首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 937 毫秒
1.
基于森林清查资料的江西和浙江森林植被固碳潜力   总被引:1,自引:0,他引:1  
Nie H  Wang SQ  Zhou L  Wang JY  Zhang Y  Deng ZW  Yang FT 《应用生态学报》2011,22(10):2581-2588
以我国江西、浙江两省的森林植被为研究对象,基于1999-2003年间第六次全国森林清查数据及收集的1030个亚热带森林样地文献资料,依据林分生长的经验方程,估算了两个地区森林2004-2013年的固碳潜力,并基于455个样点的调查数据研究了不同森林管理措施(纯林间种、间伐、施肥)对森林未来固碳潜力的影响.结果表明:第六次森林清查以来的10年(2004-2013)间,江西森林植被年均自然固碳潜力约11.37 Tg C·a-1(1Tg=1012g),而浙江省森林植被年均自然固碳潜力约4.34 Tg C·a-1.纯林间种对江西、浙江两省森林植被固碳潜力影响最大,其次为间伐抚育,施肥的影响最小,纯林间种、间伐和施肥3种森林管理措施使江西省森林植被固碳潜力分别提高(6.54±3.9)、(3.81±2.02)和(2.35±0.6) Tg C·a-1,浙江省森林植被固碳潜力分别提高(2.64±1.28)、(1.42±0.69)和(1.15±0.29) Tg C·a-1.  相似文献   

2.
中国草地土壤生态系统固碳现状和潜力   总被引:12,自引:0,他引:12  
以国内长期定位试验的数据为基础,评价了我国草地生态系统的固碳现状和潜力.分析发现,通过减少畜牧承载量等方法恢复退化草地,我国草地土壤的有机碳库可以增加4561.62 Tg C ,主要分布在内蒙古、西藏和新疆.草场围栏、种草和退耕还草3种草地管理措施的固碳潜力分别是12.01、1.46 Tg·a-1和25.59 Tg·a-1,总计39.06 Tg·a-1.2004年是我国草地管理投资较多的年份,种草、退耕还草和草场围栏的工程面积均有较大的提高,3种措施新增的固碳能力分别为5.70、0.38 Tg·a-1和3.09 Tg·a-1,合计9.17 Tg·a-1.  相似文献   

3.
青海省森林乔木层碳储量现状及固碳潜力   总被引:1,自引:0,他引:1       下载免费PDF全文
为阐明青海省森林生态系统乔木层植被碳储量现状及其分布特征, 该研究利用240个标准样地实测的乔木数据, 估算出青海省森林生态系统不同林型处于不同龄级阶段的平均碳密度, 并结合青海省森林资源清查资料所提供的不同龄级的各林型面积, 估算了青海省森林生态系统乔木层的固碳现状、速率和潜力。结果表明: 1) 2011年青海省森林乔木层平均碳密度为76.54 Mg·hm -2, 总碳储量为27.38 Tg。云杉(Picea spp.)林、柏木(Cupressus funebris)林、桦木(Betula spp.)林、杨树(Populus spp.)林是青海地区的主要林型, 占青海省森林面积的96.23%, 占青海省乔木层碳储量的86.67%, 其中云杉林的碳储量(14.78 Tg)和碳密度(106.93 Mg·hm -2)最高。按龄级划分, 乔木层碳储量表现为过熟林>中龄林>成熟林>近熟林>幼龄林。2)青海省乔木层总碳储量从2003年的23.30 Tg增加到2011年的27.38 Tg, 年平均碳增量为0.51 Tg·a -1。乔木层固碳速率为1.06 Mg·hm -2·a -1, 其中柏木林的固碳速率最大(0.44 Mg·hm -2·a -1); 桦木林的固碳速率为负值(-1.06 Mg·hm -2·a -1)。3)青海省乔木层植被固碳潜力为8.50 Tg, 其中云杉林固碳潜力最高(3.40 Tg)。该研究结果表明青海省乔木层具有较大的固碳潜力, 若对现有森林资源进行合理管理和利用, 将会增加青海省森林的碳固存能力。  相似文献   

