首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Egg yolk lipoproteins of very low density were found to contain proteins with cofactor activity for lipoprotein lipase. When delipidated very low density lipoproteins were dissolved in 10 mM HCl and fractionated by gel filtration about two thirds of the protein were in several components with estimated molecular weights of 60000 to more than 170000. The major low-molecular-weight proteins were the dimeric and monomeric forms of a previously characterized 9000-dalton peptide. The cofactor activity was not associated with any of these major proteins. A large-scale fractionation method was developed by which two proteins fractions with cofactor activity for lipoprotein lipase were purified more than thousand-fold. One fraction had a molecular size of about 9000 daltons and the other had a size of about 5000 daltons. Both these fractions could be further separated on the basis of charge into several fractions with cofactor activity. The cofactor proteins were relatively soluble both at high and at low pH. The retained their cofactor activity after denaturation in guanidinium hydrochloride and after reduction. During the initial steps in the purification of the cofactor proteins another low-molecular-weight protein followed the cofactors. It had a single 17500-dalton peptide chain and was present in four variants, three of which contained carbohydrate.  相似文献   

2.
The apparent microviscosity of intact rat plasma very low density lipoprotein (VLDL) and post-lipolysis very low density lipoprotein was determined by fluorescence depolarization measurements and flurorescence decay measurements using 1, 6-diphenylhexatriene. Post-lipolysis very low density lipoprotein was prepared in vitro after incubation of the intact lipoprotein with either purified bovine milk lipoprotein lipase or lipoprotein lipase rich (post-heparin) plasma. During lipolysis, an average of 88% of the triglycerides were hydrolyzed, and the lipoprotein became depleted in phospholipids, cholesterol and apolipoprotein C. The apparent microviscosity of the lipoprotein increased by three-fold from 0.63 to 1.88 poise. It is concluded that the compositional changes occurring during lipolysis affect the physical properties of the lipoprotein, as measured here by the fluidity (microviscosity) of the particles.  相似文献   

3.
Incubation of 125I-labeled very low density lipoprotein (VLDL) with lipoprotein lipase-rich (postheparin) plasma obtained from intact or supradiaphragmatic rats resulted in the transfer of more than 80% of apoprotein C from VLDL to high density lipoprotein (HDL), whereas apoprotein B was associated with lipoprotein of density less than 1.019 g/ml (intermediate lipoprotein). The transfer of 125I-labeled apoprotein C from VLDL to HDL increased with time and decreased in proportion to the amount of VLDL in the incubation system. A relationship was established between the content of triglycerides and apoprotein C in VLDL, whereas the amount of apoprotein C in VLDL was independent of that of other apoproteins, especially apoprotein B. The injection of heparin to rats preinjected with 125I-labeled VLDL caused apoprotein interconversions similar to those observed in vitro. The intermediate lipoprotein was relatively rich in apoprotein B, apoprotein VS-2, cholesterol, and phospholipids and poor in triglycerides and apoprotein C. The mean diameter of intermediate lipoprotein was 269 A (compared with 427 A, the mean Sf rate was 30.5 (compared with 115), and the mean weight was 7.0 X 10(6) daltons (compared with 23.1 X 10(6)). From these data it was possible to calculate the mass of lipids and apoproteins in single lipoprotein particles. The content of apoprotein B in both particles was virtually identical, 0.7 X 10(6) daltons. The relative amount of all other constituents in intermediate lipoprotein was lower than in VLDL: triglycerides, 22%; free cholesterol, 37%; esterified cholesterol, 68%; phospholipids, 41%; apoprotein C, 7%, and VS-2 apoprotein, 60%. The data indicate that (a) one and only one intermediate lipoprotein is formed from each VLDL particle, and (b) during the formation of the intermediate lipoprotein all lipid and apoprotein components other than apoprotein B leave the density range of VLDL to a varying degree. Whether these same changes occur during the clearance of VLDL in vivo is yet to be established.  相似文献   

