首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The effects of nutrient amendment and alginate encapsulation on survival of and phenanthrene mineralization by the bioluminescentPseudomonas sp. UG14Lr in creosote-contaminated soil slurries were examined. UG14Lr was inoculated into creosote-contaminated soil slurries either as a free cell suspension or encapsulated in alginate beads prepared with montmorillonite clay and skim milk. Additional treatments were free-cell-inoculated slurries amended with sterile alginate beads, free-cell-inoculated and uninoculated slurries amended with skim milk only, and uninoculated, unamended slurries. Mineralization was determined by measuring14CO2 released from radiolabelled phenanthrene. Survival was measured by selective plating and bioluminescence. Inclusion of skim milk was found to enhance both survival of and phenanthrene mineralization by free and encapsulated UG14Lr cells.  相似文献   

2.
Two strains of marine Synechococcus possessed a much greater potential for photorespiration than other marine algae we have studied. This conclusion was based on the following physiological and biochemical characteristics: a) a light-dependent O2 inhibition of photosynthetic CO2 assimilation at atmospheric O2 concentrations. The degree of inhibition was dependent on the relative concentrations of dissolved O2 and CO2, being greatest at 100% O2 with no extra bicarbonate added to the medium; b) actively photosynthesizing cells had high levels of ribulose-1,5-bisphosphate carboxylase compared with phosphoenolpyruvate carboxylase; ribulose-1,5-bisphosphate oxygenase activities were three times greater than ribulose-1,5-bisphosphate carboxylase activities; c) cells photosynthesizing in 21% O2, showed significant 14C-labelling of phosphoglycolate and glycolate and the percentage of total carbon-14 incorporated into these two compounds increased when the O2 concentration was 100%; d) at 100% O2, there was a post-illumination enhanced rate of O2 consumption, which was three times greater than dark respiration, and the rate declined with increasing bicarbonate concentrations. The inhibitory effect of O2 on photosynthesis did not appear to be solely due to photorespiration, since O2 inhibition of photosynthetic O2 evolution was much greater than that of photosynthetic CO2 assimilation. Also, O2 inhibition of photosynthetic O2 evolution declined only slightly with decreasing light intensities, while the inhibition of CO2 assimilation declined rapidly with decreasing light intensity.  相似文献   

3.
Abstract Recent emphasis on residue management in sustainable agriculture highlights the importance of elucidating the mechanisms of microbial degradation of cellulose. Cellulose decomposition and its associated microbial dynamics in soil were investigated in incubation experiments. Population dynamics of actinomycetes, bacteria, and fungi were monitored by direct counts. Populations of oligotrophic bacteria in cellulose-amended soil were determined by plate count using a low C medium containing 4 mg C liter−1 agar, and copiotrophs using a high C medium. Cumulative 14CO2 evolution from 14C-labeled cellulose was best described by a multiphasic curve in a 28-day incubation experiment. The initial phase of decomposition was attributed mainly to the activity of bacterial populations with a low oligotroph-to-copiotroph ratio, and the second phase mainly to fungal populations. An increase in oligotroph-to-copiotroph ratio coincided with the emergence of a rapid 14CO2 evolution stage. Streptomycin reduced 14CO2 evolution during the first phase and prompted earlier emergence of the second phase, compared to the control. Cycloheximide initially promoted 14CO2 evolution but subsequently had a lasting negative effect on 14CO2 evolution. Cycloheximide addition significantly increased bacterial biomass and resulted in substantially stronger oscillation of active bacterial populations, whereas it initially reduced, and then stimulated, active fungal biomass. The observed changes in 14CO2 evolution could not be explained by observed shifts in fungal and bacterial biomass, probably because functional groups of fungi and bacteria could not be distinguished. However, it was suggested that oligotrophic bacteria prompted activation of cellulolytic enzumes in fungi and played an important role in leading to fungal dominance of cellulose decomposition. Received: 2 October 1995; Accepted: 10 February 1996  相似文献   

