasive role and may contribute to UM progression.  相似文献   

12.
ADAM13 is a member of the disintegrin and metalloprotease protein family that is expressed on cranial neural crest cells surface and is essential for their migration. ADAM13 is an active protease that can cleave fibronectin in vitro and remodel a fibronectin substrate in vivo. Using a recombinant secreted protein containing both disintegrin and cysteine-rich domains of ADAM13, we show that this "adhesive" region of the protein binds directly to fibronectin. Fibronectin fusion proteins corresponding to the various functional domains were used to define the second heparin-binding domain as the ADAM13 binding site. Mutation of the syndecan-binding site (PPRR --> PPTM) within this domain abolishes binding of the recombinant disintegrin and cysteine-rich domains of ADAM13. We further show that the adhesive disintegrin and cysteine-rich domain of ADAM13 can promote cell adhesion via beta(1) integrins. This adhesion requires integrin activation and can be prevented by antibodies to the cysteine-rich domain of ADAM13 and beta(1) integrin. Finally, wild type, but not the E/A mutant of ADAM13 metalloprotease domain, can be shed from the cell surface, releasing the metalloprotease domain associated with the disintegrin and cysteine-rich domains. This suggests that ADAM13 shedding may involve its own metalloprotease activity and that the released protease may interact with both integrins and extracellular matrix proteins.  相似文献   

13.
ADAM17 (a disintegrin and metalloprotease 17) is a major sheddase for numerous growth factors, cytokines, receptors, and cell adhesion molecules and is often overexpressed in malignant cells. It is generally accepted that ADAM17 promotes tumor development via activating growth factors from the EGF family, thus facilitating autocrine stimulation of tumor cell proliferation and migration. Here we show, using MC38CEA murine colon carcinoma model, that ADAM17 also regulates tumor angiogenesis and cytokine profile. When ADAM17 was silenced in MC38CEA cells, in vivo tumor growth and in vitro cell motility were significantly diminished, but no effect was seen on in vitro cell proliferation. ADAM17-silencing was accompanied by decreased in vitro expression of vascular endothelial growth factor-A and matrix metalloprotease-9, which was consistent with the limited angiogenesis and slower growth seen in ADAM17-silenced tumors. Among the growth factors susceptible to shedding by ADAM17, neuregulin-1 was the only candidate to mediate the effects of ADAM17 on MC38CEA motility and tumor angiogenesis. Concentrations of TNF and IFNγ, cytokines that synergistically induced proapoptotic effects on MC38CEA cells, were significantly elevated in the lysates of ADAM17-silenced tumors compared to mock transfected controls, suggesting a possible role for ADAM17 in host immune suppression. These results introduce new, complex roles of ADAM17 in tumor progression, including its impact on the anti-tumor immune response.  相似文献   

14.
ADAMs (a disintegrin and metalloprotease domains) are metalloprotease and disintegrin domain-containing transmembrane glycoproteins with proteolytic, cell adhesion, cell fusion, and cell signaling properties. ADAM8 was originally cloned from monocytic cells, and its distinct expression pattern indicates possible roles in both immunology and neuropathology. Here we describe our analysis of its biochemical properties. In transfected COS-7 cells, ADAM8 is localized to the plasma membrane and processed into two forms derived either by prodomain removal or as remnant protein comprising the extracellular region with the disintegrin domain at the N terminus. Proteolytic removal of the ADAM8 propeptide was completely blocked in mutant ADAM8 with a Glu(330) to Gln exchange (EQ-A8) in the Zn(2+) binding motif (HE(330)LGHNLGMSHD), arguing for autocatalytic prodomain removal. In co-transfection experiments, the ectodomain but not the entire MP domain of ADAM8 was able to remove the prodomain from EQ-ADAM8. With cells expressing ADAM8, cell adhesion to a substrate-bound recombinant ADAM8 disintegrin/Cys-rich domain was observed in the absence of serum, blocked by an antibody directed against the ADAM8 disintegrin domain. Soluble ADAM8 protease, consisting of either the metalloprotease domain or the complete ectodomain, cleaved myelin basic protein and a fluorogenic peptide substrate, and was inhibited by batimastat (BB-94, IC(50) approximately 50 nm) but not by recombinant tissue inhibitor of matrix metalloproteinases 1, 2, 3, and 4. Our findings demonstrate that ADAM8 processing by autocatalysis leads to a potential sheddase and to a form of ADAM8 with a function in cell adhesion.  相似文献   

