首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A cell-suspension culture suitable for continuous propagation was established from protoplasts of the red alga Porphyra linearis Grev., an edible, winter annual species of nori. Protoplast-derived cells that did not regenerate into thalli were used to establish a culture line of uniform-sized (average about 25 μm diam.) cells, which resembled the vegetative cells of this species in the leafy thallus phase. Cell division occurred about once per 24 to 30 h in uncrowded (1–2 cells per culture well) culture. This cell-suspension culture has now been maintained as continuously growing subcultures for more than four years without formation of organized thalli; however, the latter can be obtained at will by altering culture conditions (lowering temperature from 20° to 10 °C, lengthening photoperiod from 10: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% aIXaGaaGinaaaaaaa!3777!\[\overline {14} \] or 8 : % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% aIXaGaaGOnaaaaaaa!3779!\[\overline {16} \] to 14: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% aIXaGaaGimaaaaaaa!3773!\[\overline {10} \] or 16: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% aI4aaaaaaa!36C0!\[\overline 8 \] and increasing irradiance from 10 to ≥ 30 μmol m-2 s-1). This appears to be the first continuous non-clonal cell-suspension culture developed for a multicellular alga. NRCC No. 30272.  相似文献   

2.
Two cohorts p. a. are identified. The mean annual biomass % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaci% GGcbaaaaaa!36C6!\[\overline \operatorname{B} \] is 88 mg fresh weight/ l00 cm2. The ratio production/% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaci% GGcbaaaaaa!36C6!\[\overline \operatorname{B} \] is P/% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaci% GGcbaaaaaa!36C6!\[\overline \operatorname{B} \] = 2,51 for the first and P/% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaci% GGcbaaaaaa!36C6!\[\overline \operatorname{B} \] = 3,67 for the second cohort. The actual net production of the total population is 7% of potential net production.
Die produktion von potamopyrgus jenkinsi (SMITH) (Gastropoda, prosobranchia) im bodensee
Zusammenfassung P. jenkinsi bringt jährlich zwei Generationen hervor, deren wahrscheinliche Verknüpfung untereinander in Abb. 3 dargestellt ist. Für fie Produktions berechnungen wurde eine etwas vereinfachte Vorstellung zugrundegelegt (Tab. 1), nach der die getrennten Abundanz- und Biommasse-Kurven der Abb. 4 berechnet wurden.Aus Geburtsraten und Beständen der maturen Tiere konnte die Zahl der Neonatae errechnet werden, die in jede Generation eingeht. Mit diesen Daten und mit denen der Abb. 4 wurde über Allen-Kurven die Produktion bestimmt. Die Resultate sind in Tab. 2 zusammengefaßt.
  相似文献   

3.
Fifty-two stream segments were sampled from 16 August to 13 September in 1993 in the eastern Atlantic Rainforest of S?o Paulo State, southeastern Brazil (22°55′–25°00′S, 44°48′–48°03′W). Forty-two macroalgal subgeneric taxa were found and the most widespread species were Audouinella pygmaea (21% of sites), Compsopogon leptoclados and Microcoleus subtorulosus (19%). Macroalgal species number per sampling site ranged from 0 to six (2.6 ± 1.7) and was positively correlated to species abundance, whereas species cover ranged from 0 to 70% of the stream bed (15.5 ± 20.8%). No significant correlation was found among macroalgal species number and abundance with any physical or chemical variable analyzed. Most sites were dominated by one or few macroalgal species, mainly, Audouinella macrospora, C. leptoclados and M. subtorulosus. No significant difference was found between the frequency distribution of variables measured for streams and for total macroalgae but the most widespread species (A. pygmaea) differed significantly for current velocity, specific conductance, turbidity and pH. Overall means for macroalgal occurrence include the following values: temperature (% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaaaa!36CA!\[X\] = 19.9°C), current velocity (% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaaaa!36CA!\[X\] = 45 cm s−1), oxygen saturation (% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaaaa!36CA!\[X\] = 66%), specific conductance (% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaaaa!36CA!\[X\] = 59.6 μS cm−1), turbidity (% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaaaa!36CA!\[X\] = 5 NTU) and pH (% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaaaa!36CA!\[X\] = 7.1). This pattern of patchy distribution and dominance by few species has been suggested as typical of stream macroalgal communities and has been ascribed to the rapid fluctuation of physical and chemical conditions. Total macroalgal species richness as well as mean species number per sampling site were considerably lower than found in similar studies of other regions. The Intermediate Disturbance Hypothesis was applied to explain these results: the same factor (high precipitation) responsible for the maintainance of the high species diversity in the surrounding forest can be, paradoxically, a constraint to the development of a more diverse macroalgal flora in streams.  相似文献   

