首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Habituation of excitatory synaptic inputs onto identified motor neurons of the locust metathoracic ganglion, driven electrically and by natural stimuli, was examined using intracellular recording. Rapid progressive reduction in amplitude of EPSPs from a variety of inputs onto fast-type motor neurons occurred. The habituated EPSPs were quickly dishabituated by iontophoretic release of octopamine from a microelectrode into the neuropilar region of presumed synaptic action. The zone within which release was effective for a given neuron was narrowly-defined. With larger amounts of octopamine applied at a sensitive site the EPSP became larger than normal, and in many instances action potentials were initiated by the sensitized response. Very small EPSPs onto a motor neuron, which were associated with proprioceptive feedback, and which were originally too small to be detected above the noise, were potentiated to a level of several mV by the iontophoresed octopamine. A DUM neuron (presumed to be octopaminergic) was found, whose direct stimulation was followed by a strong dishabituating and sensitizing action leading to spikes, of inputs to an identified flexor tibiae motor neuron. The action and its time course were closely similar to those evoked by octopamine iontophoresed into the neuropil in the region of synaptic inputs to the motor neuron. It is concluded that DUM (octopaminergic) neurons exert large potentiating actions on central neuronal excitatory synaptic transmission in locusts.  相似文献   

2.
Octopaminergic dorsal unpaired median (DUM) neurons of locust thoracic ganglia are important components of motor networks and are divided into various sub-populations. We have examined individually stained metathoracic DUM neurons, their dendritic projection patterns, and their relationship to specific architectural features of the metathoracic ganglion, such as longitudinal tracts, transverse commissures, and well-defined sensory neuropils. The detailed branching patterns of individually characterized DUM neurons of various types were analyzed in vibratome sections in which architectural features were revealed by using antibodies against tubulin and synapsin. Whereas DUM3,4,5 and DUM5 neurons (the group innervating leg and "non-wing-power" muscles) had many ventral and dorsal branches, DUM1 and DUM3,4 neurons (innervating "wing-power" muscles) branched extensively only in dorsal areas. The structure of DUM3 neurons differed markedly from that of the other DUM neurons examined in that they sent branches into dorsal areas and had differently structured side branches that mostly extended laterally. The differences between the branching patterns of these neurons were quantified by using currently available new reconstruction algorithms. These structural differences between the various classes of DUM neurons corresponded to differences in their function and biophysical properties.  相似文献   

3.
Octopamine plays a major role in insect motor control and is released from dorsal unpaired median (DUM) neurones, a group of cells located on the dorsal midline of each ganglion. We were interested whether and how these neurones are activated during walking and chose the semi-intact walking preparation of stick insects that offers to investigate single leg-stepping movements. DUM neurones were characterized in the thoracic nerve cord by backfilling lateral nerves. These backfills revealed a population of 6-8 efferent DUM cells per thoracic segment. Mesothoracic DUM cells were subsequently recorded during middle leg stepping and characterized by intracellular staining. Seven out of eight identified individual different types of DUM neurones were efferent. Seven types except the DUMna nl2 were tonically depolarized during middle leg stepping and additional phasic depolarizations in membrane potential linked to the stance phase of the middle leg were observed. These DUM neurones were all multimodal and received depolarizing synaptic drive when the abdomen, antennae or different parts of the leg were mechanically stimulated. We never observed hyperpolarising synaptic inputs to DUM neurones. Only one type of DUM neurone, DUMna, exhibited spontaneous rhythmic activity and was unaffected by different stimuli or walking movements.  相似文献   

4.
Wetas are ancient Gondwanan orthopterans (Anostostomatidae) with many species endemic to New Zealand. Like all Orthoptera they possess efferent neuromodulatory dorsal unpaired median (DUM) neurons, with bilaterally symmetrical axons, that are important components of motor networks. These neurons produce overshooting action potentials and are easily stimulated by a variety of external mechanosensory stimuli delivered to the body and appendages. In particular, stimulation of the antennae, mouth parts, tarsi and femora of the legs, abdomen, cerci and ovipositor is very effective in activating DUM neurons in the metathoracic ganglion of wetas. In addition, looming visual stimuli or light on-, light off-stimuli excite many metathoracic DUM neurons. These DUM sensory reflex pathways remain viable after the prothoracic to subesophageal connective is cut, whereas in locusts such reflex pathways are interrupted by the ablation. This suggests that, in wetas, sensory reflex pathways for DUM activation are organized in a less centralized fashion than in locusts, and may therefore reflect a plesiomorphic evolutionary state in the weta. In addition, many weta DUM neurons exhibit slow rhythmic bursting which also persists following the connective ablation.  相似文献   

