首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Cdc25 phosphatases have been considered as attractive drug targets for anticancer therapy due to the correlation of their overexpression with a wide variety of cancers. As a method for the discovery of novel inhibitors of Cdc25 phosphatases, we have evaluated the computer-aided drug design protocol involving the homology modeling of Cdc25A and virtual screening with the two docking tools: FlexX and the modified AutoDock program implementing the effects of ligand solvation in the scoring function. The homology modeling with the X-ray crystal structure of Cdc25B as a template provides a high-quality structure of Cdc25A that enables the structure-based inhibitor design. Of the two docking programs under consideration, AutoDock is found to be more accurate than FlexX in terms of scoring putative ligands. A detailed binding mode analysis of the known inhibitors shows that they can be stabilized in the active site of Cdc25A through the simultaneous establishment of the multiple hydrogen bonds and the hydrophobic interactions. The present study demonstrates the usefulness of the modified AutoDock program as a docking tool for virtual screening of new Cdc25 phosphatase inhibitors as well as for binding mode analysis to elucidate the activities of known inhibitors. Figure Structures and available IC50 values (in μM) of the twenty Cdc25 phosphatase inhibitors seeded in docking library  相似文献   

2.
3D-QSAR and molecular docking analysis were performed to explore the interaction of estrogen receptors (ERα and ERβ) with a series of 3-arylquinazolinethione derivatives. Using the conformations of these compounds revealed by molecular docking, CoMFA analysis resulted in the first quantitative structure-activity relationship (QSAR) and first quantitative structure-selectivity relationship (QSSR) models predicting the inhibitory activity against ERβ and the selectivity against ERá. The q2 and R2 values, along with further testing, indicate that the obtained 3D-QSAR and 3D-QSSR models will be valuable in predicting both the inhibitory activity and selectivity of 3-arylquinazolinethione derivatives for these protein targets. A set of 3D contour plots drawn based on the 3D-QSAR and 3D-QSSR models reveal modifications of substituents at C2 and C5 of the quinazoline which my be useful to improve both the activity and selectivity of ERβ/ ERα. Results showed that both the steric and electrostatic factors should appropriately be taken into account in future rational design and development of more active and more selective ERβ inhibitors for the therapeutic treatment of osteoporosis. Figure Structures of ERβ binding with compounds 1aar, 1ax and 1aag obtained from molecular docking  相似文献   

3.
Dipeptidyl peptidase IV (DPP-IV) deactivates the incretin hormones GLP-1 and GIP by cleaving the penultimate proline or alanine from the N-terminal (P1-position) of the peptide. Inhibition of this enzyme will prevent the degradation of the incretin hormones and maintain glucose homeostasis; this makes it an attractive target for the development of drugs for diabetes. This paper reports 3D-QSAR analysis of several DPP-IV inhibitors, which were aligned by the receptor-based technique. The conformation of the molecules in the active site was obtained through docking methods. The QSAR models were generated on two training sets composed of 74 and 25 molecules which included phenylalanine, thiazolidine, and fluorinated pyrrolidine analogs. The 3D-QSAR models are robust with statistically significant r2, q2, and values. The CoMFA and CoMSIA models were used to design some new inhibitors with several fold higher binding affinity. Figure The CoMFA contours around molecule D1T155 (a) steric contours - favored (green); disfavored (yellow) (b) electrostatic contours - electropositive (blue); electronegative (red)  相似文献   