4.
The sequence of colonization, species diversity (% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% qGKbaaaaaa!36E5!\[\overline {\text{d}} \]), biomass, and productivity of macroinvertebrates on artificial substrates was determined in a relatively constant environment freshwater canal. Three substrates were removed weekly during a 16 week test period. Community structure of benthic macroinvertebrates was determined at the onset and end of the test period and compared with substrate community structure. Calopsectra sp. was the dominant early colonizing organism; Dicrotendipes sp. and Dicrotendipes modestus were also abundant. In late collections other chironomids, ephemeropterans, gastropods, oligochaetes, amphipods, and trichopterans occurred. Trichopterans were generally dominant in numbers and biomass in later collections. A total of 104 were collected on the substrates.Collection diversity (% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% qGKbaaaaaa!36E5!\[\overline {\text{d}} \]) began at 3.42 (week 1), decreased to 2.72 in the third week, and then continually increased for the remainder of the test period to 4.43. Cumulative diversity had a similar trend, decreasing from 3.42 (week 1) to 3.06 in the fourth week, and then increasing to 4.05. Neither collection % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% qGKbaaaaaa!36E5!\[\overline {\text{d}} \] or cumulative % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% qGKbaaaaaa!36E5!\[\overline {\text{d}} \] reached an asymptote in the 16 week period.Collection biomass began at 0.0867 g/0.26 m2 for week one and was 1.0575 g/0.26 m2 at the end of the test period. Biomass increased linearly for seven weeks, fluctuated widely until week 14, then increased sharply for the remainder of the test period. Productivity ranged from –3.42 g/m2/wk in the eighth week to 5.10 g/m2/wk in the last collection. Biomass and productivity were greatly affected by the presences or absences of a relatively few large organisms.One hundred two taxa were collected from the benthic samples, 34 not being present on the substrates. Limodrilus hoffmeisteri was the dominant benthic organism, while Calopsectra sp. and Polypedilum sp. were also abundant. The February benthic diversity % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% qGKbaaaaaa!36E5!\[\overline {\text{d}} \] was 4.54 and the June % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% qGKbaaaaaa!36E5!\[\overline {\text{d}} \] was 4.05.  相似文献   

5.
We surveyed (Oct. 1991–Sept. 1992) a 16.5-km-long irrigation canal in Al-Kharj City, for its water chemistry, and Charophyte periodicity and density. Marked differences occurred between the origin of a cave-lake, and the final discharge. Six species, Chara globularis, C. vulgaris f. contraria, C. vulgaris var. gymnophylla, C. vulgaris var. longibracteata, C. zeylanica, C. zeylanica var. diaphana f. oerstediana heavily encrust, as opposed to C. benthamii and C. fibrosa. The most widespread were Chara zeylanica and C. benthamii. Chara zeylanica dominated station IV for most of the study period, and ousted all its competitors, such that a 100% monospecific stand was observed here between January and February 1992. The second abundant was Chara benthamii (44%, station II). All Charophytes were seen in the month of November and December 1991, suggesting a luxuriant growth in winter.The water was calcareous, with a high amount of Mg++ (% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiwayaara% aaaa!36E2!\[\bar X\] = 38 mg l–1), Ca++ (% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiwayaara% aaaa!36E2!\[\bar X\] = 121 mg l–1) and reactive-Si (% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiwayaara% aaaa!36E2!\[\bar X\] = 10.8 mg l–1). A gradual decrease in elements/ions (Si = 12 – 8 mg l–1, Cl = 357–251 mg l–1 and CaCO3 390–328 mg l–1) from source to outlet was demonstrated during June. The heavy encrustation of Charophytes is plausibly related to a high concentration of CaCO3 (% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiwayaara% aaaa!36E2!\[\bar X\] = 364 mg l–1).  相似文献   