5.
Intracellular recordings were made from single or pairs of somata of the dorsal unpaired median (DUM) neurons of the metathoracic ganglion of the locust Schistocerca gregaria and the grasshopper Romalea microptera, during reflex actions, direct electric excitation and orthodromic and antidromic neural stimulation. Some, possibly all, of these neurons are unique, identifiable individuals in regard to their targets, which are specific peripheral muscles. Their physiological properties and the ways they are activated synaptically are, however, similar. Large, overshooting action potentials, comprising three components, occur. The first component in time is small and represents an excitatory synaptic potential for orthodromic stimulation or an axon spike (AS) for antidromic stimulation, electrotonically conducted into the soma. The second component is larger, being an electrotonically conducted integrating segment spike (ISS). The final component is the soma spike (SS). Neither AS nor ISS have a late positive phase, but there is a large, prolonged one for SS. The latter, combined with rapid accommodation, determine a low maximum firing rate for the neurons. Most nerves entering the ganglion make excitatory inputs onto each DUM neuron, which is readily driven to spike by electric excitation of either connective. There is a great deal of spontaneous excitatory synaptic input to each DUM neuron and a high proportion of it is common. Although there is no detectable electrical coupling between the cells, there is about 30% synchronous firing, apparently due to the common inputs; independent excitation and inhibition also occur. All sensory modalities tested have inputs to the neurons, which tend to fire constantly at a low rate (1 per 3–4 sec). In reflex actions, DUM neurons tend to fire before motor output occurs. It is suggested that the cells will be found to have many functions serving a general role comparable to that achieved by the release of adrenaline in vertebrates.  相似文献   

6.
A group of six dorsal unpaired median (DUM) neurons of the suboesophageal ganglion (SOG) of locusts was studied with neuroanatomical and electrophysiological techniques. The neurons are located posteriorly in the SOG and have axons that descend into the ganglia of the ventral nerve cord, some as far as the terminal abdominal ganglion. Within thoracic ganglia the neurons have profuse dendritic ramifications in many neuropiles, including ventral sensory neuropiles. Based on their projection patterns three different morphological types of neurons can be distinguished. These neurons receive excitatory inputs through sensory pathways that ascend from the thoracic ganglia and are activated by limb movements. They may be involved in the modulation of synaptic transmission in thoracic ganglia.  相似文献   

7.
Octopod (Octo) is a mutation of the moth Manduca sexta, which transforms the first abdominal segment (A1) in the anterior direction. Mutant animals are characterized by the appearance of homeotic thoracic-like legs on A1. We exploited this mutation to determine what rules might be used in specifying the fates of sensory neurons located on the body surface of larval Manduca. Mechanical stimulation of homeotic leg sensilla did not cause reflexive movements of the homeotic legs, but elicited responses similar to those observed following stimulation of ventral A1 body wall hairs. Intracellular recordings demonstrated that several of the motoneurons in the A1 ganglion received inputs from the homeotic sensory hairs. The responses of these motoneurons to stimulation of homeotic sensilla resembled their responses to stimulation of ventral body wall sensilla. Cobalt fills revealed that the mutation transformed the segmental projection pattern of only the sensory neurons located on the ventral surface of A1, resulting in a greater number with intersegmental projection patterns typical of sensory neurons found on the thoracic body wall. Many of the sensory neurons on the homeotic legs had intersegmental projection patterns typical of abdominal sensory neurons: an anteriorly directed projection terminating in the third thoracic ganglion (T3). Once this projection reached T3, however, it mimicked the projections of the thoracic leg sensory neurons. These results demonstrate that the same rules are not used in the establishment of the intersegmental and leg-specific projection patterns. Segmental identity influences the intersegmental projection pattern of the sensory neurons of Manduca, whereas the leg-specific projections are consistent with a role for positional information in determining their pattern. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
The role of efferent, octopaminergic dorsal unpaired median (DUM) neurons in insects is examined by recording from them during motor behaviour. This population of neuromodulatory neurons is divided into sub-populations which are specifically activated or inhibited during ongoing motor behavior. These neurons are always activated in parallel to the respective motor circuits, and in addition to their modulatory effects on synaptic transmission may also cause metabolic changes in their target tissues.  相似文献   