4.
Urokinase-type plasminogen activator (uPA) is a trypsin-like serine protease that plays a crucial role in angiogenesis process. In addition to its physiological role in healthy organisms, angiogenesis is extremely important in cancer growth and metastasis, resulting in numerous attempts to understand its control and to develop new approaches to anticancer therapy. The α-aminoalkylphosphonate diphenyl esters are well known as highly efficient serine protease inhibitors. However, their mode of binding has not been verified experimentally in details. For a group of average and potent phosphonic inhibitors of urokinase, flexible docking calculations were performed to gain an insight into the active site interactions responsible for observed enzyme inhibition. The docking results are consistent with the previously suggested mode of inhibitors binding. Subsequently, rigorous ab initio study of binding energy was carried out, followed by its decomposition according to the variation–perturbation procedure to reveal stabilization energy constituents with clear physical meaning. Availability of the experimental inhibitory activities and comparison with theoretical binding energy allows for the validation of theoretical models of inhibition, as well as estimation of the possible potential for binding affinity prediction. Since the docking results accompanied by molecular mechanics optimization suggested that several crucial active site contacts were too short, the optimal distances corresponding to the minimum ab initio interaction energy were also evaluated. Despite the deficiencies of force field-optimized enzyme-inhibitor structures, satisfactory agreement with experimental inhibitory activity was obtained for the electrostatic interaction energy, suggesting its possible application in the binding affinity prediction. Figure The comparison of an arrangement of inhibitors within uPA active. Amino acid residues form S1 pocket that binds the variable part of inhibitor molecules  相似文献   

5.
Fifteen KSP inhibitors were docked into the receptor and the binding mode was analyzed for the first time. It was considered that in addition to the main binding pocket all the inhibitors merged in, there exists a cooperative minor binding pocket, which could be explored for significantly increased binding affinity. In addition, a good linear relationship between the biological activities and the lowest binding free energies has also been found. This may help in predicting the binding affinity of newly designed KSP inhibitors. Figure Two binding pockets considered after the analysis. Seven docked ligands (compound 1–7) were overlapped at the binding site. All inhibitors tested interacted with the main pocket, while CK0106023, interacted also with the cooperative minor pocket mainly surrounded by Arg221 and Ala218. Coloring of the binding site surface are different ends of each amino acid residue: blue represents amino group while red means carboxyl  相似文献   

6.
A global electrophilicity parameter and the aromaticity of some heterocyclic polyaromatic hydrocarbons were evaluated on the basis of DFT calculations. The substitution of carbon atoms by nitrogen atoms dramatically changes the global electrophilicity of the molecules, with the fully substituted molecule being the most electrophilic with a reactivity very close to that of fullerene. Figure Fully substituted heterohexabenzocoronene Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Effective force fields for Ni-C interactions developed by Yamaguchi and Maruyama for the formation of metallofullerenes are modified to simulate the catalyzed growth of single-wall carbon nanotubes on Nin clusters with n >20, and the reactive empirical bond order Brenner potential for C-C interactions is also revised to include the effect of the metal atoms on such interactions. Figure Force field parameters for carbon-metal interactions obtained from DFT calculations in small clusters.  相似文献   

8.
Nitrile hydratase (NHase) is an enzyme containing non-corrin Co3+ in the non-standard active site. NHases from Pseudonocardia thermophila JCM 3095 catalyse hydration of nitriles to corresponding amides. The efficiency of the enzyme is 100 times higher for aliphatic nitriles then aromatic ones. In order to understand better this selectivity dockings of a series of aliphatic and aromatic nitriles and related amides into a model protein based on an X-ray structure were performed. Substantial differences in binding modes were observed, showing better conformational freedom of aliphatic compounds. Distinct interactions with postranslationally modified cysteines present in the active site of the enzyme were observed. Modeling shows that water molecule activated by a metal ion may easily directly attack the docked acrylonitrile to transform this molecule into acryloamide. Thus docking studies provide support for one of the reaction mechanisms discussed in the literature. Figure Crystalographic structure of Pseudonocardia thermophila JCM 3095 nitrile hydratase (a) and the non-standard active site (b)  相似文献   

9.
In this work, two different docking programs were used, AutoDock and FlexX, which use different types of scoring functions and searching methods. The docking poses of all quinone compounds studied stayed in the same region in the trypanothione reductase. This region is a hydrophobic pocket near to Phe396, Pro398 and Leu399 amino acid residues. The compounds studied displays a higher affinity in trypanothione reductase (TR) than glutathione reductase (GR), since only two out of 28 quinone compounds presented more favorable docking energy in the site of human enzyme. The interaction of quinone compounds with the TR enzyme is in agreement with other studies, which showed different binding sites from the ones formed by cysteines 52 and 58. To verify the results obtained by docking, we carried out a molecular dynamics simulation with the compounds that presented the highest and lowest docking energies. The results showed that the root mean square deviation (RMSD) between the initial and final pose were very small. In addition, the hydrogen bond pattern was conserved along the simulation. In the parasite enzyme, the amino acid residues Leu399, Met400 and Lys402 are replaced in the human enzyme by Met406, Tyr407 and Ala409, respectively. In view of the fact that Leu399 is an amino acid of the Z site, this difference could be explored to design selective inhibitors of TR. Docking and molecular dynamics simulation of genuine compounds with trypanocidal activity  相似文献   