4.
The chemical properties of very low density and high density lipoproteins of adult bullfrog serum were determined. This serum contained extremely low levels of both very low density lipoprotein (10-30 mg/100 ml) and high density lipoprotein (5-10 mg/100 ml). The constituents of very low density lipoprotein, on a weight percentage basis, were found to be 48.1% triglyceride, 17.3% cholesterol ester, 8.8% cholesterol, 11.6% phospholipid, and 12% protein. These constituents were also present in high density lipoprotein with weight percentage values of 3.7%, 19.3%, 11.9%, 25.2%, and 36.8%, respectively. The fatty acid compositions of the triglycerides, cholesterol esters, and phosphatidylcholine were quite similar in the very low density lipoprotein and high density lipoprotein. However, shingomyelin fatty acid composition was appreciably different in the two lipoproteins. Disc gel electrophoresis in sodium dodecyl sulfate-polyacrylamide gels produced patterns with one major (approximate molecular weight, 7,000) and several minor bands for the apoprotein of very low density lipoprotein and one major (approximate molecular weight, 28,000) and several minor bands for that of high density lipoprotein.  相似文献   

5.
The hydrolytic activity of a lipoprotein lipase from bovine milk against triacylglycerol and phosphatidylcholine of rat plasma very low density lipoprotein was determined and compared to that against phosphatidylcholine of high density lipoprotein. 85--90% of the triacylglycerol in very low density lipoprotein were hydrolyzed to fatty acids and 25--35% of the phosphatidylcholine to lysophosphatidylcholine. High density lipoprotein phosphatidylcholine was only minimally susceptible to the enzyme. Even with high amounts of enzyme and prolonged incubation periods, lysophosphatidylcholine generation did not exceed 2--4% of the original amounts of labeled phosphatidylcholine in the high density lipoprotein. We conclude that phospholipids in high density lipoprotein are not substrates for the phospholipase activity of this lipoprotein lipase. These observations suggest that factors other than the presence of apolipoprotein C-II and of glycerophosphatides are of importance for the activity of lipoprotein lipases.  相似文献   

6.
A previously unrecognized lipoprotein of very high density was isolated from rat serum. During zonal ultracentrifugation of whole serum or of fractions from Sepharose 4B chromatography, a peak comigrating with a peak of cholesterol was found between the typical high density lipoproteins and the residual serum proteins. Centrifugation of chylomicrons, very low density lipoproteins, and high density lipoproteins, radio-iodinated in their lipid and protein moieties and mixed with serum, did not yield this peak. The pooled fractions contained about 85% protein. The remainder was lipid comprising cholesteryl esters, free cholesterol, triglycerides, phosphatidylcholine, and sphingomyelin. Polyacrylamide gel electrophoresis revealed bands in the region of apolipoproteins E and C as the major components. The composition suggested a lipoprotein, and this was substantiated by electron microscopy which showed particles with a mean diameter of 150 A. Their average hydrated density was 1.23 g/ml and the apparent molecular weight was 1.35 X 10(6). These very high density lipoproteins are characterized by a rapid catabolism as compared to high density lipoproteins. Within 10 min, 84% and 70% of intravenously injected 125I-labeled very high density lipoproteins were removed from plasma of male and female rats, respectively, and did not appear to be converted to lipoproteins of a different density class. Ninety-five percent of the removed 125I was recovered in the liver and the radioactivity per gram of tissue was also highest for the liver. Accordingly, the rate of clearance of 125I-labeled very high density lipoproteins was markedly reduced in functionally eviscerated rats. Radioautography revealed that most of the silver grains representing very high density lipoproteins were associated with hepatocytes and only about 1% was found over v. Kupffer cells. Uptake and degradation by freshly isolated rat hepatocytes were mediated by a saturable and specific binding site. Composition and metabolic pathway are compatible with a function of very high density lipoproteins in the transport of protein and lipids to the liver.  相似文献   