6.
The tolerance of wheat to manganese was investigated in soil and solution culture. Although no critical toxicity concentration could be identified, growth was reduced when the ratio of magnesium to manganese in the shoots (Rp) fell below 20:1 (mgg–1/mgg–1). In soil, plant growth relative to unstressed plants (Y) could be described by the empirical equation: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeywaiabg2% da9iaaicdacaGGUaGaaGyoaiaaiwdacqGHsislcaaIWaGaaiOlaiaa% iMdacaaI1aGaaeyzaiaabIhacaqGWbGaaiikaiabgkHiTiaaicdaca% GGUaGaaGymaiaaiodacaaI5aGaaeOuamaaBaaaleaacaqGWbaabeaa% kiaacMcaaaa!4959!\[{\text{Y}} = 0.95 - 0.95{\text{exp}}( - 0.139{\text{R}}_{\text{p}} )\]In solution culture the value of Rp was related to the ratio of the two ions in the nutrient solution (Rs) according to the expression: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeysaiaab6% gacaqGGaGaaeOuamaaBaaaleaacaqGWbaabeaakiabg2da9iaaicda% caGGUaGaaGinaiaaikdacqGHRaWkcaaIWaGaaiOlaiaaisdacaaI4a% GaaeiiaiaabMeacaqGUbGaaeiiaiaabkfadaWgaaWcbaGaae4Caaqa% baGccaGGPaaaaa!47B6!\[{\text{In R}}_{\text{p}} = 0.42 + 0.48{\text{ In R}}_{\text{s}}\]The magnesium concentration in the nutrient solution for optimum growth at a given concentration of manganese was given by: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeysaiaab6% gacaqGGaGaae4waiaab2eacaqGNbGaaeyxaiabg2da9iaaikdacaGG% UaGaaGioaiaaiMdacqGHRaWkcaaIWaGaaiOlaiaaiwdacaaI0aGaae% iiaiaabMeacaqGUbGaaeiiaiaabUfacaqGnbGaaeOBaiaab2faaaa!4A0B!\[{\text{In [Mg]}} = 2.89 + 0.54{\text{ In [Mn]}}\]Magnesium increased the tolerance of plants to high concentrations of manganese in shoot tissue and also increased the ability of the plant to discriminate against manganese ions in translocation of nutrients from roots to shoots.  相似文献   

7.
Predominance of picoplankton and nanoplankton in eutrophic Calder Lake   总被引:2,自引:2,他引:0  
John D. Wehr 《Hydrobiologia》1990,203(1-2):35-44
A study was conducted to examine factors regulating the biomass of algal picoplankton in Calder Lake, a small eutrophic lake in southern New York state. A particular focus was a current paradigm which suggests that larger cells may dominate in nutrient-rich waters, while smaller cells may predominate only in oligotrophic waters. Over two years, phytoplankton biomass consisted predominantly (74% on average) of very small organisms; nanoplankton (<20 to 2 µm: 39%) and picoplankton (<2 µm to 0.2 µm: 35%), despite the presence of surface blooms of colonial cyanobacteria (Microcystis aeruginosa, Anabaena limnetica), and dense metalimnetic populations of the dinoflagellate Ceratium hirundinella. This dimictic system is characterized by relatively high levels of total P (max = 85, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaara% aaaa!3702!\[\bar x\] = 9.7 µg P/L), inorganic P (max = 26, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaara% aaaa!3702!\[\bar x\] = 4.5 µg P/L), and total inorganic N (max = 285, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaara% aaaa!3702!\[\bar x\] = 85 µg P/L), but larger forms were rarely the most abundant. Unlike some marine systems, greater abundance of algal picoplankton was not associated with deeper strata (low light), or warmer temperatures. Data suggest that midsummer nutrient limitation, especially P-limitation, favors the development of pico- and nanoplankton in the limnetic zone of eutrophic lakes.  相似文献   