10.
A 3D-QSAR analysis has been carried out by comparative molecular field analysis (CoMFA) on a series of distamycin analogs that bind to the DNA of drug-resistant bacterial strains MRSA, PRSP and VSEF. The structures of the molecules were derived from the X-ray structure of distamycin bound to DNA and were aligned using the Database alignment method in Sybyl. Statistically significant CoMFA models for each activity were generated. The CoMFA contours throw light on the structure activity relationship (SAR) and help to identify novel features that can be incorporated into the distamycin framework to improve the activity. Common contours have been gleaned from the three models to construct a unified model that explains the steric and electrostatic requirements for antimicrobial activity against the three resistant strains. Figure A unified CoMFA model for broad-spectrum DNA minor-groove binders  相似文献   

11.
Methylidencyclopropabenzene (MCPB) 1 and Fulvalenes 2–4 are molecules of special interest due to the relation between structure and aromaticity. The aim of this work was to analyze this relation and to quantify the aromaticity in 1–4 using different methods. Magnetic properties are directly related with aromaticity; here we studied the magnetic susceptibility and the anisotropy of the magnetic susceptibility. Nucleus indepedent chemical shift (NICS) and the anisotropy of the induced current density (ACID) were also employed. Tools of very different nature, geometric indexes HOMA and Bird, were determinated too for 1–4. All of these measures were found to be in agreement. Figure Both spatial NICS and ACID plot allow to show the aromaticity/antiaromaticity of a ring  相似文献   

12.
The electronic structure of representative hydrogen bonded systems: hydrogen cyanide, imidazole and malonic acid have been studied at the non-empirical level. The role of the dimensionality on the potential barrier for the proton transfer has been examined. It was shown that it depends on the crystal structure and only in some cases like hydrogen cyanide or imidazole the relevant crystals may be considered as one-dimensional. However, for more complicated crystallographic structures, e.g. malonic acid, the evaluated barrier is strongly dependent on the dimensionality taken into account in our calculations. Figure Density of states for the imidazole dimer: MD-EQ- standard proton position (black line), MD-TR- proton position in the middle of the hydrogen bond (red line)  相似文献   

13.
Cyclin-dependent kinases (CDKs) have been identified as potential targets for development of drugs, mainly against cancer. These studies generated a vast library of chemical inhibitors of CDKs, and some of these molecules can also inhibit kinases identified in the Plasmodium falciparum genome. Here we describe structural models for Protein Kinase 6 from P. falciparum (PfPK6) complexed with Roscovitine and Olomoucine. These models show clear structural evidence for differences observed in the inhibition, and may help designing inhibitors for PfPK6 generating new potential drugs against malaria. Figure Ribbon diagram of PfPK6 complexed with a roscovitine and b olomoucine  相似文献   

14.
The high incidence of thrombembolic diseases justifies the development of new antithrombotics. The search for a direct inhibitor has resulted in the synthesis of a considerable number of low molecular weight molecules that inhibit human α-thrombin potently. However, efforts to develop an orally active drug remain in progress as the most active inhibitors with a highly basic P1 moiety exhibit an unsatisfactory bioavailability profile. In our previous work we solved several X-ray structures of human α-thrombin in complexes with (1) novel bicyclic arginine mimetics attached to the glycylproline amide and pyridinone acetamide scaffold and (2) inhibitors with a novel aza scaffold and with charged or neutral P1 moieties. In the present contribution, we correlate the structures of the complex between these inhibitors and the protein with the calculated free energy of binding. The energy of solvation was calculated using the Poisson–Boltzmann approach. In particular, the requirements for successful recognition of an inhibitor at the protein’s active site pocket S1 are discussed. Figure We report here on free energy of binding analysis of thrombin inhibitors with novel aza scaffold and novel bicyclic arginine mimetics in S1 pocket of thrombin  相似文献   