7.
Lipid thermal transition patterns of the very low density lipoproteins in native and variously treated egg yolk plasma and extracted total very low density lipoproteins lipids have been recorded by differential scanning calorimetry in the temperature range 220–300 K, after lowering the freeze endotherm of free water in the sample with ethylene glycol. Three distinguishable patterns of lipid endotherms, designated types 1, 2 and 3 were obtained, respectively, from (i) native very low density lipoproteins in egg yolk plasma, (ii) freeze damaged very low density lipoproteins in gelled egg yolk plasma and (iii) extracted total lipids of very low density lipoproteins dispersed in water. Protein-depleted ‘lipid core’ particles of very low density lipoproteins obtained by exhaustive proteolysis of egg yolk plasma gave type 2 lipid transition pattern suggesting similarities in its lipid association with that of the freeze damaged very low density lipoproteins. Freezing the ‘lipid cores’ of very low density lipoproteins led to phase separation and gave type 3 lipid transition pattern of water-dispersed, phase-separated total very low density lipoprotein lipids. Relative heat uptake of native very low density lipoproteins in egg yolk plasma was about 15% lower than the freeze damaged sample or of the extracted total lipids. Treatments which prevented aggregation and gelation of very low density lipoproteins in egg yolk plasma during frozen storage, namely with additives such as glycerol or NaCl, gave subsequent lipid transition pattern intermediate between type 1 and 2, indicating that while very low density lipoprotein aggregation is prevented, additives do not altogether prevent changes in lipid association in these particles.  相似文献   

8.
Much of the lipid present in the ascites plasma in which Ehrlich cells grow is contained in very low density lipoproteins (VLDL). Chemical measurements indicated that triglycerides were taken up by the cells during in vitro incubation with ascites VLDL. When tracer amounts of radioactive triolein were incorporated into the ascites VLDL, the percentage uptakes of glyceryl tri[1-(14)C]oleate and triglycerides measured chemically were similar. The cells also took up [2-(3)H]glyceryl trioleate that was added to VLDL, but the percentage of available (3)H recovered in the cell lipids was 30-40% less than that of (1 4)C from glyceryl tri[1-(1 4)C]oleate. This difference was accounted for by water-soluble (3)H that accumulated in the incubation medium, suggesting that extensive hydrolysis accompanied the uptake of VLDL triglycerides. Radioactive fatty acids derived from the VLDL triglycerides were incorporated into cell phospholipids, glycerides, and free fatty acids, and they also were oxidized to CO(2). Triglyceride utilization increased as the VLDL concentration was raised. These results suggest that one function of the ascites plasma VLDL may be to supply fatty acid to the Ehrlich cells and that the availability of fatty acid to this tumor is determined in part by the ascites plasma VLDL concentration. Although Ehrlich cells incorporate almost no free glycerol into triglycerides, considerable amounts of [2-(3)H]glyceryl trioleate radioactivity were recovered in cell triglycerides. This indicates that at least some VLDL triglycerides were taken up intact. The net uptake of VLDL protein and cholesterol was very small relative to the triglyceride uptake, suggesting that intact triglycerides are transferred from the ascites VLDL to the Ehrlich cells and that hydrolysis occurs after the triglyceride is associated with the cells.  相似文献   

9.
An exponential gradient gel with 0-10% acrylamide and 0.5% agarose was developed for electrophoresis of intact high molecular weight lipoproteins. This system resolves very low density lipoproteins, intermediate density lipoproteins, lipoprotein a, and low density lipoproteins in a size-dependent fashion. The characteristic relative mobility of these species can be determined in relation to protein and colloidal gold reference materials. Electron microscopy of selected lipoprotein fractions confirmed that relative mobility was related to apparent lipoprotein diameter. The composite gel medium can be used with prestained lipoproteins and permits immunoelectroblotting for qualitative analysis of apolipoprotein constituents.  相似文献   

10.
1. Livers from normal fed male rats were perfused in vitro with a bloodless medium which contained intially 3% bovine serum albumin and 100 mg% glucose. Albumin alone, or myristate (14 : 0), palmitate (16 : 0), palmitoleate (16 : 1), stearate (18 : 0), oleate (18 : 1), or linoleate (18:2) was infused at a constant rate (496 mumol/4 h), as a complex with albumin, during the experiment. 2. The very low density lipoprotein secreted by the liver after infusion of unsaturated fatty acids (16 : 1, 18 :1, 18 : 2) has a faster rate-zonal mobility in the ultracentrifuge and is, therefore, probably a larger particle with fewer moles of phospholipid and cholesterol relative to triacyglycerol (triacyglycerol/phospholipids/cholesterol = 100/25.1/16.4) than the very low density lipoproteins produced after infusion of saturated (14 : 0, 16 : 0, 18 : 0) fatty acids (triacyglycerol/phospholipids/cholesterol = 100/30.1/19.1). The molar ratio of phosphoipids/cholesterol of the very low density lipoprotein was similar regardless of which fatty acid was infused. The predominant fatty acid of the very low density lipoprotein or hepatic triacyglycerol, in all cases, was the infused acid. 3. We conclude that free fatty acid regulates the quantity and proportions of triacyglycerol, phospholipids, and cholesterol secreted by the liver in the very low density lipoprotein, and therefore, may secondarily influence concentrations of lipids in the very low density lipoprotein and other plasma lipoproteins circulating in vivo.  相似文献   