9.
Cobalt axonal iontophoresis and intracellular recordings were used to identify a cluster of several motor neurons innervating the penis-retractor muscle of Aplysia. Intracellularly recorded motor neuron action potentials elicited direct, one-for-one, constant latency excitatory junctional potentials (ejps) in individual muscle fibers. The axons of motor neurons could be recorded extracellularly in the penis-retractor nerve and stimulation of the nerve backfired the motor neurons. Perfusion of the ganglion, the muscle, or both with solutions of either increased Mg++/decreased Ca++ or increased Ca++ sea water indicated that the presumed motor neuron impaled was not a sensory cell and that interneurons were not intercalated in the pathway. Innervation of muscle fibers was found to be functionally polyneuronal and diffuse. The ejps were found to undergo marked facilitation with repetitive motor-neuron stimulation. The motor neurons were isolated in a distinct cluster in the right pedal ganglion. Their electrical activity was characterized by spontaneous irregular action potentials and a moderate input of postsynaptic potentials.  相似文献   

10.
The sensory inputs to the common inhibitory motoneuron that innervates every leg muscle of the crayfish Procambarus clarkii (Girard) were analyzed by performing intracellular recordings from its neurite within the neuropil of the 5th thoracic ganglion. Two types of sensory inputs involved in locomotion were studied, those from a movement coding proprioceptor (the coxobasal chordotonal organ) and those from sensory neu rons coding contact forces exerted at the tip of the leg on the substrate (the dactyl sensory afferents). Sinusoidal movements applied to the chordotonal organ strand induced a stable biphasic response in the common inhibitory motoneuron that consisted of bursts of spikes during release and stretch of the strand, corresponding to raising and lowering of the leg, respectively. Using ramp movements imposed on the chordotonal strand, we demonstrated that only movement-coding chordotonal afferents produce excitatory post-synaptic potentials in the common inhibitory motoneuron; these connections are monosynaptic. Mechanical or electrical stimulation of the dactyl sensory afferents resulted in an increase in the tonic discharge of the common inhibitory motoneuron through polysynaptic excitatory pathways. These two types of sensory cues reinforce the central command of the common inhibitory motoneuron and contribute to enhancing its activity during leg movements, and thus facilitate the relaxation of tonic muscle fibres during locomotion.Abbreviations ADR anterior distal root - A Lev anterior levator nerve - CB coxo-basipodite joint - CBCO coxo-basal chordotonal organ - CI common inhibitory motoneuron - Dep depressor nerve - DSA dactyl sensory afferents - EPSP excitatory post-synaptic potential - IN interneuron - MN motoneuron - PDR posterior distal root - P Lev posterior levator nerve - Pro promotor nerve - Rem remotor nerve  相似文献   

11.
The anatomy and innervation of the lateral external muscle and sensory cells located in the ventral region of pregenital abdominal segments were examined at the larval and adult stages ofTenebrio molitor (Coleoptera). All seven muscles located in this region degenerate during the pupal stage, whilst only the lateral external median (lem) appears in the adult. Backfillings of the motor nerve innervating this muscle reveal that, at both larval and adult stages, it is innervated by ten neurons. Intracellular records from the muscle fibres show that two neurons are inhibitory, and at least five are excitatory. There are also two unpaired neurons. A variety of sensory organs are located in the ventral region of the larvae, whilst only campaniform sensilla are found in the adult. At both stages, the innervation pattern of the sensory nerve branches is very similar. Also, the central projections of the sensory cells occupy similar neuropilar areas. Finally, prolonged intracellular records from the lem muscle revealed that, at the larval stage, it participates only in segmental or intersegmental reflexes, whilst in the adult it has a primary expiratory role in ventilation. The results show that extensive changes occur in the number of muscles located in the ventral region of the pregenital abdominal segments, as well as in the arrangement and number of sensory neurons, in the structure of the exoskeleton, and even in the central nervous system. In contrast, only minor changes are observed in the sensory and motor nerve branches, in the sensory projections, and in the number and the location of the motoneurons innervating the lateral external median muscle. Correspondence to: G. Theophilidis  相似文献   