8.
Unusual diel pHs in water as related to aquatic vegetation   总被引:1,自引:1,他引:0  
High diel pHs (% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiwayaara% aaaa!36E2!\[\bar X\] > 9.0) showing little or no fluctuation were observed in several impoundments. This phenomenon was experimentally produced in water that contained only Myriophyllum spicatum or species of filamentous algae. Diel pHs ⩾ 9.0 were produced in the laboratory with as little as 0.2 g/1 of algae or vascular plants. The ability of these plants to cause high diel pHs in water may have evolved in response to competition with phytoplankton for carbon.  相似文献   

9.
The chemistry of water in fields at two Bangladesh deepwater rice locations is compared. Although Manikganj lies in the Jamuna (-Brahmaputra) floodplain and Sonargaon in the old Meghna floodplain, their chemistries during the flood season are similar, apart from higher Mg % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGadiiEayaara% aaaa!3703!\[\bar x\]: 3.57 v.1.8 mg 1–1), Ca (% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGadiiEayaara% aaaa!3703!\[\bar x\]: 13.1 v.4.5 mg l–1 ), pH and total alkalinity at the former.Diel changes in oxygen and sometimes also pH were evident 10 cm below the surface in deepwater rice fields, but such changes were typically much greater in fallow fields. Measurements made between 1400 and 1600 h in a range of habitats showed a trend for high pH values to be associated with high O2 values. Water in Eichhornia beds had the lowest values, deepwater rice fields were intermediate and fallow fields and other open areas typically had the highest values. O2 concentrations in excess of 15 mg l–1 and pH values of about 10.0 sometimes occurred in fallow fields with dense masses of submerged plants and loosely associated algal flocs.There was an increasing tendency for the water to become anoxic towards the end of the season and water 10 cm above the bottom was almost or entirely anoxic in deepwater rice fields at both locations over the whole 24-h period of 4/5 October, at a time when the depth of the water was starting to drop. Nitrite increased and sulphate decreased at both locations towards the end of the season.  相似文献   

10.
The population dynamics of two small cichlid fishes (Pharyngochromis darlingi andPseudocrenilabrus philander) were studied in Lake Kariba, a very large African man-made lake. They are of no economic importance but make up about 14% and 7% respectively of the inshore fish population and are the major components of the diet of fish-eating birds on the lake.P. darlingi isthe larger species (L = 156.5 mm) and is found on both shelving and steep, eroding shores. Its mortality rate differs in each habitat (Z = 0.44 and 0.72 month–1 respectively), only 0.79% survive for 12 months and its % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaac+% cadaqdaaqaaiaadkeaaaaaaa!384D!\[P/\overline B \] ratio is 5.45 (on shelving shores).Ps. philander is smaller (L = 83.9 mm) and is restricted to shelving areas with abundant vegetation. Its monthly mortality rate was high (Z = 7.69), only 0.05% survive to 12 months whilst its % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaac+% cadaqdaaqaaiaadkeaaaaaaa!384D!\[P/\overline B \] ratio was very high (7.69). The estimates of growth obtained forP. darlingi differ considerably from those given in an earlier study in Lake Kariba and some possible reasons for this are discussed. In suitable habitats, the combined production of both species could be 40 kg ha–1 yr–1 which indicates their potential importance to the ecology of the lake.  相似文献   