11.
Very low density lipoproteins were separated by gel filtration on Sepharose 4B. A decrease in mean particle diameter and flotation rate was seen with increasing elution volumes. The smaller lipoproteins had relatively more protein and phospholipid and less triglyceride than the larger ones. No differences were noted in the relative contents of the various phospholipids or partial glycerides between small and large lipoproteins. Fatty acid patterns of triglycerides and cholesteryl esters were also similar for the various lipoproteins. Relatively more lecithin containing linoleoyl acyl groups was found in smaller lipoproteins of some subjects. More of the protein of smaller lipoproteins was apo-LDL protein. Apo-HDL peptide was lost from the very low density lipoprotein as a consequence of the gel filtration.  相似文献   

12.
The cholesteryl esters of very low density lipoproteins become labeled when human plasma is incubated with cholesterol-(14)C. The relative order of magnitude of the specific activity of the cholesteryl esters of the major lipoprotein fractions is: high density lipoproteins > very low density lipoproteins > low density lipoproteins. This pattern of labeling is similar to that found by others in experiments performed in vivo. Very low density lipoprotein cholesteryl esters are probably not formed by direct action of the plasma lecithin:cholesteryl acyltransferase, since significant esterification of cholesterol does not occur when very low density lipoproteins are incubated separately with the enzyme. Instead, labeled cholesteryl esters formed in the other lipoprotein fractions transfer to the very low density lipoproteins, the relative amount of monounsaturated esters transferred being slightly greater than that of saturated and polyunsaturated esters. The results support the possibility that the acyltransferase indirectly increases the concentration of very low density lipoprotein cholesteryl esters in vivo.  相似文献   

13.
The hydrolysis of glycerophospholipids in very low density lipoprotein by enzyme(s) released into circulation after the injection of heparin to rats was studied. [32P]Lysolecithin was formed rapidly from [32P]lecithin when very low density lipoprotein, labeled biosynthetically with 32P, was incubated with postheparin plasma. The [32P]lysolecithin was associated with the plasma protein fraction of density greater than 1.21 g/ml, whereas [32P]lecithin exchanged between very low and high density lipoproteins. Inhibition of the plasma lecithin: cholesterol acyl transferase activity did not change the excess [32P]lysolecithin formation in postheparin plasma, and only a negligible amount of radioactivity was associated with blood cells when the incubation was repeated in whole blood. Analysis of the results has demonstrated that phospholipids are removed from VLDL by two pathways: hydrolysis of glycerophospholipids by the heparin-releasable phospholipase activity (greater than50%) and transfer to high density lipoproteins (less than50%). The tissue origin of the postheparin phospholipase was studied in plasma obtained from intact rats and supradiaphragmatic rats using specific inhibitors of the extrahepatic lipase system (protamine sulfate and 0.5 M NaCl). The phospholipase activity could be ascribed to both the hepatic and extrahepatic lipase systems. It is concluded that hydrolysis of glycerophospholipids is the major mechanism responsible for the removal of phospholipids from very low density lipoprotein during the degradation of the lipoprotein. It is suggested that phospholipid hydrolysis occurs concomitantly with triglyceride hydrolysis, predominantly in extrahepatic tissues.  相似文献   