4.
A technique has been developed for the enzymatic isolation of leaf cells from the Crassulacean acid-metabolism plant Sedum telephium. The cells exhibited high activity in both 14CO2 incorporation (30–70 mol CO2 mg-1 chlorophyll h-1) and O2 evolution in the presence of bicarbonate (60–110 mol O2 mg-1 chlorophyll h-1). Half-maximum saturation of 14CO2 incorporation occurred at a bicarbonate concentration of ca. 2 mM (20 M CO2) at pH 8.4 and 30°C. Two types of light-dependent O2 evolution are reported: O2 evolution in the absence of exogenously supplied bicarbonate (endogenous O2 evolution), and bicarbonate-stimulated O2 evolution. Oxygen evolution in the presence of approximately ambient concentrations of CO2 appeared to be a combination of the endogenous O2 evolution and O2 evolution from fixation of the exogenously supplied CO2.Abbreviations CAM Crassulacean acid metabolism - cirlo chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - PEP phosphoenolpyruvate - RuDP ribulose-1,5-diphosphate  相似文献   

5.
Respiration measurements showed that the cumulative amount of CO2 respired by rhizobia introduced into sterile bentonite-amended loamy sand was significantly higher than it was in unamended loamy sand. The maintenance respiration of rhizobial cells was not influenced by the presence of bentonite clay. Carbon was used more efficiently during growth in bentonite-amended than in unamended loamy sand. The presence of bentonite clay increased the growth rate of rhizobia introduced into sterile soil. Survival studies performed in nonsterile bentonite-amended loamy sand showed that the use of high (1010 cells per g of dry soil) rather than lower (104 to 107 cells per g of dry soil) inoculum densities increased the final survival levels of introduced rhizobia. In unamended loamy sand, the application of 1010 or 107 cells per g of dry soil resulted in similar final survival levels. Pore shape and the continuity of the water-filled pore system were suggested to largely determine the colonization rate of protective microhabitats.  相似文献   

6.
Photorespiration in Air and High CO(2)-Grown Chlorella pyrenoidosa   总被引:2,自引:2,他引:0       下载免费PDF全文
Shelp BJ  Canvin DT 《Plant physiology》1981,68(6):1500-1503
Oxygen inhibition of photosynthesis and CO2 evolution during photorespiration were compared in high CO2-grown and air-grown Chlorella pyrenoidosa, using the artificial leaf technique at pH 5.0. High CO2 cells, in contrast to air-grown cells, exhibited a marked inhibition of photosynthesis by O2, which appeared to be competitive and similar in magnitude to that in higher C3 plants. With increasing time after transfer to air, the photosynthetic rate in high CO2 cells increased while the O2 effect declined. Photorespiration, measured as the difference between 14CO2 and 12CO2 uptake, was much greater and sensitive to O2 in high CO2 cells. Some CO2 evolution was also present in air-grown algae; however, it did not appear to be sensitive to O2. True photosynthesis was not affected by O2 in either case. The data indicate that the difference between high CO2 and air-grown algae could be attributed to the magnitude of CO2 evolution. This conclusion is discussed with reference to the oxygenase reaction and the control of photorespiration in algae.  相似文献   

