首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
2.
3.
Genetically engineered mice are being used increasingly for delineating the molecular mechanisms of prostate cancer development. Epithelium-stroma interactions play a critical role in prostate development and tumorigenesis. To better understand gene expression patterns in the normal sexually mature mouse prostate, epithelium and stroma were laser-capture microdissected from ventral, dorsolateral, and anterior prostate lobes. Genome-wide expression was measured by DNA microarrays. Our analysis indicated that the gene expression pattern in the mouse dorsolateral lobe was closest to that of the human prostate peripheral zone, supporting the hypothesis that these prostate compartments are functionally equivalent. Stroma from a given lobe had closer gene expression patterns with stroma from other lobes than epithelium from the same lobe. Stroma appeared to have higher expression complexity than epithelium. Specifically, stromal cells had higher expression levels of genes implicated in cell adhesion, muscle development, and contraction, in structural constituents of cytoskeleton and actin binding, and in components such as sarcomere and extracellular matrix collagen. Among the genes that were enriched in the epithelium were secretory proteins, including seminal vesicle protein secretion 2 and 5. Surprisingly, prostate stroma expressed many osteogenic molecules, as confirmed by immunohistochemistry. A "bone-like" environment in the prostate may predispose prostate cells for survival in the bone. Chemokine Cxcl12 but not its receptor, Cxcr4, was expressed in normal prostate. In prostate tumors, interestingly, Cxcl12 was up-regulated in epithelial cells with a concomitant expression of Cxcr4. Expression of both the receptor and ligand may provide an autocrine mechanism for tumor cell migration and invasion.  相似文献   

4.
Both healthy and cancerous breast tissue is heterogeneous, which is a bottleneck for proteomics‐based biomarker analysis, as it obscures the cellular origin of a measured protein. We therefore aimed at obtaining a protein‐level interpretation of malignant transformation through global proteome analysis of a variety of laser capture microdissected cells originating from benign and malignant breast tissues. We compared proteomic differences between these tissues, both from cells of epithelial origin and the stromal environment, and performed string analysis. Differences in protein abundances corresponded with several hallmarks of cancer, including loss of cell adhesion, transformation to a migratory phenotype, and enhanced energy metabolism. Furthermore, despite enriching for (tumor) epithelial cells, many changes to the extracellular matrix were detected in microdissected cells of epithelial origin. The stromal compartment was heterogeneous and richer in the number of fibroblast and immune cells in malignant sections, compared to benign tissue sections. Furthermore, stroma could be clearly divided into reactive and nonreactive based on extracellular matrix disassembly proteins. We conclude that proteomics analysis of both microdissected epithelium and stroma gives an additional layer of information and more detailed insight into malignant transformation.  相似文献   

5.
Epithelial and stromal tissues are components of the tumor microenvironment and play a major role in tumor initiation and progression. Distinguishing stroma from epithelial tissues is critically important for spatial characterization of the tumor microenvironment. Here, we propose BrcaSeg, an image analysis pipeline based on a convolutional neural network (CNN) model to classify epithelial and stromal regions in whole-slide hematoxylin and eosin (H&E) stained histopathological images. The CNN model is trained using well-annotated breast cancer tissue microarrays and validated with images from The Cancer Genome Atlas (TCGA) Program. BrcaSeg achieves a classification accuracy of 91.02%, which outperforms other state-of-the-art methods. Using this model, we generate pixel-level epithelial/stromal tissue maps for 1000 TCGA breast cancer slide images that are paired with gene expression data. We subsequently estimate the epithelial and stromal ratios and perform correlation analysis to model the relationship between gene expression and tissue ratios. Gene Ontology (GO) enrichment analyses of genes that are highly correlated with tissue ratios suggest that the same tissue is associated with similar biological processes in different breast cancer subtypes, whereas each subtype also has its own idiosyncratic biological processes governing the development of these tissues. Taken all together, our approach can lead to new insights in exploring relationships between image-based phenotypes and their underlying genomic events and biological processes for all types of solid tumors. BrcaSeg can be accessed at https://github.com/Serian1992/ImgBio.  相似文献   

6.
7.
8.
9.
10.
Calcium-dependent cell adhesion molecules (cadherins) are involved in maintaining the epithelial structure of a number of tissues including the mammary gland. In breast and other tumor types, loss of E-cadherin expression has been seen in high grade tumors and correlates with increased invasiveness. Here we show high levels of expression of N-cadherin in the most invasive breast cancer cell lines which was inversely correlated with their expression of E-cadherin. A stromal cell line also expressed N-cadherin in accordance with its fibroblastic morphology. N-cadherin localized to areas of cell-cell contact in all cells that expressed it. Calcium-dependent intercellular adhesion of N-cadherin-expressing breast cancer and stromal cells was specifically inhibited by an anti N-cadherin monoclonal antibody. In addition, N-cadherin promoted the interaction of invasive breast cancer cells with mammary stromal cells: in contrast, E-cadherin expressing cell lines did not co-aggregate with stromal cells. The combined results suggest a functional role for N-cadherin in cohesion of breast tumor cells which, in addition promotes their interaction with the surrounding stromal cells, thereby facilitating invasion and metastasis.  相似文献   