12.
Summary The antennae of the rock lobster,Palinurus vulgaris, show systematic responses to movements of the legs on a tilting footboard. Myographic recordings in muscles of the first antennal segment have been used in an analysis of the sensory basis of these reactions. Antennal posture is modified in the experimental apparatus, although its relation to the change in loading conditions of the legs is uncertain. The motor control of the antennal equilibrium responses involves a complete reciprocation between both excitatory and inhibitory motoneurones to the antagonist muscle groups in the two antennae. Sensory inputs from single legs produce movements of both antennae, but a stronger drive ipsilaterally. Leg receptor inputs also modulate antennal resistance reflexes in a systematic manner, providing a sensitive test for the involvement of particular receptor organs in the leg. Movement at the coxo-basal leg joint is a major source of sensory input, and ablation/ stimulation experiments have established that stimulation of the CB chordotonal organ is a necessary but not sufficient condition to produce the antennal equilibrium reactions. The possibility is discussed that other receptors at the coxo-basal joint are also involved.D.M.N. was supported by a grant from The Max-Planck Institut to Professor H. Schöne.  相似文献   

13.
The arrangement of muscle spindles in m. ext. long. dig. IV has been examined by microdissection. It is confirmed that spindle systems generally appear to consist of individual receptors. Stimulation effects of fast motor fibres (conduction velocities greater than 12 m/sec) on the spindles of the same muscle were studied. Receptors were isolated with their nerves and the appropriate spinal roots, the latter ones were used for stimulating efferent fibres and recording sensory discharges. Single shocks to the ventral root filaments caused afferent responses ranging from a single action potential to a train of impulses. During repetitive stimulation (train of stimuli at frequency of 10 to 150/sec) a marked increase in afferent activity was found. Afferent activity could be driven by the frequency of stimuli ("driving") and the stimulus/action potentials ratio varied from 1:1 to 1:3 or more. The rate of sensory discharge depended on the frequency of stimuli: the maximum effect, was attained at 30 to 50 stimuli/sec and, in the most responsive receptors, up to 80 stimuli/sec. Slight increases of the initial lengths of the receptors caused facilitation of sensory responses to motor stimulation. Moreover, impairing effects, which appear during sustained or high-frequency stimulation, possibly related to fatigue in intrafusal neuromuscular transmission, could be relieved by increasing the initial length. The repetitive stimulation of fast fusimotor fibres increased both dynamic and static responses and also raised the afferent activity after a period of stretching, when usually a depression occurs; these effects varied according to the preparation, its initial tension and the frequency of stimulation. The main feature of the examined motor fibres, when stimulated, is the constant excitatory action on muscle spindle static response. Results are discussed. It is suggested that the different characteristics of intrafusal muscle fibres, the receptor initial tension and the frequency of motor units discharges, may together affect muscle spindles static or dynamic performance.  相似文献   

14.
Summary In the crickets, Gryllus campestris and Gryllus bimaculatus, the innervation of the dorso-ventral neck muscles M62, M57, and M59 was examined using cobalt staining via peripheral nerves and electrophysiological methods. M62 and M57 are each innervated by two motoneurons in the suboesophageal ganglion. The four motoneurons project into the median nerve to bifurcate into the transverse nerves of both sides. M62 and M57 are the only neck muscles innervated via this route. These bifurcating axon-projections are identical to those of the spiracular motoneurons in the prothoracic ganglion innervating the opener and closer muscle of the first thoracic spiracle in the cricket. The morphology of their branching pattern is described. The neck muscle M57 and the opener muscle of the first thoracic spiracle are additionally innervated by one mesothoracic motoneuron each, with similar morphology. These results suggest, that in crickets, the neck muscles M57 and M62 are homologous to spiracular muscles in the thoracic segments. The two neck muscles M62 and M59 (the posterior neighbour of M57) receive projections from a prothoracic dorsal unpaired median (DUM) neuron that also innervates dorsal-longitudinal neck muscles but not M57. In addition, one or two mesothoracic DUM neurons send axon collaterals intersegmentally to M59. This is the first demonstration of the innervation of neck muscles by DUM neurons.  相似文献   