7.
The dynamics of microbial degradation of exogenous contaminants, n-hexadecane and its primary microbial oxidized metabolite, n-hexadecanoic (palmitic) acid, was studied for topsoils, under agricultural management and beech forest on the basis the changes in O2 uptake, CO2 evolution and its associated carbon isotopic signature, the respiratory quotient (RQ) and the priming effect (PE) of substrates. Soil microbial communities in agricultural soil responded to the n-hexadecane addition more rapidly compared to those of forest soil, with lag-periods of about 23 ± 10 and 68 ± 13 hours, respectively. Insignificant difference in the lag-period duration was detected for agricultural (tlag = 30 ± 13 h) and forest (tlag = 30 ± 14 h) soils treated with n-hexadecanoic (palmitic) acid. These results demonstrate that the soil microbiota has different metabolic activities for using n-hexadecane as a reductive hydrocarbon and n-hexadecanoic acid as a partly oxidized hydrocarbon. The corresponding δ13C of respired CO2 after the addition of the hydrocarbon contaminants to soils indicates a shift in microbial activity towards the consumption of exogenous substrates with a more complete degradation of n-hexadecane in the agricultural soil, for which some initial contents of hydrocarbons are inherent. It is supposed that the observed deviation of RQ from theoretically calculated value under microbial substrate mineralization is determined by difference in the time (Δti) of registration of CO2 production and O2 consumption. Positive priming effect (PE) of n-hexadecane and negative PE of n-hexadecanoic (palmitic) acid were detected in agricultural and forest soils. It is suggested that positive PE of n-hexadecane is conditioned by the induction of microbial enzymes that perform hydroxylation/oxygenation of stable SOM compounds mineralized by soil microbiota to CO2. The microbial metabolism coupled with oxidative decarboxylation of n-hexadecanoic acid is considered as one of the most probable causes of the revealed negative PE value.  相似文献   

8.
Barley roots contain a CO2 sensitive respiratory fraction which is inhibited in 50 per cent CO2 and is partially restored upon subsequent exposure to air. The residual O2 consumption occurring at CO2 concentrations between 50 per cent and 95 per cent amounts to about 40 per cent of the O2 uptake in air and can support K+ uptake for a limited time at a rate equal to or higher than occurs in air. Above 95 per cent CO2 both O2 and K+ uptakes decrease rapidly. 2,4-dinitrophenol (DNP), in the range of 10?6 to 10?5M, stimulates O2 uptake by the roots in air. The stimulation is absent when roots are treated with DNP in 80 per cent CO2, presumably because of the reduced demand for inorganic phosphate and phosphate acceptor at the lower respiratory level in high CO2. In either air or CO2, K+ uptake is strongly inhibited by DNP. A comparison of the respiratory and K+ uptake data indicates that O2 consumption is a necessary requirement for the uptake process in high CO2. Protoplasmic streaming in the root cells is rapidly stopped by high CO2 although K+ uptake and O2 consumption continue. The cation uptake mechanism in high CO2 appears to be limited to the stationary cytoplasm. It is also possible that a similar mechanism may be involved in cation uptake in air.  相似文献   

9.
Flows of biomass and respiratory carbon were studied in a series of propylene-oxide sterilized soil microcosms. One-half of the microcosms received three pulsed additions of 200 ppm glucose-carbon to mimic rhizosphere carbon inputs. Biotic variables were: bacteria (Pseudomonas) alone, or amoebae (Acanthamoeba) and nematodes (Mesodiplogaster) singly, or both combined in the presence of bacteria.Over the 24-day experiment, respiration was significantly higher in the microcosms containing the bacterial grazers. Biomass accumulation by amoebae was significantly higher than that by nematodes. The nematodes respired up to 30-fold more CO2 per unit biomass than did amoebae. Similar amounts of carbon flowed into both respiratory and biomass carbon in microcosms with fauna, compared with the bacteria-alone microcosms. However, partitioning of available carbon by the microfauna varied considerably, with little biomass production and relatively more CO2-C produced in the nematode-containing microcosms. The amoebae, in contrast, allocated more carbon to tissue production (about 40% assimilation efficiency) and correspondingly less to CO2.  相似文献   