11.
We investigated the relationship between groundwater metazoans and their physical and chemical environment in a shallow Atlantic Coastal Plain aquifer adjacent to the Chesapeake Bay, Maryland, USA. Average abundance of the groundwater organisms over a 1 % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGaaeaaca% aIXaaabaGaaGOmaaaaaaa!3776!\[{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$2$}}\] year period were large (% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% WG4baaaaaa!36FB!\[\overline x \] = 471−1; range = 0–10001−1) and included a wide range of taxa (nematodes, rotifers, copepods, oligochaetes, and others). Highest meiofaunal abundances occurred in the summer and fall with considerable variation across a study site that spanned hundreds of meters. We found that over 70% of the variability in the abundance of total meiofauna at Wye Island could be explained by date, sampling location, and conductivity. Additional physical and chemical factors (e.g., dissolved oxygen, nitrate, dissolved organic carbon) which were significantly related to faunal abundances, differed among taxa. Nematode abundances were negatively related to nitrate concentrations. Copepod and oligochaete abundances were highest at intermediate pH values (4–6). Copepods also occurred in higher abundances at higher conductivity (> 0.25 dS m −1). Rotifers were most abundant at higher oxygen values (> 6 mg l−1). The high faunal abundances found in this sandy aquifer, and the degree to which such habitats are understudied (especially in North America), suggest a great need for additional research to elucidate factors that control faunal dynamics.  相似文献   

12.
Summary The effect of preculture and culture media formulation on Lactobacillus helveticus lactic acid production rate was investigated in batch fermentations. Maximum lactic acid productivity of 5.5 g/l.h. was obtained from hydrolyzed whey. Clarified whey ultrafiltrate gave 4.4 g/l.h. at less expense.Nomenclature % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9qq-f0-yqaqVeLsFr0-vr% 0-vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai% aab2eacaqGxbaaaaaa!3AF8!\[\overline {{\text{MW}}} \] peptides average molar weight - NTK, NNH2 total and primary -amino nitrogen concentrations (g/l) - p lactic acid concentration (g/l) - % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9qq-f0-yqaqVeLsFr0-vr% 0-vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqdaaqaai% aabAfacaqGqbaaaaaa!3AFA!\[\overline {{\text{VP}}} \] lactic acid mean volumetric productivity (g/l.h.) - x total cell mass concentration (g/l)  相似文献   

13.
On December 6, 1981 an oil spill of 160 barrels (25 440 liters) occurred in a small southeast Texas stream.Water quality changes, other than the presence of oil, were not evident until six months later when water temperature increased and stream flow ceased. This resulted in decreased dissolved oxygen and increased carbon dioxide concentrations. Responses of the benthic macroinvertebrate community included an increase in density of oligochaetes, decrease in numbers and taxa of chironomids, with eventual complete elimination, and low community diversity (% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciikaiqacs% gagaqeaiaacMcaaaa!3848!\[(\bar d)\]). Decrease in oil concentration resulted in reversal of these responses. No clean water taxa were collected and complete recovery had not occurred 26 months after the spill when the study was terminated.  相似文献   

14.
The food consumption of all fish species was estimated at nine sites in two lowland rivers. The fish populations, whose diet consisted chiefly of invertebrates (88%), used on the average 9.88 (7.14–13.3) kg of invertebrates for the production of 1 kg of fish flesh. This number of invertebrates corresponds to 39.35 ± 7.34 MJ (% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGadiiEayaara% aaaa!3703!\[\bar x\] ± S.D.). In estimating the effective use of consumed (K1) and assimilated (K2) food for growth, it was found that the predominance of food of animal origin over plant of detrital food resulted in a decrease in the living cost (maintenance ration) of fish.  相似文献   

