首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA interference is a powerful tool for the functional analysis of proteins by specific gene knockdown. In this study, we devised a rapid and efficient way to screen suitable siRNA sequences and subsequently employ them for specific gene knockdown in usually hard-to-transfect lymphoid cell lines, using a self-inactivating lentiviral vector. Two proteins with different half-lives were chosen, cyclin D1 and STAT3. A specific lacZ reporter fusion assay was used to identify highly effective siRNA sequences. Only siRNA molecules with more than 85% of knockdown efficiency were selected for the generation of lentiviral transfer vectors. Transduction rates of 75–99% were achieved in the lymphoma cell lines Granta 519 (mantle cell lymphoma), Karpas 299, and SUDHL-1 (anaplastic large T cell lymphoma), as demonstrated by green fluorescent protein expression in fluorescence-activated cell sorting analysis. The high level of transduction efficiency allows RNA interference studies to be performed on transduced cells without further manipulation, such as cell sorting or cloning. The LacZ reporter system together with the lentivirus technology is a very important tool in the hematology field, which enables experiments in lymphoid cells that were not possible before.

Electronic supplementary material

The online version of this article (doi:10.1007/s12308-008-0020-x) contains supplementary material, which is available to authorized users.  相似文献   

2.
The chromatin modifier EZH2 is overexpressed and associated with inferior outcome in mantle cell lymphoma (MCL). Recently, we demonstrated preferential DNA methylation of HOX genes in MCL compared with chronic lymphocytic leukemia (CLL), despite these genes not being expressed in either entity. Since EZH2 has been shown to regulate HOX gene expression, to gain further insight into its possible role in differential silencing of HOX genes in MCL vs. CLL, we performed detailed epigenetic characterization using representative cell lines and primary samples. We observed significant overexpression of EZH2 in MCL vs. CLL. Chromatin immune precipitation (ChIP) assays revealed that EZH2 catalyzed repressive H3 lysine 27 trimethylation (H3K27me3), which was sufficient to silence HOX genes in CLL, whereas in MCL H3K27me3 is accompanied by DNA methylation for a more stable repression. More importantly, hypermethylation of the HOX genes in MCL resulted from EZH2 overexpression and subsequent recruitment of the DNA methylation machinery onto HOX gene promoters. The importance of EZH2 upregulation in this process was further underscored by siRNA transfection and EZH2 inhibitor experiments. Altogether, these observations implicate EZH2 in the long-term silencing of HOX genes in MCL, and allude to its potential as a therapeutic target with clinical impact.  相似文献   

3.
Cannabinoid receptors 1 (CB1) and/or 2 (CB2) are overexpressed in many types of human malignancies including mantle cell lymphoma (MCL). Agonists to CB1 and CB2 promote ceramide de novo synthesis, p38–mitogen-activated protein kinase-dependent activation of caspase-3 and apoptotic cell death in most MCLs. However, in this report we describe that in some MCLs the response to treatment with cannabinoids decreased cell viability as assessed by metabolic activity but did not involve the caspase-3 cascade or loss of plasma membrane integrity. Both primary cells from one MCL patient and the MCL cell line Granta519 responded to treatment with cannabinoids by formation of cycloheximide-sensitive cytoplasmic vacuoles, but did not enter apoptosis. The persistent expression of mammalian homolog of Atg8 with microtubule-associated protein-1 light chain-3 II (LC3 II) and p62, as well as the lack of protection from chloroquine, indicates that lysosomal degradation is not involved in this cytoplasmic vacuolation process, distinguishing from classical autophagy. Transmission electron microscopy images and immunofluorescence staining of endoplasmic reticulum (ER) chaperone calreticulin showed that the vacuoles were of ER origin and that chromatin remained normal. These features resemble paraptosis-like cell death—a third type of a programmed cell death not previously described in response to cannabinoids.  相似文献   