10.
Weger HG  Espie GS 《Planta》2000,210(5):775-781
Iron limitation led to a large increase in extracellular ferricyanide (Fe[III]) reductase activity in cells of the green alga Chlamydomonas reinhardtii Dangeard. Mass-spectrometric measurement of gas exchange indicated that ferricyanide reduction in the dark resulted in a stimulation of respiratory CO2 production without affecting the rate of respiratory O2 consumption, consistent with the previously postulated activation of the oxidative pentose phosphate pathway in support of Fe(III) reduction by iron-limited Chlamydomonas cells (X. Xue et al., 1998, J. Phycol. 34: 939–944). At saturating irradiance, the rate of ferricyanide reduction was stimulated almost 3-fold, and this stimulation was inhibited by 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea. Ferricyanide reduction during photosynthesis resulted in approximately a 50% inhibition of photosynthetic CO2 fixation at saturating irradiance, and almost 100% inhibition of CO2 fixation at sub-saturating irradiance. Photosynthesis by iron-sufficient cells was not affected by ferricyanide addition. Addition of 250 μM ferricyanide to iron-limited cells in which photosynthesis was inhibited (either by the presence of glycolaldehyde, or by maintaining the cells at the CO2 compensation point) resulted in a stimulation in the rate of gross photosynthetic O2 evolution. Chlorophyll a fluorescence measurements indicated a large increase in non-photochemical quenching during ferricyanide reduction in the light; the increase in nonphotochemical quenching was abolished by the addition of nigericin. These results suggest that reduction of extracellular ferricyanide (mediated at the plasma membrane) interacts with both photosynthesis and respiration, and that both of these processes contribute NADPH in the light. Received: 15 September 1999 / Accepted: 14 October 1999  相似文献   

11.
Partitioning of 14C was assessed in sweet chestnut seedlings (Castanea sativa Mill.) grown in ambient and elevated atmospheric [CO2] environments during two vegetative cycles. The seedlings were exposed to 14CO2 atmosphere in both high and low [CO2] environments for a 6-day pulse period under controlled laboratory conditions. Six days after exposure to 14CO2, the plants were harvested, their dry mass and the radioactivity were evaluated. 14C concentration in plant tissues, root-soil system respiratory outputs and soil residues (rhizodeposition) were measured. Root production and rhizodeposition were increased in plants growing in elevated atmospheric [CO2]. When measuring total respiration, i.e. CO2 released from the root/soil system, it is difficult to separate CO2 originating from roots and that coming from the rhizospheric microflora. For this reason a model accounting for kinetics of exudate mineralization was used to estimate respiration of rhizospheric microflora and roots separately. Root activity (respiration and exudation) was increased at the higher atmospheric CO2 concentration. The proportion attributed to root respiration accounted for 70 to 90% of the total respiration. Microbial respiration was related to the amount of organic carbon available in the rhizosphere and showed a seasonal variation dependent upon the balance of root exudation and respiration. The increased carbon assimilated by plants grown under elevated atmospheric [CO2] stayed equally distributed between these increased root activities. ei]H Lambers  相似文献   

12.
A method is described for rapid enzymatic isolation of mesophyll protoplasts and cells from the crassulacean acid metabolism (CAM) plant Notonia grandiflora DC. The mesophyll protoplasts exhibited high rates of 14CO2 fixation both in the light (45 μmol of CO2 fixed mg?1 Chl h?1) and in the dark (20 μmol of CO2 fixed mg?1 Chl h?1). The protoplasts also showed O2 evolution (40 μmol of O2 evolved mg?1 Chl h?1) without added bicarbonate. Exogenously added bicarbonate had no stimulating effect on the O2 evolution. Analyses of early photosynthetic products in the light showed the formation of both C3 and C4 acids. Aspartate was found to be a predominant photosynthate.  相似文献   