15.
CD44 is a cell surface adhesion molecule for hyaluronan and is implicated in tumor invasion and metastasis. Proteolytic cleavage of CD44 plays a critical role in the migration of tumor cells and is regulated by factors present in the tumor microenvironment, such as hyaluronan oligosaccharides and epidermal growth factor. However, molecular mechanisms underlying the proteolytic cleavage on membranes remain poorly understood. In this study, we demonstrated that cholesterol depletion with methyl-β-cyclodextrin, which disintegrates membrane lipid rafts, enhances CD44 shedding mediated by a disintegrin and metalloproteinase 10 (ADAM10) and that cholesterol depletion disorders CD44 localization to the lipid raft. We also evaluated the effect of long term cholesterol reduction using a statin agent and demonstrated that statin enhances CD44 shedding and suppresses tumor cell migration on a hyaluronan-coated substrate. Our results indicate that membrane lipid organization regulates CD44 shedding and propose a possible molecular mechanism by which cholesterol reduction might be effective for preventing and treating the progression of malignant tumors.  相似文献   

16.
Tissue inhibitor of metalloproteinase-1 (TIMP-1) is one representative of the natural matrix metalloproteinase (MMP) inhibitor family, encompassing four members. It inhibits all MMPs, except several MT-MMPs, and a disintegrin with a metalloproteinase domain (ADAM)-10 with Kis < nM. Unexpectedly, its upregulation was associated to poor clinical outcome for several cancer varieties. Such finding might be related to the growth-promoting and survival activities of TIMP-1 for normal and cancer cells. In most cases, such properties are MMP-independent and binding of TIMP-1 to an unknown receptor system can trigger JAK (or FAK)/PI3 kinase/Akt/bad-bclX2 (erythroid, myeloid, epithelial cell lines) or Ras/Raf1/FAK (osteosarcoma cell line) signaling pathways. The relationship between viral infection and TIMP-1 expression is here underlined. Thus, TIMP-1 might display a dual influence on tumor progression; either beneficial by inhibiting MMPs as MMP-9 and by impairing angiogenesis or detrimental by favoring cancer cells growth or survival. We consider that the proMMP-9/TIMP-1 balance is of critical importance in early events of tumor progression, and might show promise as diagnostic and prognostic marker of malignancy.  相似文献   

17.
ADAM disintegrin domains can support integrin-mediated cell adhesion. However, the profile of which integrins are employed for adhesion to a given disintegrin domain remains unclear. For example, we suggested that the disintegrin domains of mouse sperm ADAMs 2 and 3 can interact with the alpha6beta1 integrin on mouse eggs. Others concluded that these disintegrin domains interact instead with the alpha9beta1 integrin. To address these differing results, we first studied adhesion of mouse F9 embryonal carcinoma cells and human G361 melanoma cells to the disintegrin domains of mouse ADAMs 2 and 3. Both cell lines express alpha6beta1 and alpha9beta1 integrins at their surfaces. Antibodies to the alpha6 integrin subunit inhibited adhesion of both cell lines. An antibody that recognizes human alpha9 integrin inhibited adhesion of G361 cells. VLO5, a snake disintegrin that antagonizes alpha4beta1 and alpha9beta1 integrins, potently inhibited adhesion of both cell lines. We next explored expression of the alpha9 integrin subunit in mouse eggs. In contrast to our ability to detect alpha6beta1, we were unable to convincingly detect alpha9beta1 integrin on the surface of mouse eggs. Moreover, treatment of mouse eggs with 250 nm VLO5, which is 250 fold over its approximately IC(50) for inhibition of somatic cell adhesion, had minimal effect on sperm-egg binding or fusion. We did detect alpha9 integrin protein on epithelial cells of the oviduct. Additional studies showed that antibodies to the alpha6 and alpha7 integrins additively inhibited adhesion of mouse trophoblast stem cells and that an antibody to the alpha4 integrin inhibited adhesion of MOLT-3 cells to these disintegrin domains: Our data suggest that multiple integrins (on the same cell) can participate in adhesion to a given ADAM disintegrin domain and that interactions between ADAMs and integrins may be important for sperm transit through the oviduct.  相似文献   