15.
An assessment of the meiobenthos from nine mountain lakes in Western Canada   总被引:2,自引:2,他引:0  
The numbers and biomass of meiobenthic invertebrates of nine representative mountain lakes were assessed relative to the macrobenthic invertebrates retained on 0.425 mm mesh. The meiobenthos accounted for an average of % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGaaeaaca% aIXaaabaGaaG4maaaaaaa!3777!\[{\raise0.7ex\hbox{$1$} \!\mathord{\left/{\vphantom {1 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}\]of the total biomass and 97% of total numbers retained on 0.045 mm mesh. In general surveys in these lakes, the use of 0.250 mm mesh instead of 0.425 mm mesh would be unlikely to improve estimates of total numbers and biomass enough to justify the additional effort needed. Accepting the meiobenthic turnover rate to be three to five times that of the macrobenthos, meiobenthic production is probably close to or much higher than the macrobenthic production in these lakes.  相似文献   

16.
Summary The effect of trace amounts of oxygen on the degree of ethanol inhibition in a continuous anaerobic culture of Saccharomyces cerevisiae was studied at the 100 gl –1 feed glucose concentration level. Results showed that the use of micro-aerobic conditions (0,5% of saturation) enhanced the utilisation of substrate by increasing the ethanol tolerance of the yeast without any significant decrease in the ethanol yield per unit substrate consumed. When the results were fitted to an equation of the form % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbyacaqG8o% GaaeypaiqabY7agaqcaiaab6cadaWcaaGcbaqcLbyacaqGdbWaaSba% aSqaaKqzagGaae4CaaWcbeaaaOqaaKqzagGaae4qamaaBaaaleaaju% gGbiaabohaaSqabaqcLbyacqGHRaWkcaqGlbWaaSbaaSqaaKqzagGa% ae4CaaWcbeaaaaqcLbyacaGGUaWaaSaaaOqaaKqzagGaae4samaaBa% aaleaajugGbiaabchaaSqabaaakeaajugGbiaabUeadaWgaaWcbaqc% LbyacaqGWbaaleqaaKqzagGaey4kaSIaaeywamaaBaaaleaajugGbi% aabchacaqGZbaaleqaaKqzagGaaiOlaiaacIcacaqGdbWaaSbaaSqa% aKqzagGaae4CaiaabAgaaSqabaqcLbyacqGHsislcaqGdbWaaSbaaS% qaaKqzagGaae4CaaWcbeaajugGbiaacMcaaaaaaa!6301!\[{\text{\mu = \hat \mu }}{\text{.}}\frac{{{\text{C}}_{\text{s}} }}{{{\text{C}}_{\text{s}} + {\text{K}}_{\text{s}} }}.\frac{{{\text{K}}_{\text{p}} }}{{{\text{K}}_{\text{p}} + {\text{Y}}_{{\text{ps}}} .({\text{C}}_{{\text{sf}}} - {\text{C}}_{\text{s}} )}}\]it was found that the values for % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabeiVdyaaja% aaaa!373F!\[{\text{\hat \mu }}\], Ks and Yps were the same as for the non-aerobic case while the ethanol inhibition constant, Kp , had increased from 5,2 to 14,0 gl –1.Notation Csf feed substrate concentration - gl –1 - Cs substrate concentration gl –1 - Cp product concentration - gl –1 - Cx cell concentration - gl –1 - D dilution rate - h-1 - Ks substrate saturation constant - gl –1 - Kp product inhibition constant - gl –1 - m maintenance coefficient - h–1 - Yps product yield coefficient - g EtOH/g glucose - Yxs cell yield coefficient - g cells/g glucose - specific growth rate - h–1 - % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabeiVdyaaja% aaaa!373F!\[{\text{\hat \mu }}\] maximum specific growth rate - h–1  相似文献   