13.
Todorovic  C.  Nguyen  C.  Robin  C.  Guckert  A. 《Plant and Soil》2001,228(2):179-189
In a previous study, we examined the kinetics of radioactivity evolution from rhizosphere respiration after the pulse labelling of maize shoots with 14CO2 (Nguyen et al., 1999). The specific activity of rhizosphere respiration demonstrated two peaks of 14CO2 production. The first one occurred a few hours after the pulse of 14CO2 and was followed by a second peak, which took place during the night following the labelling. In the present work, we demonstrate that the second phase of activity occurred in both sterile and non sterile plant–soil systems. This was inconsistent with the results obtained for wheat by Warembourg and Billès (1979) who observed the second peak solely in the case of non-sterile cultures. These authors suggested that this second phase of 14CO2 production was related to microbial mineralisation of labelled complex compounds. Their synthesis and breakdown into smaller molecules delayed their utilisation by micro-organisms. However, in the present work, we also demonstrate that the second phase of activity was closely related to photoperiod. When plants were transferred from a 16 h to 20 h photoperiod, the second mineralisation of labelled rhizosphere compounds occurred sooner after the initiation of the dark period and it was strongly attenuated. Therefore, we suggest that the second phase of activity resulted from the utilisation by roots and by micro-organisms of stored 14C-compounds, which accumulated during the previous light period.  相似文献   

14.
E. Vardavakis 《Plant and Soil》1989,115(1):145-150
The amount of cellulase activity and14CO2 evolution declined with profile depth. These properties varied seasonally, being highest in autumn and lowest in winter. Cytophaga hutchinsonii andCytophaga rubra were the most common species of cellulolytic bacteria found by the dilution-plate method;Bacillus circulans andCellulomonas fimi were also isolated.Cellulolytic bacterial numbers-14CO2 evolution, cellulolytic bacterial numbers-cellulase activity and14CO2 evolution-cellulase activity were correlated positive-linear and significantly.  相似文献   

15.
A procedure for estimating biomass during batch fermentation from on-line gas analysis is presented. First, the respiratory quotient was used to determine the fraction of the total oxygen utilization rate required for cell maintenance and growth versus product synthesis. The modified oxygen utilization rate was then used to estimate biomass on-line by integrating the oxygen balance for cell synthesis-maintenance. The method is illustrated for the case of L-lysine synthesis by Corynebacterium glutamicum.List of Symbols CER mmol CO2/l · h carbon dioxide evolution rate - M O 2/x mmol O2/h · g cells maintenance coefficient - OUR mmol O2/l · h oxygen utilization rate - OUR X mmol O2/l · h OUR fraction for cell maintenance and growth - RQ mmol CO2/mmol O2 respiratory quotient(CER/OUR) - X g cells/l biomass concentration - Y X/O2 yield coefficients  相似文献   

16.
Microbial biomass and activity were determined in cambisol incubated under ambient and increased (up to 2.23 mmol/L) CO2 concentrations. An immediate negative response of the soil microbial community to [CO]2 increase was observed during the first day with respect to microbial biomass, soil respiration and specific respiration activity (both expressed as CO2 evolution). In contrast, O2 consumption was not affected but anabolic utilization of available substrate increased. These phenomena were observed under conditions of increased CO2 tension but without any change in O2 concentration.  相似文献   

17.
The photosynthetic gas-exchange has been assessed traditionally either as O2 evolution or CO2 consumption. In this study, we used a liquid-phase O2 electrode combined with CO2 optodes to examine simultaneously photosynthesis in intact leaves of mangrove Rhizophora mucronata. We verified suitable conditions for leaf photosynthetic rates by assessing pH levels and NaHCO3 concentrations and compared these to the gas-exchange method at various PAR levels. The photosynthetic rate in response to pH exhibited a similar pattern both for O2 evolution and CO2 consumption, and higher rates were associated with intermediate pH compared with low and high pH values. The net photosynthetic quotient (PQ) of R. mucronata leaves ranged from 1.04–1.28. The PQ values, which were never lesser than 1, suggested that photorespiration did not occur in R. mucronata leaves under aqueous conditions. The similar maximum photosynthetic rates suggested that all measurements had a high capacity to adjust the photosynthetic apparatus under a light saturation condition. The simultaneous measurements of O2 evolution and CO2 consumption using the Clark oxygen electrode polarographic sensor with the CO2 optode sensor provided a simple, stable, and precise measurement of PQ under aqueous and saturated light conditions.  相似文献   