11.
Calcium-dependent cell adhesion molecules (cadherins) are involved in maintaining the epithelial structure of a number of tissues including the mammary gland. In breast and other tumor types, loss of E-cadherin expression has been seen in high grade tumors and correlates with increased invasiveness. Here we show high levels of expression of N-cadherin in the most invasive breast cancer cell lines which was inversely correlated with their expression of E-cadherin. A stromal cell line also expressed N-cadherin in accordance with its fibroblastic morphology. N-cadherin localized to areas of cell-cell contact in all cells that expressed it. Calcium-dependent intercellular adhesion of N-cadherin-expressing breast cancer and stromal cells was specifically inhibited by an anti N-cadherin monoclonal antibody. In addition, N-cadherin promoted the interaction of invasive breast cancer cells with mammary stromal cells: in contrast, E-cadherin expressing cell lines did not co-aggregate with stromal cells. The combined results suggest a functional role for N-cadherin in cohesion of breast tumor cells which, in addition promotes their interaction with the surrounding stromal cells, thereby facilitating invasion and metastasis.  相似文献   

12.
13.
Although it is increasingly evident that cancer is influenced by signals emanating from tumor stroma, little is known regarding how changes in stromal gene expression affect epithelial tumor progression. We used laser capture microdissection to compare gene expression profiles of tumor stroma from 53 primary breast tumors and derived signatures strongly associated with clinical outcome. We present a new stroma-derived prognostic predictor (SDPP) that stratifies disease outcome independently of standard clinical prognostic factors and published expression-based predictors. The SDPP predicts outcome in several published whole tumor-derived expression data sets, identifies poor-outcome individuals from multiple clinical subtypes, including lymph node-negative tumors, and shows increased accuracy with respect to previously published predictors, especially for HER2-positive tumors. Prognostic power increases substantially when the predictor is combined with existing outcome predictors. Genes represented in the SDPP reveal the strong prognostic capacity of differential immune responses as well as angiogenic and hypoxic responses, highlighting the importance of stromal biology in tumor progression.  相似文献   

14.
15.
Decorin, a member of the small leucine-rich proteoglycan gene family, exists and functions wholly within the tumor microenvironment to suppress tumorigenesis by directly targeting and antagonizing multiple receptor tyrosine kinases, such as the EGFR and Met. This leads to potent and sustained signal attenuation, growth arrest, and angiostasis. We thus sought to evaluate the tumoricidal benefits of systemic decorin on a triple-negative orthotopic breast carcinoma xenograft model. To this end, we employed a novel high-density mixed expression array capable of differentiating and simultaneously measuring gene signatures of both Mus musculus (stromal) and Homo sapiens (epithelial) tissue origins. We found that decorin protein core modulated the differential expression of 374 genes within the stromal compartment of the tumor xenograft. Further, our top gene ontology classes strongly suggests an unexpected and preferential role for decorin protein core to inhibit genes necessary for immunomodulatory responses while simultaneously inducing expression of those possessing cellular adhesion and tumor suppressive gene properties. Rigorous verification of the top scoring candidates led to the discovery of three genes heretofore unlinked to malignant breast cancer that were reproducibly found to be induced in several models of tumor stroma. Collectively, our data provide highly novel and unexpected stromal gene signatures as a direct function of systemic administration of decorin protein core and reveals a fundamental basis of action for decorin to modulate the tumor stroma as a biological mechanism for the ascribed anti-tumorigenic properties.  相似文献   

16.
Tumor fibroblasts are active partners in tumor progression, but the genes and pathways that mediate this collaboration are ill-defined. Previous work demonstrates that Ets2 function in stromal cells significantly contributes to breast tumor progression. Conditional mouse models were used to study the function of Ets2 in both mammary stromal fibroblasts and epithelial cells. Conditional inactivation of Ets2 in stromal fibroblasts in PyMT and ErbB2 driven tumors significantly reduced tumor growth, however deletion of Ets2 in epithelial cells in the PyMT model had no significant effect. Analysis of gene expression in fibroblasts revealed a tumor- and Ets2-dependent gene signature that was enriched in genes important for ECM remodeling, cell migration, and angiogenesis in both PyMT and ErbB2 driven-tumors. Consistent with these results, PyMT and ErbB2 tumors lacking Ets2 in fibroblasts had fewer functional blood vessels, and Ets2 in fibroblasts elicited changes in gene expression in tumor endothelial cells consistent with this phenotype. An in vivo angiogenesis assay revealed the ability of Ets2 in fibroblasts to promote blood vessel formation in the absence of tumor cells. Importantly, the Ets2-dependent gene expression signatures from both mouse models were able to distinguish human breast tumor stroma from normal stroma, and correlated with patient outcomes in two whole tumor breast cancer data sets. The data reveals a key function for Ets2 in tumor fibroblasts in signaling to endothelial cells to promote tumor angiogenesis. The results highlight the collaborative networks that orchestrate communication between stromal cells and tumor cells, and suggest that targeting tumor fibroblasts may be an effective strategy for developing novel anti-angiogenic therapies.  相似文献   