15.
Twelve H-bonded supersystems constructed between the adenine tautomers and methanol, ethanol, and i-propanol were studied at the B3LYP and MP2 levels of theory using 6-311G(d,p) and 6-311++G(d,p) basis functions. The thermodynamic parameters of the complex formations were calculated in order to estimate the exact stability of the supersystems. It was proven that the calculated energy barriers of the alcohol-assisted proton transfers are about 60% lower than those of the intramolecular proton transfers in adenine found earlier (Gu and Leszczynski in J Phys Chem A 103:2744–2750, 1999). Figure H-bonded complex between i-propanol and adenine  相似文献   

16.
Cyclin-dependent kinases (Cdks) play important roles in the regulation of the cell cycle. Their inhibitors have entered clinical trials to treat cancer. Very recently, Davis et al. (Nat Struct Biol 9:745–749, 2002) have found a ligand NU6102, which has a high affinity with cyclin-dependent kinase 2 (K i =6 nM) but a low affinity with cyclin-dependent kinase 4 (K i =1,600 nM). To understand the selectivity, we use homology modeling, molecular docking, molecular dynamics and free-energy calculations to analyze the interactions. A rational 3D model of the Cdk4–NU6102 complex is built. Asp86 is a key residue that recognizes NU6102 more effectively with Cdk2 rather than Cdk4. Good binding free energies are obtained. Energetic analysis reveals that van der Waals interaction and nonpolar contributions to solvent are favorable in the formation of complexes and the sulfonamide group of the ligand plays a crucial role for binding selectivity between Cdk2 and Cdk4. Figure Two-dimensional representative for the interacting model of NU6102 complexed with the Cdk4 from a predicted structure by LIGPLOT.   相似文献   

17.
As a follow-up study to our study on tetrazane (N4H6), we present computed thermodynamic properties of triazane (N3H5). Calculated properties include optimized geometries, infrared vibrations, enthalpy of formation, enthalpy of combustion, and proton affinities. We have also mapped the potential energy surface as the molecule is rotated about the N-N bond. We have predicted a specific enthalpy of combustion for triazane of about -20 kJ g−1. Figure Schematic diagram of the dielectric barrier discharge (left) and typical temporal profiles of voltage and current, as obtained from the simulations (right)  相似文献   

18.
Following our recent study on triazane, we present a follow-up study on the thermodynamic properties of triazane’s unsaturated analog, triazene. We predict optimized structural parameters, vibrational frequencies, enthalpies of formation, enthalpies of combustion, specific enthalpies of combustion, and proton affinities. Our results indicate that the cis form of triazene has a specific enthalpy of combustion of −15.2 kJ g−1 and the trans form has a specific enthalpy of combustion of −14.7 kJ g−1. Figure Structures of cis- and trans-triazane, N3H3  相似文献   

19.
Solanidine is the steroidal aglycon of some potato glycoalkaloids and a very important precursor for the synthesis of hormones and some pharmacologically active compounds. In this work, we make use of a new chemistry model within Density Functional Theory, called CHIH-DFT, to calculate the molecular structure of solanidine, as well to predict its infrared and ultraviolet spectra. The calculated values are compared with the experimental data available for this molecule as a means of validation of our proposed chemistry model. Figure Molecular structure of solanidine calculated with the CHIH(small) model chemistry  相似文献   

20.
Realistic molecular models of one and two-centre catalytic active sites originating from the cleavage of a precursor material known to give rise to an active double metal cyanide catalyst are described. Via periodic density functional calculations the structure of the proposed catalytic sites are shown to be dependent on electrostatic and structural relaxation processes occurring at the surfaces of the precursor material. It is shown how these effects may be adequately captured by small molecular models of the active sites. The general methodology proposed should provide a computationally efficient basis for detailed future studies into catalytic reactions over double metal cyanide materials. Figure Reconstructed DMC [100]-surface: electrostatic potential mapped on charge density isosurface This work has been originally presented on the Modelling and Design of Molecular Materials conference in Wrocław, Poland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号