4.
《植物生态学报》2018,42(8):831
为阐明青海省森林生态系统乔木层植被碳储量现状及其分布特征, 该研究利用240个标准样地实测的乔木数据, 估算出青海省森林生态系统不同林型处于不同龄级阶段的平均碳密度, 并结合青海省森林资源清查资料所提供的不同龄级的各林型面积, 估算了青海省森林生态系统乔木层的固碳现状、速率和潜力。结果表明: 1) 2011年青海省森林乔木层平均碳密度为76.54 Mg·hm -2, 总碳储量为27.38 Tg。云杉(Picea spp.)林、柏木(Cupressus funebris)林、桦木(Betula spp.)林、杨树(Populus spp.)林是青海地区的主要林型, 占青海省森林面积的96.23%, 占青海省乔木层碳储量的86.67%, 其中云杉林的碳储量(14.78 Tg)和碳密度(106.93 Mg·hm -2)最高。按龄级划分, 乔木层碳储量表现为过熟林>中龄林>成熟林>近熟林>幼龄林。2)青海省乔木层总碳储量从2003年的23.30 Tg增加到2011年的27.38 Tg, 年平均碳增量为0.51 Tg·a -1。乔木层固碳速率为1.06 Mg·hm -2·a -1, 其中柏木林的固碳速率最大(0.44 Mg·hm -2·a -1); 桦木林的固碳速率为负值(-1.06 Mg·hm -2·a -1)。3)青海省乔木层植被固碳潜力为8.50 Tg, 其中云杉林固碳潜力最高(3.40 Tg)。该研究结果表明青海省乔木层具有较大的固碳潜力, 若对现有森林资源进行合理管理和利用, 将会增加青海省森林的碳固存能力。  相似文献   

5.
中国湿地生态系统固碳现状和潜力   总被引:25,自引:0,他引:25  
固碳是湿地重要的生态系统服务功能之一.通过资料调研和分析,对我国湿地的固碳速率和固碳潜力进行了评价.结果表明,我国各种类型沼泽湿地总的固碳能力为4.91TgC·a-1.红树林湿地和沿海盐沼的固碳速率最高.我国湖泊湿地的固碳潜力为1.98TgC·a-1, 其中东部平原地区湖泊湿地的固碳速率和能力最大.恢复湿地可以提高我国陆地生态系统的固碳潜力,其中退田还湖和退田还泽的固碳潜力分别为30.26 GgC·a-1和0.22 GgC·a-1,而湿地保护工程在2005~2010年之间的固碳潜力为6.57 GgC·a-1.  相似文献   

6.
为阐明安徽省不同林龄的森林生态系统的碳储量现状, 以及现有自然环境条件下顶极森林生态系统的固碳潜力, 采用野外样地调查和BIOME4模型方法对此进行研究。安徽省森林生态系统的现状总碳储量为714.5 Tg C, 其中植被碳402.1 Tg C、土壤碳312.4 Tg C。从幼龄林至过熟林的生长过程中, 森林生态系统的总碳密度和植被碳密度都呈现增长趋势。但土壤碳密度从幼龄林至近熟林阶段呈增加趋势, 近熟林以后出现减少趋势。安徽省幼龄林和中龄林占森林总面积的75%, 若幼、中龄林发展到近熟林阶段, 将增加125.4 Tg C。BIOME4模拟显示: 当森林发展到气候顶极森林时, 安徽省森林生态系统将增加245.7 Tg C, 即总固碳潜力包括植被固碳153.7 Tg C, 土壤固碳92.0 Tg C。  相似文献   

7.
人工林生态系统碳储量的空间分配格局对全球陆地碳循环有重要的影响,但湖南省杉木人工林生态系统碳储量的分配格局并不清楚。本研究在湖南省样地野外调查的基础上,结合第八次全国森林资源清查的结果,计算出湖南省杉木人工林生态系统的碳储量空间分布格局。结果表明:杉木人工林生态系统碳密度随着林龄增加而增加,幼龄林、中龄林和成熟林分别为125.70、138.57、193.72 Mg·hm~(-2);其中,幼龄林、中龄林和成熟林的植被生物量碳密度分别为18.72、38.86、62.48 Mg·hm~(-2);土壤碳密度随着林分发育先降低后增加,幼龄林为105.49 Mg·hm~(-2)、中龄林为97.23 Mg·hm~(-2)、成熟林126.7 Mg·hm~(-2);湖南省杉木人工林生态系统碳储量为307.48 Tg,其中幼龄林为90.57 Tg,中龄林为91.87 Tg,成熟林为125.31 Tg;湖南省杉木人工林生态系统的固碳潜力为85.56 Tg,其中,植被固碳潜力为47.19 Tg,土壤的固碳潜力为34.82 Tg。确定杉木人工林固碳潜力有助于量化人工林对碳汇的贡献及其制定实现潜力的森林经营管理措施。  相似文献   