14.
We report an example of the enzymic cleavage of an apoprotein B (apoB), the main apoprotein in the very low density lipoprotein (VLDL) of laying hens' blood, in a normal biological process, the formation of egg yolk. Plasma VLDL was labeled in vivo with 3H-amino acids, isolated by centrifuging, and injected into another laying hen. Yolk VLDL was isolated and its apoproteins were separated. ApoB was not detected in this lipoprotein. Most of the label originally in apoB was distributed among four smaller yolk apoproteins, apovitellenins III to VI, which are a large proportion of the apoproteins of VLDL in yolk. This distribution of 3H suggested that 80% of apoB was cleaved at three places. One yolk apoprotein, apovitellenin II, was not labeled, indicating that it did not originate from an apoprotein in plasma VLDL. The site for cleavage of apoB in the ovarian tissue has not been determined, but cleavage may occur during receptor-mediated endocytosis. The pattern of cleavage of apoB during transfer to yolk was not imitated by some known proteolytic enzymes.  相似文献   

15.
The laying hen expresses two different lipoprotein transport receptors in cell-specific fashion. On the one hand, a 95-kDa oocyte membrane protein mediates the uptake of the major yolk precursors, very low density lipoprotein, and vitellogenin; on the other hand, somatic cells synthesize a 130-kDa receptor that is involved in the regulation of cellular cholesterol homeostasis (Hayashi, K., Nimpf, J., and Schneider, W. J. (1989) J. Biol. Chem. 264, 3131-3139). Here we show that the oocyte-specific receptor binds, in addition to the yolk precursor proteins, an apolipoprotein of mammalian origin, apolipoprotein E. Ligand blotting, a solid-phase binding assay, and antireceptor antibodies were employed to demonstrate that binding of vitellogenin, very low density lipoprotein (via apolipoprotein B), and apolipoprotein E occurs to closely related, if not identical, sites on the 95-kDa oocyte receptor. The binding properties of lipovitellin, which harbors the receptor recognition site of vitellogenin, are analogous to those of apolipoprotein E: both require association with lipid for expression of functional receptor binding. The ligand specificity of the avian oocyte lipoprotein receptor supports the hypothesis that vitellogenin, which has evolved in oviparous species, represents a counterpart to mammalian apolipoprotein E.  相似文献   

16.
The surface electric charge of pig serum very low density lipoprotein (VLDL) is described. By isoelectric focusing VLDL was separated into at least 3 fractions having different isoelectric points and polypeptide distributions. The ultracentrifugal and electron microscopic results indicate that the VLDL was not drastically denatured by Ampholine.  相似文献   

17.
We determined the effects of varying the types and level of dietary fat and cholesterol on the increase in plasma total triacylglycerol concentrations after injection of Triton WR-1339, an inhibitor of lipoprotein lipase, into monkeys that had been subjected to an overnight fast. The monkeys that had been treated with Triton WR-1339 were then given a test meal by intragastric intubation. Dietary cholesterol, high levels of fat and saturated fat in the habitual diet reduced the rate of release of triacylglycerol to plasma in the fasted monkey. We also determined the changes in protein and lipid concentrations of the different lipoprotein fractions. The injection of Triton WR-1339 resulted in a linear increase with time in the concentration of protein and triacylglycerol in the very low density (chylomicron-free and d less than 1.006) lipoproteins, but there was an increase in the ratio of traicylglycerol to protein in that fraction. Most of the increase (96%) in very low density protein was in the B protein. Regardless of the habitual diet, a test meal accentuated the rate of triacylglycerol appearance in whole plasma and in the very low density lipoproteins of Triton WR-1339-treated monkeys, and the rate of increase of the protein component after feeding was slightly higher. Thus the administration of a meal to the fasted Triton WR-1339-treated squirrel monkey further increased the proportion of triacylglycerol in very low density lipoproteins. Although dietary cholesterol and saturated fat in the habitual diet depressed the rate of increase in very low density triacylglycerol during fasting, the rate of protein synthesis was not significantly affected. After administration of a test meal the rates of increase in triacylglycerol and protein in the very low density lipoproteins were similar for monkeys from the different diet groups. Triton WR-1339 administration caused a slight and progressive increase in the intermediate density (d 1.006-1.019) lipoproteins and a marked and progressive decrease in the low density (d 1.019-1.063) lipoproteins. There was an immediate (by 5 min) drop of 70% or more in high density (d 1.063-1.21) lipoprotein protein, but the lipids except triacylglycerol remained unchanged. There was a decrease in both the A (the major fraction) and C proteins. The rates of very low density B protein secretion were comparable to the rates of low density lipoprotein catabolism that had been previously demonstrated for this species.  相似文献   