15.
The modulatory action of DL-octopamine on the multicellular femoral chordotonal organ (fCO) of the stick insect Cuniculina impigra was examined using extracellular recordings from the fCO nerve and intracellular recordings from single sensory neurons. To determine the octopaminergic effect on position, velocity and/or acceleration sensitivity of mechanoreceptors direct mechanical stimulations with defined parameters were applied to the fCO apodeme. The spontaneous activity in the fCO nerve was enhanced in a dose-dependent manner by octopamine (threshold at 5 × 10?7 M). This was based on enhanced activity of position sensitive neurons as the fCO activity for all position stimuli was shifted to higher values. Intracellular recordings of single sensory cells showed that velocity-sensitivity of single sensory cells was not altered by octopamine. Similarly, the response of fCO afferents to ramp-and-hold stimuli revealed that acceleration sensitivity was unaffected by octopamine. The observed alterations in the fCO activity indicate that responses to static stimuli are enhanced while responses to motion stimuli are not affected by octopamine. These findings suggest that the octopaminergic modulation of the fCO may affect the animals' posture and those leg movements that rely on position information.  相似文献   

16.
Long-term adaptation resulting in a 'tonic-like' state can be induced in phasic motor neurons of the crayfish, Procambarus clarkii, by daily low-frequency stimulation [Lnenicka, G.A., Atwood, H.L., 1985b. Long-term facilitation and long-term adaptation at synapses of a crayfish phasic motoneuron. J. Neurobiol. 16, 97-110]. To test the hypothesis that motor neurons undergoing adaptation show increased responses to the neuromodulator serotonin (5-HT), phasic motor neurons innervating the deep abdominal extensor muscles of crayfish were stimulated at 2.5 Hz, 2 h/day, for 7 days. One day after cessation of conditioning, contralateral control and conditioned motor neurons of the same segment were stimulated at 1 Hz and the induced excitatory post-synaptic potentials (EPSPs) were recorded from DEL(1) muscle fibers innervated by each motor neuron type. Recordings were made in saline without and with 100 nM 5-HT. EPSP amplitudes were increased by 5-HT exposure in all cases. Conditioned muscles exposed to 5-HT showed a 2-fold higher percentage of increase in EPSP amplitude than did control muscles. Thus, the conditioned motor neurons behaved like intrinsically tonic motoneurons in their response to 5-HT. While these results show that long-term adaptation (LTA) extends to 5-HT neuromodulation, no phenotype switch could be detected in the postsynaptic muscle. Protein isoform profiles, including the myosin heavy chains, do not change after 1 week of conditioning their innervating motor neurons.  相似文献   

17.
Summary The output connections of a bilaterally symmetrical pair of wind-sensitive interneurones (called A4I1) were determined in a non-flying locust (Schistocerca gregaria). Direct inputs from sensory neurones of specific prosternai and head hairs initiate spikes in these interneurones in the prothoracic ganglion.The interneurone with its axon in the right connective makes direct, excitatory connections with the two mesothoracic motor neurones innervating the pleuroaxillary (pleuroalar, M85) muscle of the right forewing, but not with the comparable motor neurones of the left forewing. The connections can evoke motor spikes.The interneurones also exert a powerful, but indirect effect on the homologous metathoracic pleuroaxillary motor neurones (muscle 114), and a weaker, indirect effect on subalar motor neurones of the hindwings. No connections or effects were found with other flight motor neurones, or motor neurones innervating hindleg muscles, including common inhibitor 1 which also innervates the pleuroaxillary muscle.One thoracic interneurone with its cell body in the right half of the mesothoracic ganglion and with its axon projecting ipsilaterally to the metathoracic ganglion receives a direct input from the right A4I1 interneurone.These restricted output connections suggest a role for the A4I1 interneurones in flight steering.Abbreviations DCMD descending contralateral movement detector - EPSP excitatory postsynaptic potential - TCG tritocerebral commissure giant (interneurone)  相似文献   