18.
A disintegrin and metalloproteinase15 (ADAM15) has been shown to be upregulated and mediate endothelial hyperpermeability during inflammation and sepsis. This molecule contains multiple functional domains with the ability to modulate diverse cellular processes including cell adhesion, extracellular matrix degradation, and ectodomain shedding of transmembrane proteins. These characteristics make ADAM15 an attractive therapeutic target in various diseases. The lack of pharmacological inhibitors specific to ADAM15 prompted our efforts to identify biological or molecular tools to alter its expression for further studying its function and therapeutic implications. The goal of this study was to determine if ADAM15-targeting microRNAs altered ADAM15-induced endothelial barrier dysfunction during septic challenge by bacterial lipopolysaccharide (LPS). An in silico analysis followed by luciferase reporter assay in human vascular endothelial cells identified miR-147b with the ability to target the 3′ UTR of ADAM15. Transfection with a miR-147b mimic led to decreased total, as well as cell surface expression of ADAM15 in endothelial cells, while miR-147b antagomir produced an opposite effect. Functionally, LPS-induced endothelial barrier dysfunction, evidenced by a reduction in transendothelial electric resistance and increase in albumin flux across endothelial monolayers, was attenuated in cells treated with miR-147b mimics. In contrast, miR-147b antagomir exerted a permeability-increasing effect in vascular endothelial cells similar to that caused by LPS. Taken together, these data suggest the potential role of miR147b in regulating endothelial barrier function by targeting ADAM15 expression.  相似文献   

19.
20.
H2S is the third endogenous gaseous mediator, after nitric oxide and carbon monoxide, possessing pleiotropic effects, including cytoprotection and anti‐inflammatory action. We analyzed, in an in vitro model entailing monocyte adhesion to an endothelial monolayer, the changes induced by H2S on various potential targets, including cytokines, chemokines, and proteases, playing a crucial role in inflammation and cell adhesion. Results show that H2S prevents the increase in monocyte adhesion induced by tumor necrosis factor‐α (TNF‐α). Under these conditions, downregulation of monocyte chemoattractant protein‐1 (MCP‐1), chemokine C‐C motif receptor 2, and increase of cluster of differentiation 36 could be detected in monocytes. In endothelial cells, H2S treatment reduces the increase in MCP‐1, inter‐cellular adhesion molecule‐1, vascular cell adhesion molecule‐1, and of a disintegrin and metalloproteinase metallopeptidase domain 17 (ADAM17), both at the gene expression and protein levels. Cystathionine γ‐lyase and 3‐mercaptopyruvate sulfurtransferase, the major H2S forming enzymes, are downregulated in endothelial cells. In addition, H2S significantly reduces activation of ADAM17 by PMA in endothelial cells, with consequent reduction of both ADAM17‐dependent TNF‐α ectodomain shedding and MCP‐1 release. In conclusion, H2S is able to prevent endothelial activation by hampering endothelial activation, triggered by TNF‐α. The mechanism of this protective effect is mainly mediated by down‐modulation of ADAM17‐dependent TNF‐converting enzyme (TACE) activity with consequent inhibition of soluble TNF‐α shedding and its relevant MCP‐1 release in the medium. These results are discussed in the light of the potential protective role of H2S in pro‐inflammatory and pro‐atherogenic processes, such as chronic renal failure. J. Cell. Biochem. 114: 1536–1548, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号