18.
Oxidation of low density lipoprotein (LDL) in vivo is thought to play a critical role in the initiation of atherosclerosis. F(2)-isoprostanes are compounds resulting from non-enzymatic oxidation of arachidonic acid and elevated levels are present in human atherosclerotic plaque. However, little is known about the formation of F(2)-isoprostanes in plaque lesions or their distribution in lipid subclasses. Given that LDL and tissue lipid subfractions (such as phospholipids, cholesterol esters and triglycerides) all contain significant levels of arachidonic acid, the aim of this study was to examine the relative distribution of F(2)-isoprostanes in the different lipid fractions of LDL oxidised in vitro, and compare this to the distribution in atherosclerotic plaque. The results reveal that while the majority of F(2)-isoprostanes are present in the phospholipid or surface lipid fractions, the core lipids (cholesterol esters/triglycerides) contribute at least 10% of the total F(2)-isoprostanes in both LDL oxidised in vitro and human atherosclerotic plaque. The remarkably similar profiles between the oxidised LDL and advanced atherosclerotic plaque suggests oxidation in vivo, is predominantly via non-enzymatic processes directed towards the surface lipids.  相似文献   

19.
Phospholipids carried by very low density lipoprotein (VLDL) are hydrolysed in circulation by lipoprotein and hepatic lipases and lecithin-cholesterol acyltransferase. We have previously demonstrated [J.J. Agren, A. Ravandi, A. Kuksis, G. Steiner, Structural and compositional changes in very low density lipoprotein triacylglycerols during basal lipolysis, Eur. J. Biochem. 269 (2002) 6223-6232] that the infusion of Triton WR 1339 (TWR), which inhibits these lipases, leads in 2 h to five-fold increase in VLDL triacylglycerol concentration along with major differences in the composition of their molecular species. The present study demonstrates that the accumulation of triacylglycerols is accompanied by major changes in the content of the VLDL phospholipids, of which the most significant is the enrichment of phosphatidylethanolamine (PtdEtn). This finding coincides with the enrichment in PtdEtn demonstrated in the VLDL of a hepatocytic Golgi fraction but it had not been demonstrated that the Golgi VLDL, along with its unusual phospholipid composition, can be directly transferred to plasma. Aside from providing an easy access to nascent plasma VLDL, the TWR infusion demonstrates that lipoprotein and hepatic lipases are also responsible for the degradation of plasma VLDL PtdEtn, as independently demonstrated for plasma phosphatidylcholine. Our results indicate also, with the exception of lysophosphatidylcholine, that preferential basal hydrolysis no dot lead to major differences in molecular species composition between circulating and newly secreted VLDL phospholipids. The comparison of the molecular species composition of VLDL and liver phospholipids suggests a selective secretion of PtdEtn and sphingomyelin molecular species during VLDL secretion.  相似文献   

20.
The nature of the interaction of high density lipoproteins (HDL), formed during lipolysis of human very low density lipoprotein (VLDL) by perfused rat heart, with subfractions of human plasma HDL was investigated. Perfusate HDL, containing apoliproproteins (apo) E, C-II, and C-III but no apo A-I or A-II, was incubated with a subfraction of HDL (HDL-A) containing apo A-I and A-II, but devoid of apo C-II, C-III, and E. The products of the incubation were resolved by heparin-Sepharose or hydroxylapatite chromatography under conditions which allowed the resolution of the initial HDL-A and perfusate HDL. The fractions were analyzed for apolipoprotein content and lipid composition and assessed for particle size by electron microscopy. Following the incubation, the apo-E-containing lipoproteins were distinct from perfusate HDL since they contained apo A-I as a major component and apo C-II and C-III in reduced proportions. However, the HDL-A fraction contained apo C-II and C-III as major constituents. Associated with these changes in apolipoprotein composition, the apo-E-rich lipoproteins acquired cholesteryl ester from the HDL-A fraction and lost phospholipid to the HDL-A fraction. The HDL-A fraction maintained a low unesterified cholesterol/phospholipid molar ratio (0.23), while the apo-E-containing lipoproteins possessed a high ratio (0.75) characteristic of the perfusate HDL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号