18.
Summary Experiments were carried out on an isolated central nervous system preparation of the shore crab,Carcinus maenas, comprising the fused thoracic ganglion complex with two proprioceptors of one back leg still attached. These, the thoracic-coxal muscle receptor organ and the coxo-basal chordotonal organ, monitor movement and position of the first and second joints, respectively. Motor activity was recorded extracellularly from the central cut ends of the nerves innervating the promotor and remotor muscles of the thoracic-coxal joint, and the levator and depressor muscles of the coxal-basal joint of the same leg. Simultaneous intracellular recordings were made from central processes of individual motoneurones of each muscle.In the absence of any sensory input, the isolated ganglion exhibited rhythmic bursting in the motor nerve roots, with a slow, usually irregular cycle period of 5–50 s.Both receptor organs had both intra-joint and inter-joint effects on the rhythmically active preparation. In most cases the coxo-basal receptor organ had the greater effect.Resistance reflexes initiated by each of the joint proprioceptors were modulated by the rhythmic activity.It may be concluded that, while the isolated thoracic ganglion of the crab is capable of generating rhythmic motor output, proprioceptive feedback from the two basal joints is important in shaping the motor patterns underlying locomotion. Inappropriate reflexes which would impede active movements about these joints are modulated or reversed so as to permit and even reinforce intended locomotory movements.  相似文献   

19.
1. Responses of motor neurons in larvae and pupae of Manduca sexta to stimulation of tactile sensory neurons were measured in both semi-intact, and isolated nerve cord preparations. These motor neurons innervate abdominal intersegmental muscles which are involved in the production of a general flexion reflex in the larva, and the closure reflex of the pupal gin traps. 2. Larval motor neurons respond to stimulation of sensory neurons innervating abdominal mechanosensory hairs with prolonged, tonic excitation ipsilaterally, and either weak excitation or inhibition contralaterally (Figs. 4A, 6). 3. Pupae respond to tactile stimulation of mechanosensory hairs within the gin traps with a rapid closure reflex. Motor neurons which innervate muscles ipsilateral to the stimulus exhibit a large depolarization, high frequency firing, and abrupt termination (Figs. 2, 4B). Generally, contralateral motor neurons fire antiphasically to the ipsilateral motor neurons, producing a characteristic triphasic firing pattern (Figs. 7, 8) which is not seen in the larva. 4. Pupal motor neurons can also respond to sensory stimulation with other types of patterns, including rotational responses (Fig. 3A), gin trap opening reflexes (Fig. 3B), and 'flip-flop' responses (Fig. 9). 5. Pupal motor neurons, like larval motor neurons, do not show oscillatory responses to tonic current injection, nor do motor neurons of either stage appear to interact synaptically with one another. Most pupal motor neurons also exhibit i-V properties similar to those of larval motor neurons (Table 1; Fig. 10). Some pupal motor neurons, however, show a marked non-linear response to depolarizing current injection (Fig. 11).  相似文献   

20.
1. To elucidate the neural mechanisms that mediate visual responses of optic tectum (OT) to medullary and spinal motor systems, we analyzed medullary reticular neurons in paralyzed Japanese toads (Bufo japonicus). We examined their responses to electrical stimulation of OT, and stained some neurons intracellularly. Responses to stimulation of the glossopharyngeal nerve (IX) were also analyzed. 2. Extracellular single unit recording revealed excitatory responses of medullary neurons to OT and IX stimulation. Among 92 units encountered, 79 responded to OT stimuli, 10 to IX stimuli, and 3 to both. Some units responded to successive stimuli of short intervals with relatively stable lags. 3. Intracellular recording and staining experiments revealed morphologies of reticular neurons that received excitatory inputs from OT. Thirteen units were identified after complete reconstruction of somata and dendrites. Neurons in the nucleus reticularis medius received excitatory inputs from bilateral OT. They had wide dendrites in ventral, ventrolateral and lateral funiculi, and single axons descending in the ipsilateral ventral funiculus as far caudally as the cervical spinal cord. Some collaterals of these axons projected directly to the hypoglossal and spinal motor nuclei. Some neurons in other medullary nuclei (nuc. reticularis superior, pretrigeminal nucleus, nuc. reticularis inferior, and nuc. tractus spinalis nervi trigemini) also responded to the OT stimulation. 4. Activities in bilateral OT converge onto medullary reticular neurons, which may directly control medullary and spinal motor systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号