4.
Gelebart P  Zak Z  Anand M  Belch A  Lai R 《PloS one》2012,7(4):e33738
Fatty acid synthase (FASN), a key player in the de novo synthetic pathway of long-chain fatty acids, has been shown to contribute to the tumorigenesis in various types of solid tumors. We here report that FASN is highly and consistently expressed in mantle cell lymphoma (MCL), an aggressive form of B-cell lymphoid malignancy. Specifically, the expression of FASN was detectable in all four MCL cell lines and 15 tumors examined. In contrast, benign lymphoid tissues and peripheral blood mononuclear cells from normal donors were negative. Treatment of MCL cell lines with orlistat, a FASN inhibitor, resulted in significant apoptosis. Knockdown of FASN expression using siRNA, which also significantly decreased the growth of MCL cells, led to a dramatic decrease in the cyclin D1 level. β-catenin, which has been previously reported to be upregulated in a subset of MCL tumors, contributed to the high level of FASN in MCL cells, Interesting, siRNA knock-down of FASN in turn down-regulated β-catenin. In conclusion, our data supports the concept that FASN contributes to the pathogenesis of MCL, by collaborating with β-catenin. In view of its high and consistent expression in MCL, FASN inhibitors may hold promises for treating MCL.  相似文献   

5.
Constitutive activation of the NF-kappaB has been documented to be involved in the pathogenesis of many human malignancies, including hemopoietic neoplasms. In this study, we examined the status of NF-kappaB in two non-Hodgkin's lymphoma cell lines derived from mantle cell lymphoma (MCL) samples and in patient MCL biopsy specimens by EMSA and confocal microscopic analysis. We observed that NF-kappaB is constitutively activated in both the MCL cell lines and in the MCL patient biopsy cells. Since NF-kappaB has been shown to play an important role in a variety of cellular processes, including cell cycle regulation and apoptosis, targeting the NF-kappaB pathways for therapy may represent a rational approach in this malignancy. In the MCL cell lines, inhibition of constitutive NF-kappaB by the proteasome inhibitor PS-341 or a specific pIkappaBalpha inhibitor, BAY 11-7082, led to cell cycle arrest in G(1) and rapid induction of apoptosis. Apoptosis was associated with the down-regulation of bcl-2 family members bcl-x(L) and bfl/A1, and the activation of caspase 3, that mediates bcl-2 cleavage, resulting in the release of cytochrome c from the mitochondria. PS-341or BAY 11-induced G(1) cell cycle arrest was associated with the inhibition of cyclin D1 expression, a molecular genetic marker of MCL. These studies suggest that constitutive NF-kappaB expression plays a key role in the growth and survival of MCL cells, and that PS-341 and BAY 11 may be useful therapeutic agents for MCL, a lymphoma that is refractory to most current chemotherapy regimens.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
Cytogenetic analysis of mantle cell lymphoma (MCL), characterized by the presence of t(11;14)(q13;q32) translocation, is often difficult because of the low proliferating rate of MCL cells and the presence of normal cells in bone marrow which may interfere with growth of MCL cells. We describe herein a TPA (12-O-tetradecanoylphorbol 13-acetate) stimulated culture to improve detection of t(11;14)(q13;q32) in 20 MCL patients regardless of the samples used.  相似文献   

14.
The patients with mantle cell lymphoma (MCL) have translocation t(11;14) associated with cyclin D1 overexpression. We observed that iron (an essential cofactor of dioxygenases including prolyl hydroxylases [PHDs]) depletion by deferoxamine blocked MCL cells’ proliferation, increased expression of DNA damage marker γH2AX, induced cell cycle arrest and decreased cyclin D1 level. Treatment of MCL cell lines with dimethyloxalylglycine, which blocks dioxygenases involving PHDs by competing with their substrate 2‐oxoglutarate, leads to their decreased proliferation and the decrease of cyclin D1 level. We then postulated that loss of EGLN2/PHD1 in MCL cells may lead to down‐regulation of cyclin D1 by blocking the degradation of FOXO3A, a cyclin D1 suppressor. However, the CRISPR/Cas9‐based loss‐of‐function of EGLN2/PHD1 did not affect cyclin D1 expression and the loss of FOXO3A did not restore cyclin D1 levels after iron chelation. These data suggest that expression of cyclin D1 in MCL is not controlled by ENGL2/PHD1‐FOXO3A pathway and that chelation‐ and 2‐oxoglutarate competition‐mediated down‐regulation of cyclin D1 in MCL cells is driven by yet unknown mechanism involving iron‐ and 2‐oxoglutarate‐dependent dioxygenases other than PHD1. These data support further exploration of the use of iron chelation and 2‐oxoglutarate‐dependent dioxygenase inhibitors as a novel therapy of MCL.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号