17.
18.
Stroma and the heparin-binding fibroblast growth factor (FGF) family influence normal epithelial cell growth and differentiation in embryonic and adult tissues. The role of stromal cells and the expression of isoforms of the FGF ligand and receptor family were examined during malignant progression of epithelial cells from a differentiated, slowly growing, nonmalignant model rat prostate tumor. In syngeneic hosts, a mixture of stromal and epithelial cells resulted in nonmalignant tumors which were differentiated and slowly growing. In the absence of the stromal cells, epithelial cells progressed to malignant tumors which were independent of the stroma and undifferentiated. The independence of the malignant epithelial cells from stromal cells was accompanied by a switch from exclusive expression of exon IIIb to exclusive expression of exon IIIc in the FGF receptor 2 (FGF-R2) gene. The FGF-R2(IIIb) isoform displays high affinity for stromal cell-derived FGF-7, whereas the FGF-R2(IIIc) isoform does not recognize FGF-7 but has high affinity for the FGF-2 member of the FGF ligand family. The switch from expression of exclusively exon IIIb to exclusively exon IIIc in the resident FGF-R2 gene was followed by activation of the FGF-2 ligand gene, the normally stromal cell FGF-R1 gene, and embryonic FGF-3 and FGF-5 ligand genes in malignant epithelial cells. Multiple autocrine and potentially intracrine ligand-receptor loops resulting from these alterations within the FGF-FGF-R family may underlie the autonomy of malignant tumor cells.  相似文献   

19.
Determination of stromal signatures in breast carcinoma   总被引:2,自引:0,他引:2       下载免费PDF全文
Many soft tissue tumors recapitulate features of normal connective tissue. We hypothesize that different types of fibroblastic tumors are representative of different populations of fibroblastic cells or different activation states of these cells. We examined two tumors with fibroblastic features, solitary fibrous tumor (SFT) and desmoid-type fibromatosis (DTF), by DNA microarray analysis and found that they have very different expression profiles, including significant differences in their patterns of expression of extracellular matrix genes and growth factors. Using immunohistochemistry and in situ hybridization on a tissue microarray, we found that genes specific for these two tumors have mutually specific expression in the stroma of nonneoplastic tissues. We defined a set of 786 gene spots whose pattern of expression distinguishes SFT from DTF. In an analysis of DNA microarray gene expression data from 295 previously published breast carcinomas, we found that expression of this gene set defined two groups of breast carcinomas with significant differences in overall survival. One of the groups had a favorable outcome and was defined by the expression of DTF genes. The other group of tumors had a poor prognosis and showed variable expression of genes enriched for SFT type. Our findings suggest that the host stromal response varies significantly among carcinomas and that gene expression patterns characteristic of soft tissue tumors can be used to discover new markers for normal connective tissue cells.  相似文献   

20.
Recent in situ hybridization experiments have shown a high content of IGF-II mRNA in breast cancer stroma. The aim of this study was to examine the relationship between IGF-II protein expression and several prognostic parameters in 75 infiltrating ductal carcinomas (IDC) of the breast. Tissue sections were evaluated for proliferative activity, IGF-II protein, ER, PgR, p53, and p21 expression using immunohistochemical procedures. The degree of stromal proliferation was assessed. Menopausal status, axillary lymph node involvement and nuclear grade were known. Thirty-five patients (44.3%) were premenopausal and 47 (62.6%) had lymph node metastases. Marked stromal proliferation was found in 34 (45.3%) specimens and high nuclear grade in 20 (26.5%). Eighteen tumors (24%) showed no IGF-II immunostaining. In the positive cases, IGF-II was detected both in the tumor stroma and in the cytoplasm of epithelial cancer cells: a high IGF-II content was found in 12 specimens (16.0%), a low content in 14 (18.7%) and a moderate content in 31 (41.3%). Twenty-four tumors (32.0%) showed high proliferative activity. Both ER and PgR were expressed in the nucleus of cancer cells: 49 tumors (65.3%) were ER positive (ER+) and 34 (45.3%) PgR positive (PgR+). p21 protein was detected in 37 tumors (49.6%) and p53 in 12 (16%). IGF-II protein was not correlated with menopausal status, lymph node metastases, nuclear grade, proliferative activity, ER or p53. In contrast, IGF-II correlated strongly with stromal proliferation (p=0.008), PgR (p=0.03) and p21 (p=0.01). This study demonstrates that in IDC of the breast IGF-II protein is expressed in the epithelium and stroma of the majority of tumors and is correlated with stromal amount, PgR and p21 expression. These preliminary results indicate that IGF-II expression in breast cancer is connected with two important regulators of breast cancer growth and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号