8.
基于野外调查与室内实测数据,结合第八次全国森林资源清查资料,分析了甘肃省5种典型人工林生态系统(刺槐、杨树、油松/华山松、落叶松及云杉林)森林生态系统碳密度、碳储量,并估算了乔木层固碳潜力.结果表明: 5种典型人工林生态系统平均碳密度和总碳储量分别为139.65 t·hm-2和85.78 Tg,不同人工林类型之间差异较大.不同龄组间碳密度表现为近熟林(250.70 t·hm-2)最大,其次是成熟林(175.97 t·hm-2)和中龄林(156.92 t·hm-2),幼龄林(117.56 t·hm-2)最低.碳储量表现为幼龄林(45.47 Tg)>中龄林(19.54 Tg)>成熟林(11.84 Tg)>近熟林(8.93 Tg),幼中龄林碳储量占总碳储量的75.9%.5种典型人工林乔木层现实固碳潜力合计为7.27 Tg,刺槐林(2.49 Tg)和杨树林(2.10 Tg)最大;各龄组中,幼龄林现实固碳潜力最大(3.78 Tg),其次是中龄林(2.04 Tg),近熟林最小(0.45 Tg).5种典型人工林乔木层最大固碳潜力达27.55 Tg,表现为刺槐林(9.42 Tg)>落叶松林(6.22 Tg)≈云杉林(6.36 Tg)>杨树林(3.18 Tg)>油松/华山松林(2.37 Tg);其中,幼、中龄林最大固碳潜力分别为18.48和6.89 Tg,占总最大固碳潜力的92%.  相似文献   

9.
中国农田土壤生态系统固碳现状和潜力   总被引:39,自引:1,他引:38  
研究在搜集和整理全国典型农业长期定位实验站数据的基础上,通过自建经验公式估算了不同管理措施下我国农田土壤的固碳能力和潜力.通过施用化肥、秸秆还田、施用有机肥和免耕措施,目前对我国农田土壤碳增加的贡献分别为40.51、23.89、35.83 Tg·a-1和1.17 Tg·a-1,合计为101.4 Tg·a-1,是我国目前能源活动碳总排放量的13.3%.通过情景分析发现,提高化肥施用量、秸秆还田量、有机肥施用量和推广免耕,可以使我国农田土壤的固碳量分别提高到94.91、42.23、41.38 Tg·a-1和3.58 Tg·a-1,合计为182.1Tg·a-1.农田土壤总的固碳潜力相当于目前我国能源活动碳排放量的23.9%,对于全球CO2减排具有重要的作用.  相似文献   

10.
采伐对豫西退耕还林工程固碳的影响   总被引:2,自引:0,他引:2  
王艳芳  刘领  邓蕾  上官周平 《生态学报》2016,36(5):1400-1408
以豫西退耕还林工程重点县嵩县为研究对象,收集了嵩县2002—2010年退耕还林工程逐年实施的造林面积、树种等数据,利用合适的人工林蓄积量生长方程和和中国退耕还林后的土壤有机碳变化的研究结果,结合各树种的木材密度、生物量扩展因子、碳含量等参数,在采伐和无采伐两种情景模式下对其退耕还林工程在2002—2050年的碳储量及其变化进行估算。结果表明:2010年,工程林总碳储量为0.470 Tg(Tg=10~(12)g),工程实施期间,工程前期碳储量高于后期;土壤有机碳库在2002—2010年期间年固碳量均为负值,表现为碳排放,2011年后土壤年固碳量开始增加;在两种情境模式下,工程林年固碳量最高峰都在2015年,2033年以后采伐情景的年固碳量大于无采伐情景。预计到2020、2030、2040和2050年,嵩县退耕还林工程在无采伐情境下的固碳增汇潜力分别为0.760、1.464、1.852和1.985 Tg,在采伐情景下的固碳增汇潜力分别为0.760、1.240、1.657和2.000 Tg,从长时间来看,豫西退耕还林工程林在采伐情景下具有较大的碳汇潜力,因此,对退耕还林工程林实施适度的采伐可以提高工程的碳汇能力。  相似文献   