18.
Summary Experiments conducted in microcosms containing loam soil samples inoculated with eitherE. coli orPseudomonas spp. donor and recipient cells showed that bacterial cells survived and conjugated over a 24-h incubation period.E. coli transconjugants were detected 6 h after donor and recipient strains were introduced into sterile soil samples. In non-sterile soil samples, transconjugants were detected between 8 and 24 h incubation.Pseudomonas transconjugants were recovered from sterile soil samples between 6 and 12 h after their introduction and as early as 2 h in non-sterile soil. The results show that genetic interactions occur in non-sterile soil in relatively short periods of time at relatively high transfer frequencies (10–3 to 10–4). Studies on genetic interactions in soil are becoming necessary in risk assessment/environmental impact studies prior to the release of genetically engineered or modified organisms into uncontained environments.  相似文献   

19.
Acclimation of respiration to the light environments is important for a plant’s carbon balance. Respiratory rates of mature leaves of Alocasia odora, a typical shade‐tolerant species, were measured during the night for 14 d after reciprocal transfers between high‐ (330 µ mol m?2 s?1) and low‐light (20 µ mol m?2 s?1) environments. Following the transfer, both the rate of CO2 efflux and that of O2 uptake of A. odora leaves adjusted to the new light environments. The O2‐uptake rates changed more slowly than the CO2‐efflux rates under the new environments. Leaf mass per area also changed after the transfer. We analysed whether substrate availability or ATP‐consumption rates influence the respiratory acclimation. Since the addition of sucrose to leaf segments did not influence the O2‐uptake rates, the change of respiratory substrate availability was not responsible for the respiratory acclimation. The addition of an uncoupler induced increases in the O2‐uptake rates, and the degree of enhancement significantly decreased after the transfer from low to high irradiance. Thus, the change in ATP‐consumption rates was responsible for the changes in respiratory rates in the plants transferred from low to high light. Potential rates of O2 uptake, as measured in the presence of both the substrate and the uncoupler, changed after the transfer, and strongly correlated with the O2‐uptake rates, irrespective of the directions of transfer (r = 0·961). There was a strong correlation between maximal activities of NAD‐isocitrate dehydrogenase and the potential rates of O2 uptake (r = 0·933), but a weaker correlation between those of cytochrome c oxidase and the potential rates (r = 0·689). These data indicate that the changes of light environments altered the respiratory rates via the change of the respiratory ATP demand, and that the altered rates of respiration will induce the changes of the respiratory capacities.  相似文献   

20.
Net CO2 exchange was monitored through a dark-light-dark transition, under 2% and 21% O2 in the presence and absence of CO2, in Chlamydomonas reinhardtii wild type and the high-CO2-requiring mutant ca-1-12-1C. Upon illumination at 350 l/l CO2, ca-1-12-1C cell exhibited a large decrease in net CO2 uptake following an initial surge of CO2 uptake. Net CO2 uptake subsequently attained a steady-state rate substantially lower than the maximum. A large, O2-enchanced post-illumination burst of CO2 efflux was observed after a 10-min illumination period, corresponding to a minimum in the net CO2 uptake rate. A smaller, but O2-insensitive post-illumination burst was observed following a 30-min illumination period, when net CO2 uptake was at a steady-state rate. These post-illumination bursts appeared to reflect the release of an intracellular pool of inorganic carbon, which was much larger following the initial surge of net CO2 uptake than during the subsequent steady-state CO2 uptake period.With the mutant in CO2-free gas, O2-stimulated, net CO2 efflux was observed in the light, and a small, O2-dependent post-illumination burst was observed. With wild-type cells no CO2 efflux was observed in the light in CO2-free gas under either 2% or 21% O2, but a small, O2-dependent post-illumination burst was observed. These results were interpreted as indicating that photorespiratory rates were similar in the mutant and wild-type cells in the absence of CO2, but that the wild-type cells were better able to scavenge the photorespiratory CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号