17.
Major physico-chemical features of eleven, mostly saline permanent lakes situated on volcanic terrain in western Victoria, Australia, are described. All are large (1.1 to 251 km2 in area), and most are shallow (% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabeOEayaara% aaaa!3702!\[{\text{\bar z}}\]= <6 m). Mean salinities were 0.3 to 56.6 g 1–1, and seasonal differences were slight. Major ion dominances were Na > Mg > Ca K : Cl > HCO3 + CO3 > SO4. Generally, pH was 8.0 to 9.0. Nitrogen not phosphorus appeared to be a limiting plant nutrient. The shallow lakes were often highly turbid and had low secchi disc transparencies (sometimes < 5 cm).  相似文献   

18.
Microzooplankton and seston in Akkeshi Bay,Japan   总被引:2,自引:1,他引:1  
Microzooplankton populations and other seston components in the water column were sampled from a central station in Akkeshi Bay, Japan for a year. The measurements reported in the present study constitute the first work on seasonal variation of microzooplankton and other seston components in Akkeshi Bay. Twenty-one categories were identified and their volume measured. T he total volume was highest between February and April, and suddenly decreased in May and then gradually increased during summer. It was relatively low and stable during the fall diatom bloom. and was least between November and January. Abundance of microzooplankton was dependent upon concentration of chlorophyll and could be predicted by% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+% gacaGGNbGaaeywaiabg2da9iaaigdacaGGUaGaaGimaiaaicdacqGH% RaWkcaaIWaGaaiOlaiaaiwdacaaI3aGaciiBaiaac+gacaGGNbGaae% iwaaaa!44F9!\[\log {\text{Y}} = 1.00 + 0.57\log {\text{X}}\]where Y was the volume of microzooplankton and X was the concentration of chlorophyll a. The ecological significance of microzooplankton and other seston components is discussed.Contribution of JIBP-PM  相似文献   

19.
The size at first maturity, sex ratio and fecundity of L. niloticus in Lake Kyoga have been examined, and compared with the situation in other aquatic systems. The species has the ability to reproduce enormously. It produces up to 16 million eggs. In Lake Kyoga, fecundity (F) increases with length (L) in cm according to the equation: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciOraiaac2% dacaGGGaGaaiinaiaac6cacaGG0aGaai4maiaacAdacaGGGaGaaiiE% aiaacccacaGGXaGaaiimamaaCaaaleqabaGaaiylaiaacAdaaaGcca% GGmbWaaWbaaSqabeaacaGGYaGaaiOlaiaacMdacaGGYaaaaaaa!44D8!\[\operatorname{F} = 4.436 x 10^{ - 6} L^{2.92} \]Information from different habitats shows that females grow to a larger size than males but the growth rate is the same in both sexes. Males mature earlier than females at 50–65 cm total length with females maturing between 60–95 cm. There are about twice as many males as females. The rapid establishment of L. niloticus in Lake Kyoga and the Nyanza Gulf of Lake Victoria following its introduction is attributed to the high reproductive potential of the species under favourable environmental conditions.  相似文献   

20.
The seasonal variation in water clarity, as indicated by the attenuation coefficient for photosynthetically active radiation, K d (m-1), was determined by monthly measurements for a year in 9 North Island, New Zealand lakes. K d varied by a factor of 2 to 3 in 8 of the lakes, and a factor of 5 in one. Annual mean K d (symbol% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saaaa!36BD!\[K\] d) varied by a factor of approximately 15 between lakes. The maximum depth of water colonized by macrophytes (z c)was also determined. Values of z c were in the range 1.5–12.5 m. The relationship z c =4.34/% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saaaa!36BD!\[K\]d accounted for most (93 percent) of the variability in z c , indicating that average annual clarity was probably a useful predictor of z c in lakes in this region. The values of z c in these North Island lakes were generally greater than values calculated using previously published empirical relationships derived for northern hemisphere groups of lakes. The extent to which these relationships underestimated z c in the North Island lakes was broadly related to latitude. Estimated average irradiance at z c in each lake was similar to compensation point irradiances reported previously for freshwater macrophytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号