11.
我国实现碳中和路线图的“碳排放达峰”、“快速降低碳排放”、“深度脱碳实现碳中和”3阶段具有复杂且差异的减排形势。森林固碳作为我国实现碳中和目标的重要手段,其跨期分配是平衡产业减排与森林固碳关系、降低我国实现碳中和的成本代价、以最优成本分步实现碳中和目标的重要途径。本研究从成本优化分配理论出发,引入森林边际固碳成本理论,结合国内现有产业边际减排理论,对我国实现碳中和3个阶段的成本变化过程进行模拟。结果表明: 我国在“碳排放达峰”、“快速降低碳排放”、“深度脱碳实现碳中和”3个阶段,实现成本最优的森林年固碳量分别为0.20、7.75、19.82亿t,分别占当期总减排量的1.8%、17.5%、37.6%。相较于仅依赖产业减排,在成本最优设计下发挥森林固碳成本优势,使得碳中和3个阶段的总成本分别降低0.48、791.36、9092.53亿美元。在“碳排放达峰”阶段,森林固碳的成本优势十分有限,应当主要依靠产业减排;在“快速降低碳排放”阶段,森林固碳的成本优势逐渐凸显;在“深度脱碳实现碳中和”阶段,应当充分发挥森林固碳的成本优势实现“零碳”目标,否则将会面临十分高昂的成本代价,尤其对于脱碳成本十分高昂或永远无法完全脱碳的产业。最优成本设计下森林固碳可以节约9884.37亿美元的碳中和成本。  相似文献   

12.
Results of comparative analysis of turnover times and the capacity of major global pools of organic carbon are presented; the place of photosynthetic carbon sequestration is defined; concept of its catalytic role in the regulation of the organic branch of the global carbon cycle is ground. Concept of reservoir-flux model of photosynthetic carbon sequestration and of the net photosynthetic production at the territory of Northern Eurasia is suggested.Translated from Fiziologiya Rastenii, Vol. 52, No. 1, 2005, pp. 81–89.Original Russian Text Copyright © 2005 by Voronin, Black.  相似文献   

13.
14.
15.
利用第八次森林资源连续清查数据和不同树种的树干密度、含碳率等参数,运用生物量清单法,估算了西藏自治区森林乔木层植被碳储量和碳密度.结果表明: 西藏森林生态系统乔木层植被总碳储量为1.067×109 t,平均碳密度为72.49 t·hm-2.不同林分乔木层碳储量依次为:乔木林>散生木>疏林>四旁树.不同林种乔木层碳储量大小依次为:防护林>特殊用途林>用材林>薪炭林,其中前两者所占比例为88.5%;不同林种乔木层平均碳密度为88.09 t·hm-2.不同林组乔木层碳储量与其分布面积排序一致,依次为:成熟林>过熟林>近熟林>中龄林>幼龄林.其中,成熟林乔木层碳储量占不同林组乔木层总碳储量的50%,并且不同林组乔木层碳储量随着林龄的增加呈先上升后下降的趋势.  相似文献   

16.
生物固碳途径研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
生物固碳是地球碳循环过程的重要组成部分。自然界已经发现了六条天然生物固碳途径,但自然途径不仅能量利用效率低下,而且人工改造提升固碳效率难度大。随着合成生物学的发展,新的人工固碳途径不断涌现。相对于天然途径,人工固碳途径具有路线短、耗能少、原子经济性高等优点,有望在不久的将来能够替代天然固碳途径,实现固碳效率的大幅提高,是解决人类能源与环境问题的有效途径之一。主要总结了天然固碳途径和人工固碳途径的代谢原理和关键固碳酶的酶学特征,并对未来发展趋势进行展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号